DISTRIBUTION DES CHITINASES CHEZ LES MAMMIFÈRES RONGEURS

par M. Frankinoul et Ch. Jeuniaux.
(Institut Léon Fredericq, Biochimie, Université de Liège.)

Résumé. — La distribution de la biosynthèse de la chitinate a été étudiée chez quatre espèces de Rongeurs. C'est la muqueuse gastrique qui est le siège de cette biosynthèse; le pancréas des Rongeurs ne sécrète pas d'enzymes chitinolytiques.

Dans le cas du Rat et de la Souris, la variabilité individuelle peut être réduite au minimum en utilisant des individus de même âge, de même taille et de même sexe, sacrifiés à un même moment par rapport à la distribution du dernier repas.

Parmi les espèces étudiées, seul le Cobaye, végétarien exclusif, ne sécrète pas de chitinate gastrique. Le Hamster, qui est principalement granivore, ne sécrète que de petites quantités de chitinate gastrique, tandis que le Rat Surmulot et la Souris domestique, omnivores, présentent une sécrétion de chitinate gastrique aussi importante que celle que l'on observe chez la plupart des Reptiles, des Oiseaux insectivores et de certains Mammifères Insectivores. Ces observations confirment l'existence d'une corrélation entre la présence de chitinate dans l'équipement enzymatique digestif d'une espèce et le régime alimentaire habituel de cette espèce.

Les recherches de l'un de nous sur la distribution zoológique des enzymes du système chitinolytique ont permis de mettre en évidence l'existence d'une corrélation entre la présence de chitine dans la nourriture habituelle d'une espèce animale et la sécrétion de chitinate par certains tissus du système digestif de cette espèce. Cette observation a été faite aussi bien dans le cas de Vertébrés (Jeuniaux, 1961, 1962, 1963) que de certains phylums d'Invertébrés, notamment les Arthropodes (Jeuniaux, 1963). Étant donné que la sécrétion de chitinate a été observée chez beaucoup d'organismes inférieurs (Champignons, Bactéries, Protozoaires, Cnidaires, etc. [cf. Jeuniaux, 1963]), ces corrélations entre la nature du régime alimentaire et la sécrétion de chitinasques ont été interprétées comme le résultat de la perte de la propriété de
synthétiser ces enzymes par les animaux adaptés à des régimes alimentaires spécialisés, dépouvrus de chitine (Jeuiaux, 1963).

Dans le cadre de cette hypothèse, il était intéressant d’étudier la distribution zoologique de la biosynthèse des chitinases à l’intérieur d’une petite entité systématique dont les divers représentants présentent des degrés d’adaptation de plus en plus poussés à un régime alimentaire spécialisé. Nous avons choisi d’étudier à ce point de vue le cas des Mammifères Rongeurs (Ordre des Rodents). On sait en effet que les Rongeurs ne sont pas tous exclusivement phytophages; les Sours et les Rats, par exemple, sont franchement omnivores et montrent même une prédilection pour les proies animales, y compris les Insectes (Grasse et Dekeyser, 1955). La découverte de la sécrétion de chitinase par la muqueuse gastrique de la Souris domestique, Mus musculus L. (Jeuiaux, 1963) nous a conduit à rechercher la sécrétion de cet enzyme au niveau des organes du système digestif du Rat Surmulot, du Cobaye et du Hamster.

A. — Méthodes.

1. Préparation des extraits enzymatiques.

L’animal est anesthésié ou tué par décapsulation. Les contents du tube digestif (chyme gastrique ou intestinal, contenu du caecum) sont recueillis dans un tube gradué puis dilués par de l’eau distillée. Les organes mous, comme le pancréas, sont lavés dans du sérum physiologique de Tyrode, essorés sur papier filtre, pesés, puis homogénéisés au moyen d’un homogénéisateur de Potter en présence d’eau distillée, de telle sorte que la proportion de tissue frais soit de 100 mg/ml de suspension. Quant aux muqueuses gastriques et intestinales, éventuellement débarassées de leurs tuniques musculaires, elles sont lavées, pesées, puis broyées au mortier en présence de sable lavé; la suspension est additionnée d’eau distillée (poids de tissue frais par ml de suspension : 100 mg). Les extraits sont conservés en gléidière pendant 24 heures, puis centrifugés. Les surnageants sont recueillis et conservés dans un congélateur (— 15° C) jusqu’au moment du dosage de l’activité enzymatique.

2. Dosage des chitinases.

Le milieu réactionnel est le sérum de Sorex (pH 7.4, Na, HPO, 1.2 M de pCa, 10-7 M) comme source de Mg2+. Les prélevements sont effectués par chauffage-test de la mue au moyen de la méthode de Jeuiaux (1953). On exprime l’activité en unité et en gramme d’excès de produit de réaction.

3. Méthode statistique.

Les valeurs indiquées sont des moyennes de plusieurs observations. Lorsque l’on dispose de plusieurs observations, leur moyenne est calculée, ainsi que le nombre de valeurs utilisées.

B. — Localisation.

Nous avons montré que les extraits de tissu gastrique contenu du estomac de ces animaux (Mus musculus) nourris de « comestibles de couleurs de chair se trouvent dans le chyme gastrique dans le chyme intestinal. Il est vraisemblable que ces enzymes soient utilisées pour décomposer les caracoules de chitine.

(*) Les extraits sont constitués de pousses de mungo, de soja, de levure et de sélénite.

(**) Les extraits de pousses de mungo sont constitués de pousses de mungo, de soja, de levure et de sélénite.
adaptés à des régimes contenant de la chitine (JENIAUX, 1963).
Le but intéressant d'étudier la distribution des chitinases à l'intérieur des Rongeurs est de pouvoir l'étudier. Nous avons choisi d'étudier trois Rongeurs (Ordre des Rodentia) qui ne sont pas tous exclusivement terrestres, par exemple, sont fréquemment des chenêtres pour les hôtes et les animaux de laboratoire. (GRASSÉ ET DEXEYSER, 1963). Nous avons étudié la chitinase par la méthode colorimétrique de Reissig, Stöhringer et Leloir (1953).

On exprime l'activité des chitinases en µg de chitine hydrolysée par heure et par gramme de tissu frais.

3. Méthode statistique.
Les valeurs indiquées dans les tableaux constituent des valeurs individuelles obtenues pour un seul extrait.
Lorsque l'on dispose d'au moins trois valeurs individuelles, la moyenne est calculée, ainsi que l'erreur standard, par la formule

$$S = \pm \sqrt{\frac{\sum (x - m)^2}{n (n - 1)}}$$

où \(x\) est l'activité mesurée, \(m\) la moyenne des résultats obtenus et \(n\), le nombre de valeurs individuelles.

B. — LOCALISATION DE LA SÉCRÉTION DE CHITINASE CHEZ LA SOURIS ET VARIABILITÉ INDIVIDUELLE.

Nous avons mesuré l'activité chitinolytique de différents extraits de tissus glandulaires du système digestif et des muscles de l'estomac, de l'intestin et du caecum chez des souris albinos (Mus musculus L.) élevées en laboratoire; les souris étaient nourries de « composés pour rongeurs » (*) et ont été sacrifiées quelques heures après leur dernier repas. Les résultats sont rassemblés dans le tableau I.

On voit que les chitinases sont sécrétées uniquement par la muqueuse gastro-intestinale. L'activité de ces enzymes persiste encore dans le chyme intestinal et même dans le bol caecal. On remarque que des variations individuelles assez sensibles.

(*) Les « composés pour rongeurs » achetés dans le commerce, sont constitués de poudre de lait écrémé, de diverses farines de céréales, de noya, de son, de levure et de farine de viande et de poisson. Nous avons vérifié qu'elles ne contiennent pas la moindre trace de chitine ni de chitobiose.
TABLEAU I. — Localisation de l’activité chitinolytique dans le système digestif de la Souris Mus musculus L.

<table>
<thead>
<tr>
<th>Échantillons n°</th>
<th>Activité chitinolytique en µg chitine/h/g tissu</th>
<th>Activité chitinolytique en µg chitine/h/ml contenu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>muqueuse gastrique</td>
<td>pancréas</td>
</tr>
<tr>
<td>1 (1)</td>
<td>4,560</td>
<td>0</td>
</tr>
<tr>
<td>2 (1)</td>
<td>3,680</td>
<td>0</td>
</tr>
<tr>
<td>3 (2)</td>
<td>2,160±129</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) Résultats individuels (adultes).
(2) Moyenne des résultats obtenus pour trois individus jeunes.

Nous avons cherché dans quelle mesure la variabilité individuelle pouvait être réduite en travaillant dans des conditions plus précises; six souris adultes de même sexe (mâles) et de même âge (quatre mois) ont été tuées par décapitation, exactement trois heures après la distribution d’un dernier repas. Les résultats obtenus sont réunis dans le tableau II.

TABLEAU II. — Chitinase gastrique de la Souris : variabilité individuelle.

<table>
<thead>
<tr>
<th>Individu</th>
<th>Activité chitinolytique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extrait aqueux de muqueuse gastrique (1)</td>
</tr>
<tr>
<td>1</td>
<td>4,166</td>
</tr>
<tr>
<td>2</td>
<td>3,614</td>
</tr>
<tr>
<td>3</td>
<td>4,236</td>
</tr>
<tr>
<td>4</td>
<td>3,808</td>
</tr>
<tr>
<td>5</td>
<td>3,465</td>
</tr>
<tr>
<td>6</td>
<td>3,943</td>
</tr>
</tbody>
</table>

(1) en µg chitine/h/g de tissus.
(2) en µg chitine/h/contenu total de l’estomac.

Le tableau II montre que l’activité chitinolytique des contenus de l’estomac est assez élevée, même en phase cellulaire en chitinaises. Le tableau II montre des limites larges des chiffres, prélevés dans des conditions relativement nerveuses de même âge, du point de vue de la variabilité. Les individus sont sacrifiés par rapport au dernier repas, à intervalle de trois heures, pour obtenir une variabilité de l’activité chitinolytique.

C. — VARIATION DE L’ACTIVITÉ CHITINASE AU MOMENT DU JEUNE

Chez le Rat Surmul, le Rat et la Souris, le seul tissu de la muqueuse salivaires, de pancréas, de muqueuse duodénale, de chitinase est la muqueuse gastrique. La chitinase du pancréas, de certains rats adultes, est élevée pendant 24 heures, pour s’affaiblir ensuite. Enfin, les individus sont sacrifiés chaque jour, pour obtenir des résultats variables. Le tableau III résume les résultats obtenus.

TABLEAU III. — Sécrétion de l’activité chitinolytique.

<table>
<thead>
<tr>
<th>Délai après le dernier repas</th>
<th>Muqueuse gastrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 h</td>
<td>3 h</td>
</tr>
<tr>
<td>24 h</td>
<td>3 h</td>
</tr>
</tbody>
</table>

(1) en µg chitine hydrolysé.
(2) en µg chitine hydrolysé.

On voit que la teneur en chitinase qui varie relativement, varie au cours des heures qui suivent le jeûne. On observe...
de l'estomac est assez variable. Par contre, la concentration intracellulaire en chitinase des muqueuses gastriques ne varie que dans des limites relativement étroites, lorsque les organes sont prélevés dans des conditions aussi semblables que possible (animaux de même âge, de même sexe, sacrifiés au même moment par rapport au dernier repas).

C. — VARIATION DE LA SÉCRÉTION DE CHITINASE EN FONCTION DU MOMENT DU REPAS, CHEZ LE RAT SURMULOT.

Chez le Rat Surmulot (Rattus norvegicus L.), comme chez la Souris, le seul tissu du système digestif capable de sécréter des chitinases est la muqueuse gastrique; des extraits de glandes salivaires, de pancréas et de muqueuse duodénale ne révèlent aucune activité chitinolytique. Nous avons recherché si les extraits de muqueuse gastrique présentent des variations de teneur en chitinase au cours du temps, d'un repas à l'autre. Quatre rats adultes, de même âge, sont privés de nourriture pendant 24 heures, puis nourris pendant 1 heure. Les quatre individus sont sacrifiés après des laps de temps différents. Le tableau III résume les résultats obtenus.

TABLEAU III. — Sécrétion de chitinase gastrique par rapport au moment du repas chez le Rat Surmulot.

<table>
<thead>
<tr>
<th>Délai après le dernier repas</th>
<th>Activité chitinolytique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muqueuse gastrique (*)</td>
</tr>
<tr>
<td>3 h</td>
<td>1.028</td>
</tr>
<tr>
<td>3 h</td>
<td>1.060</td>
</tr>
<tr>
<td>18 h</td>
<td>1.808</td>
</tr>
<tr>
<td>24 h</td>
<td>1.779</td>
</tr>
</tbody>
</table>

(*) en µg chitine hydrolysée/h/g tissu.
(†) en µg chitine hydrolysée/h/contenu total de l'estomac.

On voit que la teneur en chitinase de la muqueuse gastrique varie relativement peu. Elle semble plus basse pendant les quelques heures qui suivent le repas et augmente pendant le jeûne. On observe des variations en sens opposé et de plus
D. — Distribution et localisation de la chitinase chez quatre espèces de Rongeurs.

Nous avons complété l'étude de la distribution de la chitinase chez les Rongeurs en examinant deux autres espèces : le Hamster (Cricetus frumentarius Pallas) et le Cobaye (Cavia porcellus L.).

Tableau IV. — Localisation et activité des chitinases du système digestif chez quelques Rongeurs.

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Alimentation en captivité</th>
<th>Activité chitinolytique en µg de chitine hydrolysée/h/g tissu frais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mus musculus L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adultes</td>
<td>Nourriture composée pr rongeurs.</td>
<td>3816±140 2160±120 0 0</td>
</tr>
<tr>
<td>jeunes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rattus norvegicus L.</td>
<td>Nourriture composée pr rongeurs.</td>
<td>261±81 2087 0 0</td>
</tr>
<tr>
<td>albinos (1)</td>
<td>Jambon et rongage.</td>
<td>0</td>
</tr>
<tr>
<td>sauvage (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricetus frumentarius</td>
<td>Céréales</td>
<td>123</td>
</tr>
<tr>
<td>Pallas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavia porcellus L.</td>
<td>Légumes verts.</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) Élevé en laboratoire.
(2) Individu sauvage, conservé 48 h en captivité.

E. —

L'examen du tableau 1 montre que chez les Rongeurs, l'activité chitinolytique est capable d'opérer la digestion de la chitine à d'autres Mammifères omnivores, en particulier le Hamster, qui est capable de se nourrir d'un faible éventail de quantités de chitine. Il ne semble pas que des enzymes chitinolytiques aient une relation catalytique entre l'activité des enzymes cellulolytiques et la nature du régime alimentaire. Nous inspirant de la Souris (voir ci-dessus) et de la Spermatodea, nous avons pu comparer certaines observations des travaux de F. R. Roux (1916) et de H. E. Frangioni (1962) sur les ratés supérieurs à la chitine.

Distribution.

Nous insinuons que la transformation de la chitine dans la lumière de l'estomac est intimement liée à l'activité des enzymes chitinolytiques présentes dans la chitine.
Nous inspirant des résultats des analyses faites sur le Rat et la Souris (voir ci-dessus), nous avons veillé à utiliser des animaux adultes de sexe mâle, sacrifiés environ trois heures après le début du dernier repas. Les résultats obtenus sont donc comparables à ceux obtenus pour le Rat et la Souris. Ils sont réunis dans le tableau IV.

On voit que l'activité chitinolytique des extraits aqueux de muqueuses gastriques est élevée dans le cas de la Souris; elle est du même ordre de grandeur que celle observée chez la plupart des Reptiles, les Oiseaux insectivores, les Chauves-Souris et le Hérisson (Jeuiaux, 1962, 1963). Elle semble un peu moins élevée chez le Rat Surmulot. Par contre, les extraits aqueux de muqueuse gastrique du Hamster ne présentent qu'une faible activité chitinolytique, 10 à 30 fois plus faible que chez le Rat et la Souris; quant au Cobaye, il semble dépourvu de toute trace de chitinase gastrique.

E. — Discussion et conclusions.

L'examen du tableau IV nous amène à une première constatation : chez les Rongeurs, seule la muqueuse gastrique est capable d'opérer la biosynthèse de la chitinase. Contrairement à d'autres Mammifères comme la Taupe ou le Porc (Jeuiaux, 1961, 1962), les Rongeurs ne sécrètent pas de chitinase pancréatique.

Si on compare l'activité chitinolytique de la muqueuse gastrique des différents Rongeurs étudiés, on note des variations spécifiques importantes. Il est remarquable que la Souris et le Rat Surmulot qui, du moins à l'état sauvage, ont un régime alimentaire omnivore et même partiellement insectivore, sont particulièrement bien équipés pour digérer la chitine alors que le Hamster, qui est surtout granivore, n'élabore que de petites quantités de chitinase. Quant au Cobaye, strictement végétarien, il ne semble pas capable de synthétiser des enzymes chitinolytiques au niveau de la muqueuse gastrique. Cette corrélation entre l'équipement enzymatique digestif des Rongeurs et la nature du régime alimentaire confirme l'hypothèse de Jeuiaux (1962, 1963), qui considère que l'adaptation des Vertébrés supérieurs à un régime alimentaire exclusivement phytophage a entraîné la perte de la capacité de synthétiser des enzymes chitinolytiques, notamment au niveau de la muqueuse
gastrique. Cette corrélation ne semble pas résulter d'une adaptation métabolique (au sens de Knox). En effet, la modification du régime alimentaire du Rat, de la Souris ou du Hamster, par incorporation de chitine ou par suppression complète de cette substance dans la diète ne modifie pas la sécrétion de chitinase gastrique, même après plusieurs mois d'expérience (Jeuniaux et Frankignoul, inédit).

SUMMARY.

The distribution of chitinase secretion has been studied in four species of Rodents. The biosynthesis of this enzyme is only performed by the gastric mucosa; the pancreas seems to be unable to secrete chitinase, as far as Rodents are concerned.

In the cases of the Rat and the Mouse, the individual variability may be reduced to a minimum by using animals of the same age, sex and size, sacrificed at the same moment with respect to the last meal.

Among the species so far studied, the Guinea-pig is the only one which does not secrete a gastric chitinase. The Hamster secretes only small amounts of chitinase, while Rats and Mice, which are omnivorous, exhibit an important gastric chitinase secretion. In the latter animals, the chitinase contents of the gastric mucosa are as high as in some Reptiles or insectivorous Birds.

These observations confirm the existence of a correlation between the ability of a given species to synthesize chitinase and the feeding habits of this species.

BIBLIOGRAPHIE.

COMPOSITION CHIMIQUE ET NUTRITIVE DES TUBES DE SIBOGLINUM SP. (SIBOGLINUM SP.) ET DE L'HYPOGLINUM (HYPICALCISPUS).

M. F. Foucaud
Institut de Biologie Marine de Banyuls

The chemical composition of Siboglinum inaequatus (ANDERSON) and Rhopilema is known quantitatively.

The tubes of Siboglinum sp. in the part of the body where these two substances are probably abundant, the amino acid composition suggests a high content of glycine and leucine. The composition is very different from that of Pseudechinus.

On the contrary, the contents of the tubes in the part of the body where the amounts of proteins are much less important is richer in glycine (35 % of the total).

La composition chimique primitifs, notamment des tubes.

Beaucoup de zoologistes pensent que le tube de Siboglinum inaequatus, basant sur le pourcentage de glycine dans les tubes, peut être considéré comme un organisme autonome.

Récemment, une étude sur la composition chimique des tubes de Siboglinum inaequatus (ANDERSON) a permis de confirmer ces observations.

Chez les Siboglinides, la composition des tubes de quatre espèces différentes est très différente. Le tube de Siboglinum inaequatus (ANDERSON) a pu confirmer ces observations.

CARLISLE (1964), par exemple, a montré que la composition des tubes de Siboglinum inaequatus (ANDERSON) est très différente de celle des tubes de Pseudechinus.

On voit que la nature des tubes de Siboglinum inaequatus (ANDERSON) est très différente de celle des tubes de Pseudechinus.

1 Contribution de la Station