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Abstract

Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applica-
tions, the rod deflection is restricted by an external constraint and a significant part of the elastic
body is in contact with a stiff constraining surface. The research work presented in this doctoral
dissertation formulates a computational model for the solution of elastic rods constrained inside
or around frictionless tube-like surfaces.

The segmentation strategy adopted to cope with this complex class of problems consists
in sequencing the global problem into, comparatively simpler, elementary problems either in
continuous contact with the constraint or contact-free between their extremities. Within the
conventional Lagrangian formulation of elastic rods, this approach is however associated with
two major drawbacks. First, the boundary conditions specifying the locations of the rod center-
line at both extremities of each elementary problem lead to the establishment of isoperimetric
constraints, i.e., integral constraints on the unknown length of the rod. Second, the assess-
ment of the unilateral contact condition requires, in principle, the comparison of two curves
parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis.
Both conspire to burden the computations associated with the method. To streamline the so-
lution along the elementary problems and rationalize the assessment of the unilateral contact
condition, the rod governing equations are reformulated within the Eulerian framework of the
constraint. The methodical exploration of both types of elementary problems leads to specific
formulations of the rod governing equations that stress the profound connection between the
mechanics of the rod and the geometry of the constraint surface.

The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of
the curvilinear coordinate associated with the constraint axis, describes the rod deformed config-
uration by means of either its relative position with respect to the constraint axis (contact-free
segments) or its angular position on the constraint surface (continuous contacts.) This formula-
tion circumvents both drawbacks that afflict the conventional Lagrangian approach associated
with the segmentation strategy. As the a priori unknown domain, viz. the rod length, is substi-
tuted for the known constraint axis, the free boundary problem and the associated isoperimetric
constraints are converted into a classical two-point boundary value problem. Additionally, the
description of the rod deflection by means of its eccentricity with respect to the constraint axis
trivializes the assessment of the unilateral contact condition. Along continuous contacts, this
formulation expresses the strain variables, measuring the rod change of shape, in terms of the
geometric invariants of the constraint surface, and emphasizes the influence of the constraint
local geometry on the reaction pressure.

Formalizing the segmentation strategy, a computational model that exploits the Eulerian
formulation of the rod governing equations is devised. To solve the quasi-static deflection of
elastic rods constrained inside or around a tube-like surface, this computational model identifies
the number of contacts, their nature (either discrete or continuous), and the rod configuration
at the connections that satisfies the unilateral contact condition and preserves the rod integrity
along the sequence of elementary problems.

Keywords elastic rod, elastica, unilateral contact, surface constraint, Eulerian parameteriza-
tion, torque-and-drag, angioplasty, endoscopy
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Chapter I

Introduction

I.1 Constrained deformation of elastic rods

A wide scope of disciplines ranging from biology to medical sciences and engineering is con-
cerned with the deformation of slender elastic structures. For a vast majority of applications,
these flexible structures are however restrained inside or outside constraints of various shapes
and lengths. Kilometers-long drillstrings are, for instance, commonly operated in the oil and
gas industry to transmit the drilling forces to the bottom of boreholes that are only a few
centimeters wider than the pipes (Inglis, 1988; Sampaio, 2008). Related to the medical field
and therefore concerned with much smaller dimensions, the endoscopic examination of inter-
nal organs (e.g. colonoscopy, fibroscopy, rhinoscopy) as well as the treatment of vascular and
cerebrovascular pathologies through angioplasty (e.g. abdominal and thoracic aortic aneurism,
stroke) or stenting (Schneider, 2003) constitute further applications of this broad class of prob-
lems. Even smaller, crumpling and wrinkling of long molecular chains inside cavities emerges in
biology (Donato et al., 2003; Gomes et al., 2008) as DNA filaments are densely packed in viral
capsids or cell nucleus (LaMarque et al., 2004; Odijk, 2004; Travers and Thompson, 2004; Stoop
et al., 2011). Other applications involve the non-destructive inspection of ducts or other pipe
systems by means of industrial endoscope (e.g. borescope or fiberscope), the insertion of artificial
fibers in industrial crimpers (Cooke, 2000), or the dissipation of energy through the progressive
buckling and folding of a flexible beam that is laterally confined inside a rigid enclosure (Chai,
2002, 2006).

The constraint may alternatively work as a support for the elastic structure. Driven by
internal and/or external forces, it may then be coiled/wound around another slender body as in
the wrapping of DNA around histone cores (Swigon et al., 1998; Tobias et al., 2000; da Fonseca
and de Aguiar, 2003) or carbon nanotubes (Tu et al., 2009). Twining plants, which achieve
vertical growth through the friction generated by revolving around poles or other supports
(Goriely and Neukirch, 2006; Goriely et al., 2008), constitute a further natural manifestation of

1
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this general problem.
Despite spanning multiple disciplines and lengthscales, these phenomena share fundamental

features that legitimate their modeling through the rod theory. Observation and simulation
indeed reveal that, in most circumstances, the transverse dimensions of the elastic structure
may be disregarded with respect to its length and the constraint dimensions. The slender
structure then reduces to a one-dimensional elastic body that will henceforth be generically
referred to as a rod. Although this thin rod may suffer large deflections or large rotations, the
strains generally remain small over its entire length. Due to the presence of the constraint, the
rod is subjected to a unilateral contact condition, which ensures that, depending on the context,
it remains either inside or outside the constraining surface. Hence, a significant part of the rod
usually contacts the constraint and the global solution considerably reflects the geometry of the
constraint. Additionally, along contacts, the constraining surface exerts on the rod an a priori
unknown reaction force and, potentially, a tangential friction force. These forces as well as the
position and number of contacts are of key concern to most applications listed here and collected
under the constrained elastic rods denomination.

I.1.1 Motivations

Clearly, this class of problems encompasses a wealth of fascinating applications, each associated
with its own scientific and economic challenges. Specifically, the necessity to drill deeper and
more complex well profiles as well as the realization of extended reach boreholes lead the oil
and gas industry to develop means to evaluate the transmission of forces from the rig to the
bit. This question, known as the torque-and-drag problem, plays an essential role in drilling and
well design as the friction appearing at the contacts between the drillstring and the borehole
may dramatically increase the costs or, even, be a limiting factor in some configurations. The
completion of deviated wells with up to 10 kilometers of horizontal reach, as presently achieved,
may indeed lead to a considerable increase of the surface torque required at the rig to overcome
the frictional effects and rotate the entire drillstring together with the bit at its bottom. In
extreme situations, these frictional effects may even lead to serious well damages, drillstring fail-
ures or other catastrophic issues (Macdonald and Bjune, 2007). As the extremely low data-rates
achieved through mud-pulse telemetry1 prevent the transmission of comprehensive information
and measures from the bit to the rig, the drilling conditions at the bottom of the borehole
generally remain unknown until the drillstring is pulled out the well to replace the bit or other
piece of the drillstring. Hence, to track a predefined well path and limit the borehole tortuosity,
the driller relies on its training as well as the accuracy of models predicting the drilling tendency
(Perneder and Detournay, 2013; Marck et al., 2014). Oilfield drilling operations being extremely
costly, the accurate prediction as well as the real-time simulation and analysis of the forces
involved therefore became a crucial issue for the oil and gas industry in the last decades.

1 Although considerably higher data-rates may be achieved with wired drillpipe, also referred to as wireline,
mud-pulse telemetry is the most common method of data transmission.
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Interestingly, the medical field is confronted with sensibly similar challenges. In particular,
percutaneous coronary intervention, commonly known as coronary angioplasty, is an endovas-
cular procedure requiring only a small incision to treat coronary arteries stenosis. During this
minimally invasive surgery, a guiding catheter and a guidewire are introduced in a major blood
vessel, typically the femoral artery. The guidewire, which is an extremely thin wire designed to
undergo large deformations and remain perfectly elastic, is then guided by a cardiologist through
the coronary artery to the site of the stenosis or blockage and, eventually, passed across. An
angioplasty catheter is then slid over the guidewire, which acts as a pathway to the stenosis,
and a balloon is inflated in order to stretch the artery wall open and restore blood flow to the
heart muscle; a stent may or may not be implanted at the time of ballooning to prop the vessel
open. The balloon is then deflated, possibly leaving the stent to support the new stretched
open position of the artery (Morgan and Walser, 2010). Considering that the physician has
exclusively access to the proximal end of the guidewire, its insertion into the coronary artery
requires considerable efforts and, certainly, core skills. Relying on radiographic snapshots of
the guidewire configuration in the patient’s blood vessels, the physician has indeed to thread
this device through narrow passageways by only pushing/pulling, twisting or rotating its end
(Schneider, 2003; Baim, 2005). As any others surgical interventions, this procedure is not de-
void of risks and the rigorous training of the physician is of paramount importance. To this end,
procedural simulators providing hands-on practice without consequence to the patient safety
have recently flourished. Similarly, to reduce the recurrent exposition of physicians to X-rays
(Smilowitz et al., 2013) and their noxious effects, the appeal for telesurgery and robotically-
assisted surgery has increasingly been growing2 . To effectively mimic actual clinical conditions
and develop haptic interfaces providing physicians with realistic tactile feedback, considerable
efforts have been dedicated to the analysis of how guidewires interact and deform within arteries
as well as how forces are carried along their length.

The discovery of the double-helical structure of DNA by Watson and Crick (1953), based on
the experimental work by R. Franklin and R. Gosling (Watson, 2010), transformed the foun-
dations of biology and medicine. The knowledge about this extremely long biopolymer, its
properties and function, has been constantly growing ever since. With the advent of disciplines
such as molecular biology and genetic engineering, questions about the geometrical and mechan-
ical states of DNA inside the cell of a living organism became crucial. To fit inside viral capsids
or cell nucleus, DNA filaments are necessarily tightly bent and folded (with length compaction
factors up to 10

4) yielding large elastic deformation energies. The associated packing/unpacking
processes are, for instance, known to control the production of proteins, promote genetic recom-
bination and regulate gene expression by bringing the sites into close spatial proximity (Travers
and Thompson, 2004). In eukaryotic cells, the nuclear DNA is wrapped around histone cores to
form chromatin. The determination of its configuration along these cores is therefore essential

2 At the time of writing these lines, the U.S. Food and Drug Administration approved a device that performs
robotic angioplasty in the optic of reducing radiation for cardiologists (Hicks, 2015).
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to the understanding of intricate multilevel folding and its biological functions in replication
and transcription (Yang and Couchman, 1997). Additionally, because a typical DNA molecule
consists of two complementary polynucleotide chains that are multiply interwound, its topolog-
ical properties (e.g. knotting, catenation, supercoiling, etc.) profoundly influence most genetic
processes (Deweese et al., 2008).

To gain understanding of these real-world phenomena, mathematical models have been elab-
orated by scientists and engineers. This task, often iterative, is destined to provide a repre-
sentation of the essential features of a system from the actual world in terms of mathematical
concepts or ideas. Breaking up the complexity of the system under consideration, the resulting
mathematical models are then used as explicative or predictive tools to answer questions about
the system. For constrained elastic rods, the ubiquitous question concerns the transmission of
the internal forces along the rod and how contacts with the constraint, continuous and discrete,
affect this transmission. Besides the absolute joy resulting from formulating and solving math-
ematical problems, the underlying objective is to provide a methodology for the prediction and
simulation of the rod configuration restrained inside or outside a constraint. The quality and
clarity of a model involving a trade-off between simplicity and accuracy, the identification of the
degree of abstraction and complexity required to capture the essential features of the real-world
phenomenon under consideration is a fundamental step conditioned by the objectives of the
model.

I.1.2 Objectives

The general class of problems collected under the constrained elastic rods denomination is ex-
traordinarily broad and complex as it may involve a multitude of intricate effects such as defor-
mation of the constraint due to contacts, vibration of the rod or time-varying definition of the
constraint. We are not aiming at resolving all the aspects of this generic question but desire to
significantly contribute to the modeling and understanding of a particular subclass applicable
to the torque-and-drag problem experienced by the drilling industry and, to some extent, to the
simulation of minimally invasive medical interventions. The mechanics of DNA packing involv-
ing numerous additional details and specific features, this aspect of constrained elastic rods is
only superficially tackled in this study.

The main objective of the present research consists in the development of a versatile com-
putational model that resolves the quasi-static deflection of an elastic rod inside or around a
perfectly rigid sinuous conduit under various loading and boundary conditions. The formulation
of such a model is a significant task requiring the construction of an algorithm that performs
(i) the identification of the number of contacts and their nature, viz. either discrete or continu-
ous, (ii) the determination of the positions of these contacts along the constraint, and (iii) the
determination of the rod configuration along continuous contacts and between two neighboring
contacts. Additionally, as the loading applied to the rod or its boundary conditions evolve,
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one must consider multiple configurations and transitions including, among others, the emer-
gence/disappearance of contacts, the passage from discrete to continuous contacts as well as its
reciprocal, or the merging of two contacts. The resulting algorithm should, for instance, be able
to treat insertion/extraction problems in which a thin rod is introduced in or withdrawn from
a tortuous conduit of known geometry. The output should include the precise description of
the contacts along the conduit as well as the rod configuration between contacts, the reactions
arising from both continuous and discrete contacts with the constraint and how they affect the
transmission of the internal forces along the rod.

As emphasized in the following Section, conventional tools such as the finite element method
generally result in computational times unsuitable for real-time simulations or prove to be inef-
fective in describing continuous interactions with the constraint. The large deflection possibly
encountered by the rod and the nonpenetration condition with the constraint indeed conspire to
make this relatively broad class of problems nonlinear in many respects. Buckling phenomena
due to lateral and torsional instabilities are also susceptible to occur for the range of loads ap-
plied in most medical and industrial applications. Additionally, the problem involves an a priori
unknown number of contacts between the rod and the constraint which, for some formulations,
may be particularly challenging from an algorithmic standpoint. Finally, in a large majority
of phenomena that fall within this class of problem, the rod configuration at its extremities is
dictated by the environment or application under consideration while the length of the rod is a
priori unknown. The formulation of such problems leads to the establishment of isoperimetric
constraints (Denoël and Detournay, 2011), i.e., integral constraints on the unknown length of
the rod.

I.2 Related efforts

The considerable financial interest associated with both industrial and medical fields lead to
significant research on constrained elastic rods. However, despite being concerned with sensibly
similar challenges and overlapping objectives, research groups have mostly restricted their inves-
tigation to one particular phenomenon and remarkably few synchronized efforts have been made.
The following paragraphs summarize the main methods conventionally proposed to model these
problems as well as the associated limitations.

Oil and gas industry

The interest for a complete torque-and-drag model has been growing since the early eighties,
shortly after the commercial viability of deviated wells was recognized by the oil and gas industry.
The first contribution is due to Johancsik et al. (1984), who proposed a soft string model that
ignores the bending stiffness of the drillstring as well as the clearance between the borehole
and the drillstring. This simplified model, resulting in a continuous contact along the entire
drillstring, was then used by Sheppard et al. (1987), who incorporated the effects of the mud
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pressure and addressed the issue of optimal well path design previously introduced by McClendon
(1985). Due to the simplicity of the soft string model and its ability to provide reasonably good
approximations for the contact forces and loads for relatively smooth well trajectories, this model
has been extensively used by the industry and several torque-and-drag analysis of field cases have
been performed (Maidla and Wojtanowicz, 1987; Brett et al., 1989; Wilson and Yalcin, 1992;
Aadnøy and Andersen, 2001). These studies however emphasize the lumped-parameter nature
of the friction coefficient which typically differ between drag and torque analyses as well as
between pick-up and slack-off operations (Mitchell and Samuel, 2007). As the borehole (micro
and macro) tortuosity increases and the trajectories complicate, the effects of the drillstring
bending stiffness become more significant and the soft string model, therefore, loses its accuracy.
The first stiff string model was proposed by Ho (1988) who concluded that the effects of stiffness
are dominant in the collar and heavy weight drillpipe sections. Introducing two distinct friction
coefficients depending on the angular and axial velocities, Zifeng et al. (1993) later incorporated
into Ho’s model the effects of the drillstring motion state as well as the drilling fluid properties.
These stiff string models, assuming continuous contact along the wellbore, have been applied
advantageously to coiled tubing (McSpadden and Newman, 2002; Yi et al., 2004).

Although the significance of the drillstring bending stiffness in torque-and-drag analysis is
commonly acknowledged, the substantial complexity associated with the stiff string model led
the industry to favor its soft string counterpart until relatively recently. The ability to accurately
account for the effects of hole size, clearance and post-buckling behavior have additionally been
identified as central requirements for the next generation of torque-and-drag models (Mason
and Chen, 2007; Menand et al., 2009). Conscious of this reflection, various research groups have
been using advanced numerical methods with built-in management of the contacts to tackle the
interactions between the drillstring and the borehole. Rezmer-Cooper et al. (1999) for instance
employed the finite element method to quantify the forces experienced by the drillstring in an
attempt to aid planning decisions and reduce costs. Similarly, Newman and Procter (2009) and
Wu et al. (2011) combined a finite element analysis of the drillstring with a finite difference
scheme to obtain a dynamical model of the drillstring behavior inside the borehole. These finite
element analyses generally require, however, dense meshes to properly capture the response of
the system in the vicinity of contacts and, therefore, result in computational times inappropriate
for real-time simulations. As an alternative approach, Menand et al. (2006) coupled a contact
algorithm and a numerical integration scheme in an effort to reduce computational times.

Special care has also been devoted to the helical buckling as well as the post-buckling be-
haviors of drillstrings inside boreholes (Huang and Pattillo, 2000; van der Heijden, 2001; Cunha,
2004). These studies are however confined to a straight conduit and very little work (Wu and
Juvkam-Wold, 1995) has been dedicated to curved wellbores.
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Medical industry

The medical industry has developed diverse commercial environments (e.g. VIST or ANGIO
Mentor) which propose to cardiologists and interventional radiologists a safe framework to ac-
quire ample expertise or specific skills while patient safety is not at risk. In an educational
environment, these simulators may facilitate or improve the learning of new procedures as well
as increase the surgical experience of trainees before practicing on humans (Dawson, 2006).
Such simulators however suffer from a lack of realism in the instrument behavior since little
physics-based modeling is generally involved (Weill et al., 2007; Luboz et al., 2010). Aiming at
a more realistic modeling of the instruments behavior, various academic research group have si-
multaneously been investigating the topic using different strategies. Chui et al. (2002) employed,
for instance, a finite element method to capture the interaction of the catheters and guidewires
with the vascular system. Similarly, Cotin et al. (2000) and Cotin et al. (2005) proposed an
incremental finite element approach associated with a substructure decomposition algorithm
which results in computational times suitable for real-time simulations. However the approach
may be ineffective in describing continuous interactions with the environment. To circumvent
this serious drawback and enhance accuracy, Konings et al. (2003) and Alderliesten et al. (2007)
resorted to a Cosserat model of the guidewire which, however, results in computational times
inappropriate for real-time simulations. As an alternative approach, Luboz et al. (2009) and
Luboz et al. (2010) proposed a hybrid mass-spring particle system approach. Modeling the
guidewire by means of a planar elastica inside a curved channel, Chen and Li (2007) carried out
both experimental and analytical works to investigate lagging phenomenon in the longitudinal
motion of the wire that physicians may encounter.

I.3 Methodology

More than focusing on one particular real-world phenomenon, this thesis intends to propose a
computational model that may be applied to a class of problems. It may however be beneficial
to consider a representative, yet versatile, canonical problem serving as a backbone for its
description. In this context, we consider here an elastic rod deforming inside or around a
generic constraint defined as a perfectly stiff, frictionless, normal ringed surface (Bastl et al.,
2014). The axis or spine curve associated therewith, referred to as reference curve independently
of the constraint nature, is further presumed to be known and regular (i.e., its tangent vector
being everywhere well defined.) The rod, initially straight, is assumed to behave as a one-
dimensional elastic body according to the special Cosserat theory of rods. Although readily
extensible to encompass effects of shear, the present formulation is, for the sake of brevity,
restricted to unshearable rods that can undergo large deformations in space by experiencing
bending, torsion and extension. Variants of this general problem may be defined depending on
the nature of the boundary conditions at the rod extremities or on whether the length of the
rod is known or not. We opt here for one of these variants, which may actually be considered

http://www.mentice.com
http://www.simbionix.com
http://www.simbionix.com
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as foundational to the approach proposed to solve any other constrained elastic rod problem.
In this optic, we focus our efforts on a two-point boundary value problem specifying both the
position and inclination of the rod at its extremities and which distinguishes by its unknown
domain, that is the rod length.

I.3.1 Canonical problem

Specifically, let us define the right-handed orthonormal basis {e
j

} for the Euclidean space E3

and denote by R (S) = X

j

e

j

the parameterization of the reference curve C . The parameter S,
referred to as the Eulerian coordinate, identifies a section along C which consists of all points
whose reference position is on the plane perpendicular to the reference curve at S. Without loss
of generality, the parameterization of this curve is assumed to be natural (or arc-length), so that
its tangent is a unit vector. The constraint surface, considered frictionless and undeformable, is
defined as the normal ringed surface generated by sweeping a circle of radius Q (S) centered on
the reference curve and in the normal plane to C .

The rod, materialized by its centerline E , is subjected to a body force f and a body couple
m. Assuming cylindrical symmetry and homogeneous properties, the rod is characterized by its
axial stiffness A, bending stiffness B and torsional stiffness C. Although the length of the rod
is unknown, both its position and inclination with respect to the reference curve are prescribed
at the extremities of the canonical problem. In terms of standard support conditions, this
configuration may be obtained by imposing on extremity of the rod to be clamped while the
other may be seen as moving freely through a frictionless sliding sleeve. The rod length is
therefore free adjust to its external loading and boundary conditions. This feature is referred to
as self-feeding in the following. To close this formulation, this extremity is further subjected to
the combined action of known axial force and twisting moment.

I.3.2 Segmentation strategy

As already emphasized, the determination of the position of the contacts between the rod and
the constraint as well as the extent of these contacts constitutes a central concern of this work.
When dealing with the insertion of a thin rod in a tube-like constraint, it is natural to treat this
process as an evolutive problem. Starting from a contact-free configuration, the introduction
of the rod is simulated by incrementally translating the distal extremity of the rod along the
constraint axis while maintaining the position of the other at the inlet of the constraint, the
length of the rod being free to adjust to the new configuration. As discrete and/or continuous
contacts develop between the rod and the constraint, a commonly adopted strategy consists
in partitioning the global problem into a set of boundary value problems (Chen and Li, 2007;
Denoël, 2008) specifying both the position and inclination of the rod at its extremities. Accord-
ingly, each elementary problem corresponds to a segment of rod either in continuous contact
with the constraint or free of contact between its extremities.
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The equilibrium of the global problem is reached by identifying the correct contact pattern,
i.e., which satisfies the non-penetration condition as well as the global boundary conditions, and
preserving the integrity of the rod. From an algorithmic standpoint, this segmentation strategy
may be conceptualized as three nested loops. The outer loop, concerned with the identification
of the contact pattern, establishes the number of contacts and their nature. Considering a
contact pattern, the median loop ascertains the position and extent of these contacts by ensuring
the continuity of the rod between elementary problems. Evidently, these loops require the
evaluation of the rod configuration along the global problem and, therefore, necessitate to solve
each elementary problem. This procedure, which constitutes the inner loop, may be organized
such that the set of elementary problems is solved sequentially, that is by propagating the
solution from one extremity to the other.

For non-evolutive problems, which do not involve the displacement of the rod extremities
or varying boundary conditions, a similar approach may be adopted. Ignoring the constraint,
the algorithm is initialized by evaluating the unconstrained configuration of the rod. The non-
penetration condition is then progressively reestablished by segmenting the global problem once
(where the penetration is the largest) in each region of contiguous penetration. With this
estimate of the number of contacts (assumed to be discrete) and their approximate positions
along the constraint, the rod configuration is reevaluated along each elementary problem (inner
loop) and the positions of the contacts updated (median loop.) New cycles of calculations,
involving the reassessment of the contact pattern (outer loop), follow until convergence is reached
on the number, type, and position of contacts.

I.3.3 Elementary problems

This segmentation strategy is constructed around the systematic resolution of a sequence of
elementary problems. These building blocks consists in segments of rod, either in continuous
contact with the constraint or free of contact, that are forced to go through two fixed points
in space while being subjected to a distributed body force and, potentially, a body couple, see
Figure I.3.1. The continuous contact and contact-free configurations essentially differ by the
nature of the body force acting on the rod. While, in the absence of additional loads, solely
subjected to its own weight along a contact-free problem, the rod is additionally compelled
to lay on the constraint surface along a continuous contact. Assuming frictionless interactions
between the rod and the constraint surface, the resulting contact pressure acts as an additional
distributed body force oriented normally to the frictionless constraint surface, its magnitude
being however a priori unknown.

As for the global problem, the length (in both deformed and undeformed configurations) of
the rod spanning each elementary problem and satisfying the associated boundary conditions
is unknown and, therefore, constitutes an inherent part of the solution. This feature, specific
to (one dimensional) free boundary problems (Friedman, 2000), is encountered in other appli-
cations as well, e.g. the continuous casting process and the extrusion of plastic through a draw
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Figure I.3.1: Description of the elementary problem. The rod, materialized by its centerline
E , is subjected to the body force f and body couple m between its extremities s

a

and s

b

.
It is characterized by its axial stiffness A, bending stiffness B and torsional stiffness C. The
constraint is the swept surface generated by a circle of radius Q centered on the reference curve
C and in its normal plane.

plate (Donea et al., 2004), the laying of subsea cables and pipelines (Guarracino and Mallardo,
1999; Stump and van der Heijden, 1999) or, in slightly different configurations, the elastically
deformable arm scale (Bosi et al., 2014) and the self-encapsulation of elastic rods (Bosi et al.,
2015). Resorting to a conventional Lagrangian approach, the axially unconstrained nature of
these problems, namely the self-feeding feature, combined with the boundary conditions speci-
fying the rod location at both extremities lead to the establishment of isoperimetric constraints,
namely, integral constraints on the unknown length of the rod. Additionally, the assessment of
the unilateral contact condition requires, in principle, the comparison of two curves parametrized
by distinct curvilinear coordinates (i.e., the rod and the constraint axis), an intensive compu-
tational task contributing to the numerical burden associated with conventional approaches.

To optimize the resolution of the rod configuration along these elementary problems, a signif-
icant part of this thesis focuses on the adaptation of the equations governing the rod deflection
to this particular class of problems. For planar elastica, the above-mentioned difficulties have
been circumvented by adopting an Eulerian description of the rod in terms of the curvilinear
coordinate associated with the constraint (Denoël and Detournay, 2009b; Chen and Ro, 2010)
and by describing its deformed configuration by means of the signed distance between the rod
and the axis of the constraint (Denoël and Detournay, 2011). This approach has been shown
to drastically simplify the resolution of the constrained problem by trivializing the assessment
of the unilateral contact condition and limiting the degeneracy of the governing equations with
diminishing clearance or bending stiffness. Generalizing these concepts, the Eulerian formula-
tion is extended to three-dimensional configurations by reformulating the special Cosserat rod
theory within the framework of a generic constraint defined as a perfectly stiff canal normal
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ringed surface. This approach not only trivializes the detection of new contacts but also sup-
presses the isoperimetric constraints resulting from the self-feeding feature of these elementary
problems and the imposition of the rod position at the extremities of each rod segment.

I.4 Personal contributions

This work is driven by the wealth of biological, medical and engineering applications concerned
by the constrained deformation of elastic rods and the need to efficiently solve this class of
problems. Building on the work by Denoël and Detournay (2011), the concept of segmentation
strategy is generalized and the Eulerian formulation extended to three-dimensional configura-
tions. With the ambition to shed new lights on real world-phenomena, the methodical approach
presented in this dissertation emphasizes the profound connection between mechanics and dif-
ferential geometry associated with this class of problems. The most notable contributions of
this thesis are:

• The Eulerian formulation of the rod governing equations (Huynen et al., 2014; submit-
ted). Valid for both the continuous contact and contact-free configurations, this approach
hinges on describing the rod deformed configuration by means of its relative position with
respect to a reference curve and on restating the rod local equilibrium in terms of the
curvilinear coordinate parameterizing this curve, rather than the rod.

• The particularization of the rod governing equations to surface bound configurations
(Huynen et al., 2015). The continuous contact of an elastic rod with a smooth surface is
studied from a geometrical perspective and the rod flexural as well as torsional strains are
re-expressed in terms of intrinsic and extrinsic properties of the constraining surface along
its centerline. This formulation emphasizes the influence of the constraint geometry on
the rod deformed configuration and the reaction pressure.

• The adaptation of the latter formulation to rods in continuous contact with a nor-
mal ringed surface and the formulation of a specific Eulerian description of the rod
configuration in terms of its angular position along the constraint surface.

• The implementation of a collocation method for the systematic solution of the elemen-
tary problems.

• The development of a complete algorithm for the resolution of the canonical problem
under consideration.

I.5 Outline

The computational model proposed in this thesis rests on the systematic resolution of rod
segments, either in continuous contact with the constraint or contact-free between its extremities.
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A significant part of this work is therefore devoted to the study and analysis of these elementary
problems. Chapter II starts with a succinct introduction to the theory of elastic rods and a
description of the shortcomings associated with the conventional Lagrangian formulation of the
elementary problem. An Eulerian formulation of the rod governing equations is then proposed
in Section II.2. The validity of this formulation, which may be applied to both the continuous
contact and contact-free configurations, is finally assessed by comparison with known analytical
results and numerical solutions.

This structure is carried to Chapter III. Particularizing the rod governing equations to
surface bound configurations, a Lagrangian formulation for rods in continuous contact with
a smooth constraining surface of arbitrary geometry is obtained. These equations are then
adapted to normal ringed surfaces and an Eulerian formulation is again derived in Section III.2.
Both formulations are validated on constraining surfaces of simple geometry, yet resulting in
surprisingly complex equilibrium configurations.

The segmentation strategy adopted to solve the canonical problem is described in Chap-
ter IV. Before illustrating this procedure, the numerical method implemented to solve the
sequence of elementary problems (within the Eulerian framework) as well as details about the
complete algorithm, viz. the identification and validation of the contact pattern, are presented.

Chapter V closes this thesis. It summarizes the main results, discusses conclusions, limi-
tations and directions for future research.

“The best model is the simplest model that still serves its purpose, [...]”
Velten (2009)



Chapter II

Eulerian Formulation of

Elastic Rods Deforming in Space

Before exposing the details and the scope of the proposed formulation, a brief introduction to
the theory of rods is presented and the shortcomings of the conventional Lagrangian formulation
are emphasized.

This theory, central to the problem under consideration, provides approximate solutions
of the three-dimensional equations of elasticity which are satisfactory for slender bodies, i.e.,
bodies that are characterized by two dimensions sufficiently small compared to the third one.
The foundations of such theory of one-dimensional bodies were laid by J. Bernoulli (1694) who
provided the moment balance for the planar deformation of an (inextensible and unshearable)
elastica. Assuming each fiber of the cross section to obey Hooke’s law, Euler derived the classic
linear constitutive equation relating bending moment to curvature and, later, published in the
addendum De curvis elasticis of his landmark book on variational techniques all the possible
planar equilibrium configurations of a uniform, initially straight elastica under terminal loads
(1744).

Lacking the concept of strain and especially the notion of twist density later introduced by
Saint-Venant (1843), Euler could not extend his theory from planar to spatial deformations.
Kirchhoff (1859), Clebsch (1862) and Love (1927) successively refined the notion of strain and
thereby founded a remarkable framework for the deformation of elastic filaments in space. This
approach also led to Kirchhoff’s kinetic analogy which connects the static deformations of un-
shearable and inextensible, weightless, rods to the dynamics of spinning tops; see Nizette and
Goriely (1999) for a complete classification of the shapes adopted by the elastic filament. A
generalization of Kirchhoff’s theory was later proposed by Cosserat and Cosserat (1909), who
abandoned the assumptions of unshearable and inextensible nature of the filaments. In the
following sections, the equations governing the static deformation of rods are derived using this

13
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special Cosserat theory, see Antman (2005) or Audoly and Pomeau (2010) for more details.

II.1 Lagrangian formulation

Consider a long, slender, elastic body that can undergo large deformations in space by experi-
encing bending, twisting and extension but no shear deformation. The special Cosserat theory
formulates a versatile model of a rod to describe the deformation of such a three-dimensional
object. Ignoring its transverse dimensions compared to its length, the slender elastic solid is
reduced to a one-dimensional body endowed with mechanical properties that are suitably av-
eraged over its cross section. Hence, at large scale, a thin rod is described by the path of its
centerline in the Euclidean space and, to keep track of the twist, a material frame that follows
the elastic body upon deformation. Together, the centerline and the material frame, form what
is commonly called a Cosserat rod, a Cosserat curve or simply a rod.

Let us define the right-handed orthonormal basis {e
j

} for the Euclidean space E3 and consider
a straight reference configuration with cylindrical symmetry and homogeneous properties as
shown in Figure (II.1.1). The rod deformed configuration is entirely defined by the three vector-
valued functions

[s

a

, s

b

] 3 s 7! r (s) ,d

1

(s) ,d

2

(s) 2 E3

, (II.1.1)

where the parameter s, which is referred to as the Lagrangian coordinate in contrast to the
Eulerian coordinate S, identifies a material cross section in the arc-length parameterization
r

0

(s) of the rod centerline in its reference configuration. The vector r (s) = x

j

e

j

parameterizes
the space curve E that represents the rod centerline in its deformed configuration; the pair of
orthogonal unit vectors d

1

(s) ,d

2

(s) characterizes the configuration of two material lines of the
cross section. Similarly, the rod in its reference configuration is identified by the (straight) curve
E 0 materializing its centerline together with a pair of unit vectors, that is the three vector-valued
functions r

0

(s) ,d

0

1

(s) ,d

0

2

(s) 2 E3. We will henceforth assume that the parameterization of
the rod centerline is at least C

4–continuous.

II.1.1 Kinematics

Setting d

3

(s) = d

1

⇥ d

2

, the triplet of directors {d
j

(s)} constitutes, for each cross section s, a
material frame in which the deformed state of the elastic rod is naturally described. The twist
vector u (s) = u

j

d

j

, which relates the rotation of the directors to the strains, and stretch vector
v (s) = v

j

d

j

are defined through the following kinematic relations

dd

j

ds

= u⇥ d

j

, (II.1.2)

dr

ds

= v. (II.1.3)
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Figure II.1.1: Initial and deformed configurations of a Cosserat rod. In the deformed configura-
tion, the rod is defined by its centerline E and the director basis {d

j

} describing the orientation
of the material cross section.

Their components, entering into the constitutive equations, are generally referred to as the strain
variables: u

1

and u

2

characterize the local material curvatures, u
3

is a kinematic measure of the
twist density, v

1

and v

2

are associated with transverse shearing, and v

3

corresponds to stretching
or compression. Mathematically, unshearability is expressed as v

1

= v

2

= 0 stating that the
stretch vector is everywhere aligned with the normal to the rod cross section and, therefore,
reduces to v = ↵d

3

. The stretch ↵ (s) > 0, measuring the rod elongation/shortening, may
be interpreted as the Jacobian of the mapping s 7! s̄ (s) between the Lagrangian coordinate
s identifying a rod cross section in its unstressed configuration and the stretched coordinate s̄

parameterizing the rod in its deformed configuration. The stretch, the material curvatures and
the twist density account for change of shape and are referred to as the strain variables. The
associated local modes of deformation – stretching, bending and twisting – are illustrated in
Figure II.1.2. It can be shown that the strains are invariant under rigid body motions, and that
u (s) and v (s) determine a configuration to within a rigid motion (Antman, 2005).

Under the unshearability assumption, the normal to the rod cross section is everywhere
aligned with the tangent vector to the rod centerline. The directors therefore form what is
called an adapted frame, that is a frame with members either tangent to or perpendicular to E

(Bishop, 1975). It is, however, not to be confounded with the Frenet-Serret trihedron {t,n, b}
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Figure II.1.2: Local modes of deformation of an unshearable elastic rod. (a) Stretching identified
by the stretch ↵. (b,c) Bending associated with the material curvatures u

1

and u

2

that measure
the rotation of the material frame about the directors d

1

and d

2

, respectively. (d) Twisting
characterized by the twist density u

3

that measures the rotation of the material frame about
the unit tangent d

3

.
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defined to be the unit tangent, normal and binormal vectors to E

t (s) =

dr

ds

/

����
dr

ds

���� , n (s) =

dt

ds

/

����
dt

ds

���� , b (s) = t⇥ n, (II.1.4)

and which ceases to be valid at singular points, i.e., points where r

00
(s) = 0. This right-handed

orthonormal basis satisfies the Frenet-Serret formulae

dt
ds

= ↵n,

dn
ds

= �↵ t+ ↵ ⌧ b,

db
ds

= �↵ ⌧ n, (II.1.5)

with the curvature  and torsion ⌧ defined as

 (s) =

����
dr
ds
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r
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2

, (II.1.6)

respectively. The curvature  measures the departure of the curve from the original straight line,
while the torsion ⌧ quantifies the degree to which it twists out of a plane (rate of change of the
curve’s osculating plane) and must therefore be distinguished from the twist density u

3

which
can be interpreted as a measure of the angle of rotation between two adjacent sections of the
rod (Love, 1927). Provided the rod centerline does not have inflection points, the Frenet-Serret
trihedron and the directors basis are related through a rotation about t = d

3

that defines the
internal twist angle � (also referred to as the register angle)

d

1

(s) = cos�n+ sin� b, (II.1.7)

d

2

(s) = � sin�n+ cos� b. (II.1.8)

The twist vector may therefore be rewritten in terms of the curvature  and torsion ⌧ (Moulton
et al., 2012) describing the local geometry of the space curve E

u (s) = ↵ sin�d

1

+ ↵ cos�d

2

+

✓
↵ ⌧ +

d�

ds

◆
d

3

, (II.1.9)

where d�/ds is the rate of rotation of the directors {d
1

,d

2

} with respect to the normal and
binormal, the internal twist angle being given by tan� = u

1

/u

2

.

II.1.2 Mechanical equilibrium

Considering only local interactions between adjacent cross sections of the rod, the internal force
F (s) = F

j

d

j

and moment M (s) = M

j

d

j

are defined as the resultant of the contact forces
and the resultant couple of these forces, respectively, acting on the cross section s. A small rod
element of length ds is therefore submitted to the contact forces F (s+ ds) and �F (s) from the
neighboring material as well as the resultant contact torques M (s+ ds)+r (s+ ds)⇥F (s+ ds)

and �M (s)�r (s)⇥F (s), see Figure II.1.3. Acting on this element are also the resultant of all
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Figure II.1.3: Forces (arrows) and moments (double arrows) acting on a small rod element of
length ds. The body force f (s) and body couple m (s) per unit reference length are balanced
by the internal forces F (s) and moment M (s) transmitted by the neighboring material.

other forces f ds and the resultant of all other torques (m+ r ⇥ f) ds where f and m are the
body force and body couple per unit reference length at s+ ds/2, respectively. At equilibrium,
one must therefore have

F (s+ ds)� F (s) + f ds = 0, (II.1.10)

M (s+ ds)�M (s) + r (s+ ds)⇥ F (s+ ds)� r (s)⇥ F (s) + (m+ r ⇥ f) ds = 0 (II.1.11)

such that, taking the limit for ds ! 0, the balance of linear and angular momenta read (Dill,
1992; Antman, 2005)

dF

ds

+ f = 0, (II.1.12)

dM

ds

+ v ⇥ F +m = 0, (II.1.13)

with f (s) and m (s) the body force and body couple per unit reference length at s, respectively.
The potential reaction pressure p (s) acting along continuous contacts is treated as a body force.

II.1.3 Constitutive relations

The system formed by equations (II.1.2–II.1.3) and (II.1.12–II.1.13) is closed by expressing that
the internal force F (s) and moment M (s), defined as the resultant of the contact forces and the
resultant couple of these forces, are related to the strain variables u

j

(s) , v

j

(s). Such constitutive
relations may be obtained under suitable assumptions (commonly referred to as the Kirchhoff-
Love hypotheses although none of them made such hypotheses) on the rod mechanical and
kinematical behavior: (i) every cross section deforms in a rigid-body manner, (ii) the transverse
stress is zero, and (iii) the bending and twisting moments are proportional to the local material
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curvature and twist density, respectively. The resulting relations read

F = F

1

d

1

+ F

2

d

2

+A (↵� 1)d

3

, (II.1.14)

M = B (u

1

d

1

+ u

2

d

2

) + C u

3

d

3

, (II.1.15)

with the axial stiffness A, the bending stiffness B and the torsional stiffness C.
Alternatively, following the classical theory of finite displacements of thin rods developed by

Kirchhoff (1859, 1876), Clebsch (1862) and reformulated by Love (1927), a satisfactory approx-
imation of the three-dimensional equations of nonlinear elasticity may be derived. The original
objective of Kirchhoff and Clebsch was to achieve a reduction of the three dimensional body to
a one dimensional rod by expressing that two dimensions are very small compared to the third.
Considering only small strains with respect to the reference configuration but accounting for
large rotations, they derived an asymptotic decomposition of the rod motion without making
any assumptions about the global constitutive relations. Restricting ourselves to rods of circular
cross section, the Appendix A.1 is a summary of the general ideas of Kirchhoff-Clebsch-Love as
presented by Dill (1992) in the framework of modern continuum mechanics.

II.1.4 Shortcomings of the Lagrangian formulation

Classic boundary value problems for {r (s) ,d
1

(s) ,d

2

(s)} consist of the kinematic equations
(II.1.2–II.1.3), the equilibrium equations (II.1.12) and (II.1.13), the constitutive relations (II.1.14–
II.1.15) and a combination of kinematic and mechanical boundary conditions (Antman, 2005,
pp. 322–328). Considering the orthonormality of the directors, the resulting system consists of
fifteen first order differential equations which requires a set of fifteen boundary conditions. See
Antman and Kenney (1981, pp. 297–300) for an exhaustive description of the various families
and possible combinations of boundary conditions associated with elastic rods. The regular
boundary value problems associated with a fixed length ` = s

b

� s

a

have been investigated
from various perspectives and closed form solutions have been obtained under particular sets of
boundary conditions and loadings (Shi and Hearst, 1994; Tan and Witz, 1995; Kehrbaum and
Maddocks, 1997). These configurations can however be regarded as exceptional and one must
generally resort to numerical techniques (van der Heijden et al., 2003; Goyal et al., 2005; Bergou
et al., 2008) to solve the general problem.

In the context under consideration, cf. Section I.3.3, one extremity of the rod is clamped
while the other may be seen as moving freely through a frictionless sliding sleeve under the
combined action of known axial force and twisting moment. One may assume, without loss of
generality, the extremity s

a

to be clamped such that the triplet

{r (s
a

) ,d

1

(s

a

) ,d

2

(s

a

)} , (II.1.16)

is prescribed at this point. At the end s

b

of the boundary value problem, the position of the rod
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Figure II.1.4: Boundary conditions of the elementary problem. The clamped-sliding sleeve
boundary conditions, responsible for self-feeding, are compared to conventional boundary con-
ditions associated with rods of known length.

and the unit tangent are imposed together with the axial force and twisting moment, that is

{r (s
b

) ,d

3

(s

b

) , F

3

(s

b

) ,M

3

(s

b

)} , (II.1.17)

The unstressed length ` = s

b

� s

a

being a priori unknown, the resulting free boundary value
problem is well-posed. This set of boundary conditions is exemplified in Figure II.1.4 where it
is compared to its conventional counterpart associated with a rod of fixed length.

The boundary conditions specifying the locations r (s

a

) and r (s

b

) of the rod centerline at
both extremities of the domain however lead to the establishment of isoperimetric constraints.
Indeed, although the rod spatial configuration has been specified through the position vector of
the rod centerline and the director d

1

(s), the parameterization r (s) of the space curve E does not
explicitly appear in the governing equations. The coordinates x

j

(s) of the rod centerline in the
absolute reference frame {e

j

} therefore require the integration of the kinematic relation (II.1.3),
that is

x

j

(s) = x

j

(s

a

) +

ˆ
s

sa

v · e
j

ds. (II.1.18)

The boundary conditions and the associated set of integral constraints, on the a priori un-
known domain [s

a

, s

b

], result in ill-conditioned equations contributing to the numerical burden
associated with the conventional Lagrangian formulation (Denoël and Detournay, 2009b).

As noted in Chapter I, the assessment of the unilateral contact condition constitutes an
additional source of difficulties. To ensure that the rod remains either in continuous contact or
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free of contact along the whole domain of the problem under consideration, this supplementary
constraint necessitates the evaluation of the distance between the rod centerline E and the
reference curve C . However, these two curves being naturally parameterized by the Lagrangian
and Eulerian curvilinear coordinates, s and S respectively, the evaluation of this distance reveals
to be computationally intensive as it requires the identification of the mapping s 7! S (s), from
Lagrangian to Eulerian coordinates.

Finally, the ill-conditioning of the governing equations for small bending stiffness, the ex-
istence of spurious solutions associated with curling of the rod as well as the demand for in-
creasing accuracy of the solutions with decreasing clearance, are sources of various additional
complications or other bottlenecks. Consequently, the Lagrangian formulation of the problem
is particularly ineffective and laborious to solve in most circumstances (Denoël and Detournay,
2011).

II.2 Eulerian formulation

The proposed reformulation hinges on describing the rod deformed configuration by means of
its relative position about the reference curve C and restating the rod local equilibrium in terms
of the Eulerian curvilinear coordinate associated with the arc-length parameterization R (S) of
C rather than the natural Lagrangian coordinate of the rod.

By analogy with the director basis, one may arbitrarily define a triplet {D
j

(S)} constituting
a right-handed orthonormal basis for each cross section S along the reference curve and such
that D

3

= dR/dS is the unit vector tangent to C . The kinematics of this adapted frame along
the reference curve can, therefore, be described by means of a vector U (S) = U

j

D

j

(Cartan,
1937) as

dD

j

dS

= U ⇥D

j

. (II.2.1)

Although theoretically appealing, the identification of this frame with the Frenet-Serret appara-
tus attached to C may lead to existence and continuity issues for reference curves with vanishing
curvature. While it is not a requisite for the present formulation, defining the {D

j

}–basis such
that it constitutes a Bishop frame (Bishop, 1975) is advocated as it results in substantially sim-
pler expressions. Also referred to as the parallel transport frame, this adapted frame constitutes
an alternative approach to defining a moving frame that is everywhere well defined. Its con-
struction is based on the concept of relatively parallel fields and the observation that, while the
tangent vector D

3

is unique for any given curve, the pair of orthonormal vectors {D
1

,D

2

} may
be chosen arbitrarily provided it remains perpendicular to the tangent vector. In particular, the
pair {D

1

,D

2

} may be defined such that the {D
j

}–basis smoothly varies along C and has zero
twist uniformly, i.e., U

3

(S) = 0, by requiring dD

1

/ds ·D
2

= 0 and dD

2

/ds ·D
1

= 0.
As presented in Figure II.2.1(a), the parameterization r (s) = x

j

e

j

of the rod centerline can,
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Figure II.2.1: Definition of the eccentricity vector and description of the intermediate {k
j

}–basis.
(a) The parameterization of of the rod centerline may be rewritten as r (s (S)) = R (S)+� (S)

where the eccentricity, measuring the rod relative position with respect to the reference curve
C , vector is such that � ·D

3

= 0. (b) The intermediate {k
j

}–basis is defined as the image of
the {D

j

}-basis through the rotation about the axis # = D

3

⇥ d

3

and mapping D

3

on d

3

. The
rotation of the rod cross section about d

3

= k

3

is then described by means of the angle '.

naturally, be decomposed into

r (s (S)) = R (S) +� (S) , (II.2.2)

where the eccentricity vector � (S) = �

1

D

1

+�

2

D

2

is a measure of the rod relative position
in the cross section of abscissa S. Besides describing the space curve E with respect to the
reference curve C , this decomposition of the position vector r (s) connects the Eulerian and
Lagrangian formulations through the mapping S 7! s (S).

In the remaining of this Chapter, derivatives of scalar and vector valued functions with
respect to the Eulerian coordinate S will be denoted by the apposition of a prime while deriva-
tives with respect to the Lagrangian coordinate s and the stretched coordinates s̄ are explicitly
specified.

II.2.1 Mappings and Jacobians

Substituting the Lagrangian curvilinear coordinate s by the mapping S 7! s (S), the reformula-
tion of the local equilibrium (II.1.12–II.1.13) within the Eulerian framework requires to express
the natural derivatives d · /ds in terms of Eulerian derivatives d · /dS. While the Jacobian of
the mapping s 7! s̄ (s) from Lagrangian to stretched coordinates has already been identified as
the stretch of the rod ↵ = ds̄/ds, the Jacobian of the mapping S 7! s (S), from Eulerian to
Lagrangian coordinates, is obtained by inserting the decomposition (II.2.2) of the rod centerline
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Figure II.2.2: Mappings and Jacobians. (a) An elementary segment of the reference curve (dS)

compared to the corresponding elementary segment of rod in its undeformed (ds) and stretched
configurations (ds̄). (b) Correspondence between these three elementary segments and relations
between the Jacobians of the respective mappings.

in the definition (II.1.3) of the stretch vector and applying the chain rule differentiation

s

0
(S) = ± ��

D

3

+�

0��
/ kvk . (II.2.3)

As D

3

is a unit vector, this expression emphasizes that the origin of the drift existing between
the two curvilinear coordinates is two-fold: (i) the eccentricity � between the rod and the
reference curve, and (ii) the stretch kvk = ↵ of the rod itself. This result is emphasized in
Figure II.2.2(a), which compares an elementary segment of rod, in its undeformed and stretched
configurations, with an elementary segment of the reference curve. Although limiting the range
of potential configurations adopted by the rod, selecting the positive sign in this expression and,
therefore, imposing the mapping s (S) to be increasing prevents the appearance of parasitic
solutions associated with curling, writhing or other configurations involving self-contact and
which are unlikely to occur in most applications under consideration.

Similarly, the derivatives of the inverse mapping s 7! S (s), from Lagrangian to Eulerian
coordinates, as well as the derivatives of the mapping s̄ 7! S (s̄), from stretched to Eulerian
coordinates, can be explicitly written in terms of the Eulerian functions ↵ (S), �

i

(S) and
U

j

(S) (with i = 1, 2 and j = 1, 2, 3.) Defining the Eulerian functions J

k

(S) and ¯

J

k

(S) as

J

k

(S) =

d

k

S

ds

k

����
s=s(S)

,

¯

J

k

(S) =

d

k

S

ds̄

k

����
s̄=s̄(S)

, (II.2.4)

with J

1

(S) = 1/s

0
(S) and ¯

J

1

= 1/s̄

0
(S), the recursive relations

J

k

(S) = J

0
k�1

J

1

,

¯

J

k

(S) =

¯

J

0
k�1

¯

J

1

, (II.2.5)

are obtained for k > 1. Finally, note that the Jacobians of these mappings are related through
the circular relation J

1

= ↵

¯

J

1

, see Figure II.2.2(b), and that r0 ·r0 = ¯

J

�2

1

and r

0 ·r00 = � ¯

J

2

/

¯

J

4

1

.
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II.2.2 Directors and strain variables

Through the introduction of the eccentricity vector, the space curve E characterizing the rod
centerline in its deformed configuration is expressed by reference to the space curve C . Differ-
entiating (II.2.2) with respect to the Eulerian coordinate, the rod local inclination reads

d

3

=

¯

J

1

�
D

3

+�

0�
, (II.2.6)

which emphasizes its representation in terms of the tangent vector to the reference curve. Pro-
jecting this relation in the {D

j

}–basis and accounting for the definition (II.2.1) of the vector
U (S), the components of d

3

in the frame attached to the reference curve are

g

1

(S) = d

3

·D
1

=

¯

J

1

(�

0
1

��
2

U

3

) , (II.2.7)

g

2

(S) = d

3

·D
2

=

¯

J

1

(�

0
2

+�

1

U

3

) , (II.2.8)

g

3

(S) = d

3

·D
3

=

¯

J

1

(1��
1

U

2

+�

2

U

1

) , (II.2.9)

with g

2

1

+g

2

2

+g

2

3

= 1. Provided the {D
j

}’s be defined such that they constitute a Bishop frame,
the former two expressions considerably simplify as U

3

(S) = 0.
The attitude of the rod cross section being uniquely defined by the director d

3

, the knowledge
of the angle between either director d

1

or d

2

and a specified direction is sufficient to fully
characterize the rod spatial configuration. Although straightforward, the characterization of this
rotation by means of the register angle � between the pair {d

1

,d

2

} and the normal and binormal
to the space curve E , cf. equations (II.1.7–II.1.8), may lead to uniqueness and continuity issues
as the Frenet-Serret apparatus ceases to be defined at inflection points, i.e., where  = 0.
Alternatively, the rotation of the rod cross section about the director d

3

can be described with
respect to the pair {k

1

,k

2

}

d

1

= cos'k

1

+ sin'k

2

, (II.2.10)

d

2

= � sin'k

1

+ cos'k

2

, (II.2.11)

where the unit vectors k
1

and k

2

are the images of D
1

and D

2

, respectively, through the rotation
mapping D

3

on d

3

, see Figure II.2.1(b). Rodrigues formula (Cheng and Gupta, 1989) yields

k

j

= D

j

+ #⇥D

j

+ #⇥ (#⇥D

j

) / (1 + cos ✓) , (II.2.12)

where cos ✓ = g

3

and # = D

3

⇥d
3

, with k#k = sin ✓, is the vector describing the axis of rotation.
Additionally defining k

3

= d

3

, the triplet {k
j

} constitutes a right-handed orthonormal basis
that coincides with the directors for cos' = 1 and degenerates into the D

j

–basis for cos ✓ = 1,
i.e., for # = 0. The rotation axis indeed reads # (S) = g

1

D

2

�g
2

D

1

such that equation (II.2.12)
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leads to

k

1

(S) =

✓
1� g

2

1

1 + g

3

◆
D

1

� g

1

g

2

1 + g

3

D

2

� g

1

D

3

, (II.2.13)

k
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3
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1� g
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1 + g

3

◆
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, (II.2.14)

k

3

(S) = g

1

D

1

+ g

2

D

2

+ g

3

D

3

. (II.2.15)

Entirely defined by the three Eulerian functions g

j

, this intermediate basis attached to C pro-
vides a simple way to describe the orientation of the directors with respect to the known {D

j

}–
basis as well as the rudiments to re-express the strain variables in terms of Eulerian functions.
Henceforth, tildes will be used to distinguish components of vectorial quantities in the {k

j

}–basis
from their counterpart in the directors basis, e.g. u

j

= u · d
j

and eu
j

= u · k
j

.
Analogously to relation (II.1.2) for the directors, the kinematic of the intermediate {k

j

}–
basis along the rod centerline is described by a fictitious twist vector w = ew

j

k

j

defined such
that

dk

j

ds

= w ⇥ k

j

, (II.2.16)

and which differs from the actual twist vector u as a result of the relative rotation ' of the direc-
tors {d

1

,d

2

} with respect to the pair {k
1

,k

2

}. Hence, in view of the kinematic relations (II.1.2)
and (II.2.16), differentiation of expressions (II.2.10–II.2.11) leads to u = w + J

1

'

0
d

3

for the
twist vector and

u

1

(S) = ew
1

cos'+ ew
2

sin', (II.2.17)

u

2

(S) = � ew
1

sin'+ ew
2

cos', (II.2.18)

u

3

(S) = ew
3

+ J

1

'

0
, (II.2.19)

for the strain variables. The components ew
1

(S) and ew
2

(S) are the projections of dd
3

/ds = ↵n

on k

1

and k

2

, respectively, while ew
3

(S) = w

3

may be interpreted as the twist density associated
with the rotation of the pair {k

1

,k

2

} about k

3

. Their expressions, in terms of the Eulerian
quantities, are obtained by substituting the definition (II.2.12) for the k

j

’s in the projection of
equation (II.2.16) on the {k

j

}–basis
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ew
2

(S) =

dk

3

ds

· k
1

= J

1

✓
e
U

2

+ g

0
1

� g

1

g

0
3

1 + g

3

◆
, (II.2.21)
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0
1

g

2
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3

◆
. (II.2.22)
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These relations emphasize that the kinematics of the {k
j

}–basis may be decomposed into the
kinematics of the {D

j

}–basis, characterized by the Darboux vector U (S), and its rotation with
respect to this basis. The components e

U

j

(S) of U (S) in the {k
j

}–basis read

e
U

1

(S) =

✓
1� g

2

1

1 + g

3

◆
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1

� g

1
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2
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3

, (II.2.23)
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e
U

3

(S) = g

1

U

1

+ g

2

U

2

+ g

3

U

3

, (II.2.25)

with U

j

(S) = U ·D
j

and the g

j

’s given in equations (II.2.7–II.2.9).
In conclusion, through substitution of equations (II.2.10–II.2.11) and (II.2.17–II.2.19), the

internal force and moment (II.1.14–II.1.15) read

F (S) =

e
F

1

k

1

+

e
F

2

k

2

+A (↵� 1)k

3

, (II.2.26)

M (S) = B ( ew
1

k

1

+ ew
2

k

2

) + C ( ew
3

+ J

1

'

0
)k

3

, (II.2.27)

where the ew
j

(S) are given in equations (II.2.20–II.2.22). Provided that the body force and
body couple per unit reference length may be expressed as functions of the Eulerian curvilinear
coordinate, viz. f (S) = f (S (s)) and m (S) = m (S (s)), the balance of linear and angular
momenta (II.1.12–II.1.13) may be expressed as

J

1

dF

dS

+ f = 0, (II.2.28)

J

1

dM

dS

+ ↵k

3

⇥ F +m = 0, (II.2.29)

where, according to relations (II.2.3) and (II.2.4), the Jacobian reads

J
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U
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, (II.2.30)

which complete the Eulerian formulation. Eventually, the clamped-sliding sleeve boundary
conditions (II.1.16–II.1.17) are reformulated within the Eulerian framework as

{� (S

a

) ,k

1

(S

a

) ,k

2

(S

a

)} , (II.2.31)

and
{� (S

b

) ,k

3

(S

b

) , F

3

(S

a

) ,M

3

(S

b

)} , (II.2.32)

at the extremities S

a

< S

b

of the elementary boundary value problem corresponding to the rod
extremities s

a

and s

b

, respectively. In the following Section, we proceed to the nondimensional-
ization of this Eulerian formulation.
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II.2.3 Dimensionless governing equations and boundary conditions

Both the Eulerian coordinate S and the components of the eccentricity vector are naturally scaled
by the known length of the boundary value problem, L = S

b

� S

a

, leading to the introduction
of the dimensionless curvilinear coordinate ⇠ = (S � S

a

) /L and eccentricity vector � (⇠) =

�

1

D

1

+ �

2

D

2

with

�

1

(⇠) = �

1

(S (⇠)) /L, �

2

(⇠) = �

2

(S (⇠)) /L. (II.2.33)

Analogously scaling the Lagrangian and stretched curvilinear coordinates by L, the stretch is
redefined as ↵ (⇠)

:

= ↵ (S (⇠)) while the Jacobians derivatives (II.2.5) read

J
k

(⇠) = L

k�1

J

k

(S (⇠)) ,

¯J
k

(⇠) = L

k�1

¯

J

k

(S (⇠)) , (II.2.34)

for k � 1. Considering the previous definitions and denoting the characteristic force F ?

= B/L

2,
the scaling leads to the introduction of the following vector fields

F (⇠) = F (S (⇠)) /F

?

, M (⇠) = M (S (⇠)) /LF

?

, (II.2.35)

� (⇠) = Lf (S (⇠)) /F

?

, µ (⇠) = m (S (⇠)) /F

?

, (II.2.36)

for the scaled internal force and moment, body force and body couple, respectively. According
to this scaling and the constitutive relation (II.1.15), the dimensionless strain variables are
analogous to the components of the scaled internal moment in the directors basis, that is

M
1

(⇠) = Lu

1

, M
2

(⇠) = Lu

2

, M
3

(⇠) = Lu

3

(1 + ⌫)

�1

, (II.2.37)

with 1 + ⌫ = B/C where, for rods with a circular cross section, ⌫ is Poisson’s ratio. Similarly,
the fictitious twist vector and the Darboux vector scale as

! (S) = Lw (S (⇠)) , U (⇠) = LU (S (⇠)) , (II.2.38)

such that the components (II.2.7–II.2.9) of the unit tangent d

3

in the {D
j

}–basis become
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where primes now denote differentiation with respect to the dimensionless coordinate ⇠ and,
according to relations (II.2.3) and (II.2.4), the Jacobian reads
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, (II.2.42)

with U
j

= U ·D
j

.
According to equations (II.2.26–II.2.27), the scaled internal force and moment (II.2.35) can

entirely be re-expressed in terms of Eulerian functions as

F (⇠) =

eF
1

k

1

+

eF
2

k

2

+ ⌘

�2

(↵� 1)k

3

, (II.2.43)

M (⇠) = e!
1

k

1

+ e!
2

k

2

+ (1 + ⌫)

�1

(e!
3

+ J
1

'

0
)k

3

, (II.2.44)

where the rotation angle is redefined as ' (⇠)

:

= ' (S (⇠)); ⌘2 = F

?

/A is a dimensionless param-
eter that tends to zero in the limit of inextensible rods; and the components (II.2.20–II.2.22) of
the fictitious twist vector ! (⇠) in the intermediate basis are given by
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with J
1

(⇠) = ↵

¯J
1

. Accordingly, the projection of the equilibrium equations (II.2.28–II.2.29) in
the {k

j

}–basis yields
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with e�
j

(⇠) = � · k
j

and eµ
j

(⇠) = µ · k
j

. Further substitution of the definitions (II.2.45–II.2.47)
for the e!

j

’s and (II.2.39–II.2.41) for the g

j

’s, leads to a mixed order system of six differential
equations involving three first order, (II.2.48–II.2.50), in ↵ and the eF

i

’s; one second order,
(II.2.53), in '; and two third order, (II.2.51–II.2.52), in the �

i

’s (with i = 1, 2.) Although simply
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derived, the resulting system is cumbersome and will not be explicitly presented here.
This system consequently requires the specification of eleven constants of integration. The

Eulerian counterpart to the boundary conditions (II.1.16) prescribing the clamped extremity of
the rod reads

{' (0) , �

i

(0) , �

0
i

(0)} , (II.2.54)

with i = 1, 2. At the end S

b

of the boundary value problem, the rod remains free to move
smoothly through a frictionless sliding sleeve, whose position is fixed in space. Both eccentric-
ity and inclination of the rod with respect to the reference curve must therefore be imposed.
Additionally, according to the constitutive relations (II.2.43–II.2.44), the known axial force and
twisting moment acting at this extremity also require to prescribe the stretch and the first
derivative of the angle '. Hence, the boundary conditions (II.1.17) become

{↵ (1) ,'

0
(1) , �

i

(1) , �

0
i

(1)} , (II.2.55)

with i = 1, 2. As an essential outcome of the proposed reformulation, the isoperimetric con-
straints, a source of difficulty in the Lagrangian formulation, disappear and the system of
equations (II.2.48–II.2.53) with the boundary conditions (II.2.54–II.2.55) constitute a classical
boundary value problem. Note that the proposed Eulerian reformulation of the rod governing
equations could be extended to other boundary conditions.

In conclusion, it has been shown that the rod configuration, entirely defined by r (s) and
d

1

(s) in the Lagrangian formulation (II.1.1), reduces to the knowledge of the three Eulerian
functions

[0, 1] 3 ⇠ 7! ' (⇠) , �

1

(⇠) , �

2

(⇠) 2 R, (II.2.56)

with the boundaries ⇠ = {0, 1} of the elementary problem corresponding to the rod extremities
s

a

and s

b

, respectively. While the components �
1

, �

2

of the eccentricity vector describe the rod
relative position with respect to the reference curve, the angle ' characterizes the rotation of the
rod cross section about the director d

3

. This representation of elastic rods leads to a reduced
coordinate formulation involving a minimal number of degrees of freedom similar to the curve-
angle representations proposed in Langer and Singer (1996); Bergou et al. (2008, 2010). In this
formulation, the centerline is explicitly represented and the material frame is characterized by
a unique angle.

Besides the suppression of the isoperimetric constraints, the proposed Eulerian reformula-
tion of the rod governing equations drastically simplifies the assessment of the unilateral contact
condition, which requires the evaluation of the distance between the two curves C and E (param-
eterized by distinct curvilinear coordinates in the classical Lagrangian formulation.) Specifically,
the description of the rod deformed configuration through its relative position with respect to
the constraint axis provides a straightforward means to detect the appearance of new contacts
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or, depending on the elementary problem under consideration, ensure that the rod remains in
continuous contact with the constraining surface. More precisely:

Free rod The a posteriori assessment of the unilateral contact condition along contact-free
problems is drastically simplified as it reduces to ensure that a threshold on the magnitude of
the eccentricity vector is not violated. This constraint, indeed, merely consists in checking that
either k�k < ✏ or k�k > ✏, with the scaled constraint radius ✏ (⇠) = Q (S (⇠)) /L, for interior and
exterior configurations, respectively.

Continuous contact Alternatively, although the magnitude of the eccentricity vector is
known along continuous contact problems, the magnitude of the reaction pressure ⇢ (⇠) included
in the body force � (⇠) and acting normally to the constraint surface is a priori unknown. The
nonlinear boundary value problem (II.2.48–II.2.55) is therefore supplemented by the relation
k�k = ✏ to close the formulation and ensure the continuous contact along the whole domain.

II.2.4 Small inclination approximation

The previous developments lead to the rigorous reformulation of the special Cosserat rod theory
within the Eulerian framework associated with the reference curve. Although this reformulation
hinges on the description of the rod deformed configuration by means of its relative deflection
about C , no assumptions were made on the magnitude of � (⇠). Along interior problems, the
rod eccentricity is however expected to be at most equal to the constraint radius, while for many
typical exterior problems, the rod remains within close range of the reference curve such that
the norm k�k be of the order of the constraint radius. The following rescaling of the eccentricity
vector is therefore naturally proposed

� (⇠) = " � (II.2.57)

with � (⇠) = �

1

D

1

+ �

2

D

2

and " a representative value of ✏ (⇠) along the elementary problem
under consideration such that

��
�

��
= O (1) as " ! 0. For small values of k�k, i.e., for " ⌧ 1,

the space curve E may be seen as a perturbation of the reference curve and the distinction
between Eulerian and stretched coordinates becomes negligible provided the rod relative deflec-
tion remains reasonably small compared to the radius of curvature of the reference curve. The
conditions under which the nonlinear system (II.2.48–II.2.53) can be simplified accordingly are
investigated next.

For eccentricities of order " such as previously defined, the inclination of the rod on the refer-
ence curve is expected to be comparably small, that is ✓ (⇠) = O (") as "! 0, and, consequently,
the {k

j

}–basis to be expressed as a perturbation of the {D
j

}–basis attached to the reference
curve. Expanding the rotation vector # (⇠) = D

3

⇥k

3

in powers of " and inserting the resulting
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expression in the definition (II.2.12) of the intermediate basis, leads to
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as "! 0, where the first corrections read
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such that the intermediate basis remains orthonormal at each order. The vector # (⇠) being, by
definition, orthogonal to D

3

(⇠), it may be expressed as

# (⇠) = "#
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for " ! 0, where the corrections read #
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(⇠) = #
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with #
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(⇠) and #

2,k

(⇠)

functions of the � (⇠) and U (⇠) components.
Comparison of expression (II.2.58) with the definition of the intermediate basis in terms of

the g

j

(⇠)’s, see equations (II.2.13–II.2.15), allows to identify the perturbation expansions for the
components of the director d

3

in terms of the �
i

(⇠)’s and U
j

(⇠)’s. Limiting these developments
to twist-free {D

j

}–bases, i.e., Bishop frames, the only nonzero components of the Darboux
vector U (⇠) are of the order of the reference curve curvature K (⇠) =

p
U2

1

+ U2

2

. Therefore,
redefining these components as

U
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(⇠) = K sin�, U
2

(⇠) = K cos�, (II.2.61)

where tan� = U
1

/U
2

is the angle between the pair {D
1

,D

2

} and the normal and binormal to
C , the components (II.2.39–II.2.41) become
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as "! 0.
Considering only the leading order terms, the Jacobian of the mapping from stretched to

Eulerian coordinates reduces to

¯J
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(⇠) = 1 + "K �
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1

cos�� �
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�
+O �

"

2

�
, (II.2.65)

as " ! 0, which emphasizes that the drift between these two curvilinear coordinates becomes
negligible either for reasonably small curvature of the reference curve or when the eccentricity
vector � (⇠) is orthogonal to the osculating plane to C , i.e., when the eccentricity of the rod
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does not contribute to its curvature. In many applications, the reference curve is only slightly
tortuous and its radius of curvature is large compared to the length L of the problem. Hence,
assuming the product "K = O("

2

) for "! 0, the third terms in equations (II.2.62) and (II.2.63)
become negligible and the Jacobians reduce to eJ

1

(⇠) = 1 + O("

2

) and J
1

(⇠) = ↵ + O("

2

).
Consequently, the components (II.2.45–II.2.47) of the fictitious twist vector read
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for "! 0, leading to a substantial simplification of the governing system of equations (II.2.48–
II.2.53). From equations (II.2.51–II.2.52), the shear components of the internal force in the
{k

j

}–basis for instance become
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in the absence of body couple, while according to equations (II.2.17–II.2.19) and (II.2.37), the
scaled strain variables may be expressed as
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for "! 0.
In practice, the domain of applicability of this small scale approximation of the Eulerian

formulation may seem relatively restricted as it requires that K = O (") for " ! 0. It is
however shown in Section II.3.3, that it provides remarkably good results for the internal force
and moment, even for a curvature of the reference curve of order 1. The main interest of this
approximation actually resides in its propensity to stress how the tortuosity of the reference
curve affects the transmission of the internal force and moment. Finally, within a numerical
scheme, this approximation could be used as an initial guess for a solver.
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II.3 Validation and applications

As suggested in the introduction, the range of disciplines and applications concerned with the
constrained deformation of a slender elastic body is potentially very wide. Exploring all the
possible features of the proposed Eulerian reformulation exceeds the scope of this Chapter and,
merely, a few of its benefits and limitations are highlighted in the following. Considering a series
of fundamental problems, the validity of the method is assessed by comparison with known
analytical results and numerical solutions obtained using the Lagrangian formulation.

II.3.1 Planar elastica

Planar deflection can either result from the rod cross section geometry and loading symmetry
(these solutions do not need to be stable) or be imposed by external constraints (in which case the
transversal force is not necessarily null.) The purely bi-dimensional configuration corresponding
to the external constraint d

2

(⇠) = e

2

is investigated here by assuming �
2

(⇠) = 0 and a planar
reference curve. The {D

j

}–basis attached to C is defined such that D
2

(⇠) = e

2

; hence the only
non-null component of the Darboux vector U (⇠) = U

2

D

2

corresponds to the curvature of the
reference curve.

Consequently, the components of the director d
3

in the frame attached to the reference curve,
cf. Equations (II.2.39–II.2.41), reduce to
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where the Jacobian (II.2.42) from Eulerian to stretched coordinates is given by
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The only non-null component of the fictitious twist vector (II.2.45–II.2.47) therefore reads
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which is the curvature of the rod. Hence, according to equations (II.2.17–II.2.19) and (II.2.37),
the strain variables reduce to

M
1

= ↵ e!
2

sin', M
2

= ↵ e!
2

cos', M
3

= J
1

'

0

1 + ⌫

. (II.3.4)

For inextensible rods, i.e., for ↵ (⇠) = 1, and assuming no rotation of the rod cross section about
its axis, i.e., '0

(⇠) = 0, we recover the Eulerian formulation proposed by Denoël and Detournay
(2011) for a constrained elastica.
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II.3.2 Straight conduit

The helical buckling and post-buckling behavior of a rod within a cylindrical constraint has
been extensively studied (Seemann, 1996; Thompson and Champneys, 1996; Goriely and Tabor,
1997c; van der Heijden, 2001; van der Heijden et al., 2002; Thompson et al., 2012) not only due
to the major interest it represents to several areas of science and engineering (e.g., mechanics of
climbing in twining plants, drilling industry, fittings in overhead transmission lines or buckling
of optical fibers in loose-tube packaging) but also as a result of the position this fundamental
problem occupies in advanced continuum mechanics. Here, it is shown that well-known re-
sults associated with twisted elastic rods can easily be recovered from the proposed Eulerian
formulation of the rod governing equations.

Along a straight reference curve framed by a constant {D
j

}–basis, the rod assumes a helical
deflection with radius � and pitch angle ✓ provided the components of the eccentricity vector
satisfy

�

1

(⇠) = � cos (2⇡ ⇠/�) , �

2

(⇠) = � sin (2⇡ ⇠/�) , (II.3.5)

where � = 2⇡ �/ tan ✓ is the helix axial wavelength or pitch. Note that the pitch angle ✓ is
also the inclination of the rod on the reference curve as defined in equation (II.2.12). The
Jacobian (II.2.42) of the mapping from Eulerian to Lagrangian coordinates reduces then to
J
1

(⇠) = ↵ cos ✓ and, restricting ourselves to weightless rods and frictionless contact, the reaction
pressure ⇢ (⇠) is equivalent to a body force acting normally to the constraint surface, i.e.,
⇢ ·D

3

= 0. It may therefore be convenient to decompose the shear forces between their normal
F

n

and geodesic F
g

components

F
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with F
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= F · N and F
g

= F · (N ⇥ d

3

) where N (⇠) = cos (2⇡ ⇠/�)D

1

+ sin (2⇡ ⇠/�)D

2

.
Hence, substituting expressions (II.3.5) for �

1

and �
2

in the components (II.2.45–II.2.47) of the
fictitious twist vector lead to
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such that the equilibrium equations (II.2.51) and (II.2.52) yield
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Considering exclusively solutions homoclinic to the straight unbuckled configuration (i.e., asymp-
totically straight towards both ends), the torque reads M

3

= M such that the rod carries about
its own material axis the applied end twisting moment M = M·D

3

(Love, 1927; van der Heijden
and Thompson, 2000; Thompson et al., 2012). According to equations (II.2.50) and (II.2.53),
the stretch ↵ and the angle ' read
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where T = F ·D
3

denotes the applied end force, such that the twisting moment is given by
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Finally, equations (II.2.48) and (II.2.49) lead to
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for the magnitude of the reaction. The helical buckling and post-buckling of both the free rod
and the rod in continuous contact with the cylindrical restraint are investigated in the following.

II.3.2.1 Free rod

In particular, the reaction pressure vanishes along the free helix and equations (II.3.12–II.3.13)
with (II.3.8–II.3.11) relate the helix attributes {�, ✓} to the end loading {M, T }
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or, defining the loading parameter m = M/

pT ,

m =

1 + cos ✓q
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2
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2 sin

2

✓ cos ✓

, (II.3.15)
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which extends the well-known relation m = 1 + cos ✓ to extensible rods, i.e., for ⌘ 6= 0. Substi-
tuting this relation in the former equilibrium conditions (II.3.14) to eliminate the pitch angle,
the radius � = �

pT can similarly be expressed as a function of both the loading parameter
m and the ratio �/⌘. These relations are presented in Figure II.3.1. Although the buckling
load m

b

= 2 is unaffected by the reduced eccentricity �/⌘, it appears that this ratio significantly
alters the post-buckling path. Beyond the subcritical buckling bifurcation, i.e., for m > 2,
and for �/⌘ >

p
2 the only equilibrium solution is the unstable straight configuration whilst,

for �/⌘ 2 ⇥p2/33/4,p2⇤, two additional equilibrium solutions emerge as the loading parameter
given in expression (II.3.15) admits a maximum

m

⇤
=

1 + cos ✓q
1+3 cos 2✓

4 cos ✓+cos 2✓�1

, (II.3.16)

with ✓ 2 [0, arccos (�1/3) /2]. For inextensible rods, a localized post-buckling path has, however,
been observed experimentally Thompson and Champneys (1996); similar energetically favorable
paths are most likely to exist for extensible rods and to be influenced by the values of the reduced
excentricity �/⌘.

For isotropic rods of circular cross section, the ratio �/⌘ reads 2�/a and, therefore, relates the
helix radius� to the rod radius a. The outset of Figure II.3.1 depicts the deformed configurations
associated with five distinct values of this ratio for ✓ = ⇡/5 and T = 1. Note that, for �/⌘ > 0,
the complete range of radius � = �

pT satisfying the equilibrium condition is not accessible as
the rod may be subjected to self-intersection.

II.3.2.2 Continuous contact

For rods contacting the cylindrical constraint, either inside or outside, the helix radius � is
no longer unknown and condition (II.3.15) ceases to be valid. The twisting moment is given
by equation (II.3.12) and the helical equilibrium is maintained provided the loading parameter
satisfies

m =

sin ✓ (1 + cos ✓)

⇣
cos ✓ +

⌘

2

�

2 �
2

⌘

�

⇣
cos ✓ +

⌘

2

�

2 sin

4

✓

⌘
, (II.3.17)

which simplifies to m = sin ✓ (1 + cos ✓) /� for inextensible rods with � = �

pT . The constant
magnitude ⇢ of the associated radial reaction force reads

⇢ �

T = m

2

�

2 �
⇣
1 +

⌘

2

�

2 �
2

cos ✓

⌘
sin

2

✓

(1 + cos ✓)

2

⇣
cos ✓ +

⌘

2

�

2 �
2

⌘
, (II.3.18)
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Figure II.3.1: Attributes of the free helix as functions of the loading parameter m = M/

pT .
The pitch angle ✓ and radius � = �

pT are presented for various values of the ratio ⌘/�. Outset:
deformed configurations associated with distinct values of the ratio �/⌘ = 2�/a for ✓ = ⇡/5

and T = 1; the corresponding sets of parameters {m, ✓,�} are identified with circles on the
universal curves.

with ⇢ > 0 corresponding to an outward-pointing radial reaction force. Whether this reaction
is positive or negative depends on whether the constraint radius is larger or smaller than the
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radius of the free helix for the same loading parameter m. The radius � and, subsequently, the
loading parameter m corresponding to the free helix, cf. Equation (II.3.15), are recovered upon
imposing ⇢ = 0.

II.3.3 Helical conduit

As a third example, the progressive buckling of an initially straight elastic rod constrained inside
a helical conduit is investigated. Although axially unconstrained, i.e., free to flow in/out of the
conduit, the rod is assumed to be transversally clamped on the conduit axis at both extremities
and subjected to an end torque M

3

(1) = M and axial force F
3

(1) = T , see Figure II.3.2(a).
Assuming the rod to be weightless and maintaining the end torque constant, the magnitude
of the axial force is progressively increased until the rod contacts the constraint and a discrete
contact subsequently emerges. The constraint considered in the present application is defined by
its helical axis, with pitch angle ⇥ = ⇡/4 and radius ⌃ = R/L =

�
⇡

p
2

��1, and constant radius
✏ = Q/L where the length L = ⇡R/ sin⇥ of the problem under consideration corresponds to a
half helical turn. Two clearances, ✏ = 1/40 and 1/20, are investigated. Anticipating the discrete
contact to appear at midspan ⇠ = 1/2 for symmetry reasons, the attached {D

j

}–basis is chosen
to be the Bishop frame aligned with the Frenet-Serret apparatus at this point.

Although the present application shares multiple features with the problem of an elastica
constrained inside a tube that has been investigated in Chen and Li (2011); Fang et al. (2013);
Li and Chen (2014), it differs by the unprescribed nature of the rod length, i.e., self-feeding.
Indeed, while the distance between the extremities of a rod of finite length evolves as a result
of the loading, this distance is kept constant in the present analysis and the rod length freely
adapts to the loading.

In the following, the initial contact-free and the subsequent discrete contact phases of this
constrained buckling is analyzed for ⌘ = 1/20 and ⌫ = 1/3. Details of the numerical implemen-
tation are presented in Section IV.1.1.1.

II.3.3.1 Free rod

The initial configuration is chosen to be the helical deformation characterized by a uniformly
null eccentricity vector; this state is however not to be confused with the straight stress-free
configuration E 0 that is only observable in helical conduits with ✏ � ⌃. Following a procedure
similar to the one presented in Section II.3.2 but considering solutions that are not homoclinic
to the straight configuration, one may solve the governing equations (II.2.48–II.2.53) with the
boundary conditions {F

3

(0) = T ,M
3

(0) = M}. Hence, the axial end force T = T
0

required to
maintain the rod on the constraint axis is obtained by imposing ⇢ (⇠) = 0, that is

⌃

2 T
0

=

(⌃M� sin⇥ cos⇥) sin⇥ cos⇥

1 +

⌘

2

⌃

2 sin
2

⇥ cos

2

⇥

. (II.3.19)
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Figure II.3.2: Progressive buckling of an initially straight elastic rod constrained inside a helical
conduit. The rod is subjected to an end torque M = �1 and axial force T . (a) Description of
the problem under consideration. (b) Eccentricity �

1

at midspan, (c) reaction force R at the
discrete contact, (d) scaled unstretched length of the rod `/L, and (e) rod curvature /K at
midspan as functions of the end force T / |T

0

| with T
0

= �7.069. Results obtained for ✏ = 1/40

and ✏ = 1/20 are plotted in blue and orange, respectively. Circles mark the appearance of the
discrete contacts and squares identify the transition from discrete to continuous contact.

For values of the parameters associated with the problem under consideration and M = �1,
this relation yields T

0

= �7.069.
Maintaining the torque M constant, the magnitude of the end force T is progressively

increased causing the rod to gradually leave the constraint axis. Results obtained by means
of the exact Eulerian formulation are compared to both the small inclination approximation
(cf. section II.2.4) and the conventional Lagrangian formulation in Figure II.3.3 for T / |T

0

| =
�1.25. Although the Eulerian and Lagrangian formulations yield virtually identical results, the
small inclination approximation underestimates the magnitude of the rod relative deflection;
the overall profile of this solution being however coherent. This inaccuracy, due to the large
curvature K = ⇡ sin⇥ of the reference curve in spite of the smallness of ✏, is expected to cause
subsequent issues related to the non-penetration condition such as the detection of emerging
contacts or the distinction between continuous and discrete contacts.

It is also seen that the magnitude of the eccentricity vector is maximal at midspan where
�

2

= 0 such that the emergence of a contact between the rod and the constraint can readily be
verified by ensuring that |�

1

| < ✏ at ⇠ = 1/2. The evolution of the eccentricity �
1

at midspan is
pictured in Figure II.3.2(b) as a function of the end force T / |T

0

|; both the results obtained by
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Figure II.3.3: Deflection, internal force and moment of a rod constrained inside a helical conduit
as functions of the Eulerian curvilinear coordinate ⇠. The projections �

i

(⇠) (i = 1, 2) of the
eccentricity vector and the components F

j

(⇠) and M
j

(⇠) (j = 1, 2, 3) of the internal force and
moment, respectively, are pictured as functions of ⇠ for T / |T

0

| = �1.25 and M = �1. The exact
Eulerian formulation (——) is compared to both the small inclination approximation (– – –)
and the Lagrangian formulation ( � � � ).

means of the exact Eulerian formulation and the small inclination approximation are presented.
As expected, the approximate formulation underestimates the end force at which the contact
emerges. Additionally, the self-feeding ability characterizing the proposed method is emphasized
in Figure II.3.2(d) as the unstretched length `/L, which typically corresponds to the domain of
the classical Lagrangian formulation, is seen to freely evolve as a result of the loading.

II.3.3.2 Discrete contact

As the eccentricity k�k reaches the clearance ✏, a discrete contact emerges between the rod
and the constraint giving rise to a reaction force R = JF � F

3

d

3

K aligned with the local
normal to the constraint surface and balancing the discontinuity in the shear force. Here,
double brackets denotes the increment of the quantity across a discontinuity, e.g. JFK =

lim

@⇠

(F (⇠ + @⇠)�F (⇠ � @⇠)). The magnitude of this reaction force being a priori unknown,
the global problem is partitioned into two elementary boundary value problems, each corre-
sponding to a rod segment free of contact. Although both the position and inclination of the
rod are prescribed at the extremities of the global problem, only the magnitude of the eccen-
tricity vector is known at the junction of the two elementary problems. Resorting to a shooting
method Ascher et al. (1995), the missing boundary conditions are substituted with educated
guesses and the rod integrity is restored by ensuring the continuity of the internal moment
across the contact, i.e., JMK = 0. The magnitude R > 0 of the radial reaction and the un-
stretched length `/L are presented in Figure II.3.2(c) and II.3.2(d), respectively, as the end force
varies. For consistency purposes with the preceding phase of the loading, these quantities are
plotted in the scaling associated with the global problem. Points marking the appearance of the
discrete contact are identified with circles.

Further increasing the magnitude of the end force may however lead to a violation of the
unilateral contact condition and an additional restriction on the curvatures of both the rod and
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the constraint surface at the contact point should be considered. This criterion, which also marks
the transition form discrete to continuous contact, ensures that the curvature of the constraint
surface is smaller than the curvature of the osculating circle to the space curve E at the contact
point.

II.3.3.3 Continuous contact

As emphasized in the following Chapter, along a continuous contact, the rod curvature  can be
decomposed between its normal 

n

and geodesic 
g

components according to Pressley (2010)

n = 

n

N + 

g

N ⇥ d

3

, (II.3.20)

where N is the inward pointing unit normal to the constraint surface. While N = �D
1

for the
inner (�

1

= ✏) and N = D

1

for the outer (�

1

= �✏) discrete contact, it can be shown that, due
to the symmetry of the rod deformed configuration, the unit normal vector to E reads n = D

1

at these points irrespectively of the contacting side. Additionally, following Euler’s theorem, the
normal curvature reads



n

= K
1

sin

2

✓ +K
2

cos

2

✓, (II.3.21)

with the principal curvatures of the constraint surface given by K
1

= 1/✏ and K
2

= K/ (✏K ± 1)

for the outer (+) and inner (�) contacts, respectively. The principal vectors associated therewith
coinciding with D

2

and D

3

, the angle ✓ is defined as the inclination of the director d

3

on the
reference curve according to Equation (II.2.12). Therefore, projecting equation (II.3.20) with
expression (II.3.21) for the normal curvature 

n

and the above mentioned definitions of the
principle curvatures K

1

and K
2

on the unit normal vector n = ±N , it can readily be shown
that the contacts remain discrete provided the rod curvature satisfies the following inequalities

  ✏K � sin

2

✓

✏ (✏K � 1)

,  � ✏K + sin

2

✓

✏ (✏K + 1)

, (II.3.22)

at the inner and outer contacts, respectively. The rod curvature is depicted in Figure II.3.2(e)
as the end force varies. Points marking the transition from discrete to continuous contact, i.e.,
at which the inequalities are strictly satisfied, are identified with rhombuses.

At this stage of the loading, the method used to solve the discrete contact problem ceases
to be valid and the global problem should be partitioned into three elementary boundary value
problems. As the extent and geometry of the central problem, corresponding to the rod in
continuous contact with the constraint surface, are a priori unknown a shooting method similar
to the one previously introduced can be used. This forthcoming stage of the loading is analyzed
in Section IV.2.
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II.4 Summary

The Eulerian formulation of elastic rods proposed in this Chapter hinges on (i) describing the
rod deformed configuration E by means of its relative deflection with respect to a reference
curve C , and (ii) expressing the kinematical as well as mechanical quantities pertaining to the
rod in terms of the curvilinear coordinate associated with the reference curve. Both elementary
configurations corresponding to segments of rod either in continuous contact with the constraint
or free of contact have been investigated simultaneously as they essentially differ by the nature
of the body force acting along the rod.

The restatement of the rod local equilibrium in terms of the Eulerian curvilinear coordinate,
is particularly appropriate to treat free boundary problems associated with rods forced to go
through two distinct fixed points in space. The isoperimetric constraints that would otherwise
ensue from a conventional Lagrangian formulation indeed vanish and the resolution reduces to
that of a classical boundary value problem, of mixed order though. Additionally, the a posteriori
assessment of the unilateral contact condition ensuring that, depending on the context, the rod
remains either in continuous contact or free of contact along an elementary problem has been
trivialized. The detection of emerging contacts throughout contact-free problems indeed reduces
to the comparison of the eccentricity magnitude with the constraint radius. Alternatively, along
continuous contacts, the rod is compelled to lay on the constraining surface by straightforwardly
imposing the magnitude of this vector.

The proposed formulation reaches its limits with the single-valuedness of the mapping S (s),
from Lagrangian to Eulerian coordinates, and its reciprocal s (S), from Eulerian to Lagrangian
coordinates. Geometrically, these knotty situations emerge either as a section along the reference
curve is crossed multiple times or if the eccentricity vectors at distinct Eulerian coordinates
intersect. The former situation, which usually arises in conjunction with deformed configurations
characterized by curling, writhing or other solutions involving self-contact such as folding, can be
identified by the orthogonality of the director d

3

and the tangent vector to the reference curve
D

3

, i.e., situations where g

3

(⇠) vanishes at least once along the domain. Alternatively, the
singular configuration associated with the latter situation occurs when the eccentricity vector
aligns with the normal vector to the reference curve D

0
3

and its norm is at least equal to the
reference curve curvature K, that is when � · D0

3

= �

1

U
2

� �
2

U
1

� 1. Interestingly, these two
problematic situations are both avoided by ensuring g

3

(⇠) to remain strictly positive throughout
the domain. Therefore, situations in which the scalar product d

3

·D
3

changes sign cannot be
captured by the proposed method.

Remark regarding the nonuniqueness of the solution

As the length of the rod along the boundary value problem under consideration is not pre-
scribed, more than one solution may correspond to one set of boundary conditions. In the
context of heavy (as opposed to weightless) rods, distinct rod lengths indeed correspond to
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Figure II.4.1: Nonuniqueness of the solution of the elementary problem. (a) Response diagram
of the clamped-sliding sleeve rod under varying end twisting M

3

(L), zero end trust F

3

(L) = 0

and constant specific weight (f = w e

3

with w = 5B/L

3). The greyed zone identifies the region
where noncongruent equilibrium have been observed (numerically.) Although both solutions
(b) and (c) are associated with identical boundary conditions (M

3

(L) = 7B/L) and external
loading, they corresponds to noncongruent equilibriums of the rod. The dashed lines correspond
to the projections of rod centerline on horizontal and vertical planes. Note that the rod deflection
in solution (b) is amplified by a factor 5.

different loadings such that noncongruent equilibriums may be obtained for identical bound-
ary conditions. Figure II.4.1(a) depicts the response diagram of an elastic rod subjected to
clamped-sliding sleeve boundary conditions and varying end twist M

3

(L). The greyed zone in
the Figure identifies the region where noncongruent equilibriums have been observed (numeri-
cally.) For instance, both solutions (b) and (c) were obtained by imposing identical end condi-
tions (M

3

(L) = 7B/L, F

3

(L) = 0). The identification of the complete loading path, expected
to join the two branches presented in Figure II.4.1(a), would require the numerical continuation
of the solution, which is beyond the scope of this work. This aspect of the problem has been
investigated in more details in an conference article (Huynen et al., 2013). Finally, note that
this property is not specific to the Eulerian formulation but rather results from the support
conditions and the self-feeding feature associated with the elementary problem.

“[...] for the description of right lines and circles, upon which geometry is
founded, belongs to mechanics. Geometry does not teach us to draw these
lines, but requires them to be drawn [...]”

Sir Isaac Newton (1687)
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Chapter III

Surface Constrained Elastic

Rods

In the previous Chapter, both the continuous contact and the free of contact configurations
have been investigated simultaneously under the assumption that they essentially differ by the
nature of the body force acting on the rod. However, as the a priori unknown reaction pressure
compels the rod to lay on the constraint surface along a continuous contact, the rod inherently
shares fundamental geometric features with this surface and the determination of the rod spatial
configuration may therefore be adapted accordingly. In this Chapter, the general Lagrangian
formulation for elastic rods is first particularized to surface bound rods by (i) specifying the
configuration of the rod centerline in terms of its coordinates in the parameter space associated
with the constraint surface parameterization, and (ii) characterizing the configuration of its
material frame through its rotation with respect to the surface normal. Although the rod
centerline is enforced to lay on the constraint, no assumption is made on its shape. In the
process, the rod flexural and torsional strains are re-expressed in terms of intrinsic and extrinsic
properties of the constraining surface along the rod centerline, emphasizing the influence of the
constraint geometry on the rod deformed configuration. Finally, an expression for the reaction
pressure is derived. The Lagrangian description of surface bound rods is then adapted to rods
in continuous contact with normal ringed surfaces and an Eulerian formulation analogue to the
one obtained in Section II.2 is derived. By degenerating this approach to a single point, the
criterion governing the transition between discrete and continuous contacts is finally derived.

III.1 Lagrangian formulation of surface bound elastic rods

Consider an elastic rod lying on an oriented surface S parameterized by S (u, v) in the Euclidean
space E3 and denote, once again, by r (s) = x

j

e

j

the parameterization of the rod centerline

45
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E in its deformed configuration. Within the Cosserat theory, the elastic rod is modeled as a
space curve endowed with mechanical properties that are suitably averaged over its cross section.
The rod is consequently reduced to a one-dimensional elastic body and its transverse dimension
is ignored compared to its length. Along a continuous contact with the constraint surface,
the rod centerline is therefore confined to the subset S of E3 and the space curve E may be
re-parameterized as

r (s) = S (u (s) , v (s)) , (III.1.1)

where the coordinates (u (s) , v (s)) of the rod cross section s in the parameter space associated
with the constraint surface are smooth functions of s in accordance to the assumed C

4–continuity
of both the rod and the constraint surface. Therefore, by the chain rule and the definition (II.1.3)
of the stretch vector v = dr/ds, the stretch of the rod reads

↵ (s) = kS
u

u

0
+ S

v

v

0k , (III.1.2)

with the first partial derivatives S
u

(u, v) = @S/@u and S
v

(u, v) = @S/@v, and where primes
indicate derivatives with respect to the Lagrangian coordinate s. Denoting by

E (u, v) = S
u

· S
u

, F (u, v) = S
u

· S
v

, G (u, v) = S
v

· S
v

, (III.1.3)

the coefficients of the first fundamental form associated with the parameterization S (u, v) of
the constraint surface (Pressley, 2010, ch. 6), the former expression may be rewritten as

↵ (s) =

p
E u

02
+ 2F u

0
v

0
+Gv

02
, (III.1.4)

which emphasizes that the drift existing between the two curvilinear coordinates is the restriction
to the surface curve E of the square root of the first fundamental form I = E du

2

+2F du dv+

G dv

2 of the surface, i.e., the arc-length of a line element of E on the surface S . The first
fundamental form being positively definite, expression (III.1.4) is always well-defined.

III.1.1 Directors and geometry of deformation

In view of the assumed regularity of the constraint surface, the vectors S
u

(u, v) and S
v

(u, v)

are linearly independent and the tangent space to S is two-dimensional. The director d
3

, which
is the unit tangent vector to the rod centerline E as a result of the unshearablility assump-
tion, can therefore be expressed as a linear combination of these two vectors. Differentiating
equation (III.1.1) with respect to s, this unit vector reads

d

3

(s) = ↵

�1

(S
u

u

0
+ S

v

v

0
) . (III.1.5)
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Figure III.1.1: Continuous contact of elastic rods and surface bound curves. (a) Description of
the director d

3

in the skew coordinates system {S
u

,S
v

} associated with the surface parameteri-
zation S (u, v). (b) Geometric interpretation of the geodesic curvature 

g

and normal curvature


n

of surface bound curves, decomposition of the intrinsic curvature  between its tangential
and normal components.

This decomposition in the skew coordinate system {S
u

,S
v

} is depicted in Figure III.1.1(a).
Although the configuration of the rod centerline is uniquely defined by the coordinates

(u (s) , v (s)), the rod spatial configuration is not fully characterized until the angle between
either director d

1

or d

2

and a specified direction is known. Upon definition of the unit normal
to the constraint surface

N (u, v) =

S
u

⇥ S
v

kS
u

⇥ S
v

k , (III.1.6)

the triplet {d
3

,N ⇥ d

3

,N} constitutes a right-handed orthonormal basis in which the rotation
of the rod cross section about its axis may be specified as

d

1

(s) = cos N ⇥ d

3

+ sin N , (III.1.7)

d

2

(s) = � sin N ⇥ d

3

+ cos N . (III.1.8)

The unit vector N ⇥ d

3

is sometimes referred to as the geodesic normal vector for reasons that
will become clear in the following. The triplet of vectors {d

3

,N ⇥ d

3

,N} is the Darboux frame
(Gray, 1996, ch. 22) of E with respect to S . Being everywhere well-defined, it presents a major
advantage over the Frenet–Serret trihedron (Gray, 1996, ch. 8), which may lead to existence
and continuity issues along curves with vanishing curvature.

The rod configuration along a continuous contact with a constraint surface S parameterized
by S (u, v) therefore reduces to the knowledge of three functions

[s

a

, s

b

] 3 s 7! u (s) , v (s) , (s) 2 R. (III.1.9)
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This description of surface bound rods, involving only three degrees of freedom, leads to a
curve-angle representation (Bergou et al., 2008; Langer and Singer, 1996; Bergou et al., 2010)
in which, as discussed, the rod’s centerline is explicitly defined by the coordinate (u (s) , v (s))

in the parameter space associated with the constraint surface while the rotation of the material
frame is characterized by the angle  (s). The differential equations governing the behavior of
these functions of s are obtained in the following. This formulation is however not minimal as
the description of the rod’s centerline may be reduced upon orthogonal re–parameterization of
the surface, that is such that the coefficient F defined in equation (III.1.3) uniformly vanishes.
In this context, the angle ✓ (s) 2 [0, 2⇡] between the u–parameter line and the unit tangent d

3

may indeed be introduced leading to the relations (u0
, v

0
) = ↵

⇣p
E cos ✓,

p
G sin ✓

⌘
; the resulting

minimal formulation therefore involving two angles ✓ (s) and  (s), only. The reason why this
formulation is not carried in the following is explained in Section III.1.1.2.

III.1.1.1 Kinematics

The directors being described in the Darboux frame {d
3

,N ⇥ d

3

,N} by means of equations
(III.1.7–III.1.8), their kinematics along the surface bound curve E may be decomposed into the
kinematics of the Darboux frame and their rotation  (s) with respect to this basis. Analogously
to the Frenet–Serret formulas, see equations (II.1.5), are the Darboux formulas (Gray, 1996, ch.
22)

↵

�1

dd

3

ds

= 

g

N ⇥ d

3

+ 

n

N , (III.1.10)

↵

�1

d

ds

(N ⇥ d

3

) = �
g

d

3

+ ⌧

g

N , (III.1.11)

↵

�1

dN

ds

= �
n

d

3

� ⌧
g

N ⇥ d

3

, (III.1.12)

where the geodesic curvature 

g

(u, v), whose definition solely involves the first fundamental
form of the parameterization S (u, v), is an intrinsic property of S , while the normal curvature


n

(u, v) and the geodesic torsion ⌧

g

(u, v) are extrinsic properties of the constraint surface.
According to the Frenet–Serret formulas (Gray, 1996, ch. 8), the righthand side of equa-
tion (III.1.10) reads n where n is the unit normal to the space curve E . This expression
therefore emphasizes that 

n

N and 

g

N ⇥ d

3

are the orthogonal projections of n onto the
surface normal and the tangent space to S (u, v) and, consequently, establishes a relationship
between the rod intrinsic curvature  =

q


2

n

+ 

2

g

and its normal and tangential components


n

and 

g

, respectively. This decomposition is depicted in Figure III.1.1(b). The significance
of these geometric properties, which are attached to the space curve E confined to S and are
invariant under a re-parameterization of E , is explored below.
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III.1.1.2 Geometric invariants

Intrinsic properties of a surface (e.g. length, angle, area) can be measured within the surface
itself and, therefore, depend on the metric of the surface, solely. The geodesic curvature, being
the rate of change of the angle that the tangent to the curve makes with a parallel direction along
the curve (Do Carmo, 1976, p 252), is independent of how the surface sits in the ambient space.
It is expressed in terms of the coefficients of the first fundamental form (III.1.3). It generalizes
the notion of signed curvature of planar curves (Gray, 1996, p 516) to arbitrary surfaces by
measuring how the curve C bends with respect to geodesics1 on the surface. It is expressed as
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where the Christoffel symbols (Pressley, 2010, p 172) read
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see Appendix A.2 for details of the derivation.
On the other hand, extrinsic properties of S , such as the normal curvature and the geodesic

torsion, depend on the embedding of the constraint surface in the ambient space E3. As the
rod may only deform freely in the tangent plane to the constraining surface, these properties
are anticipated to play a major role in the way the reaction pressure is transmitted to the rod.
Hence, denoting by

e (u, v) = S
uu

·N , f (u, v) = S
uv

·N , g (u, v) = S
vv

·N , (III.1.17)

the coefficients of the second fundamental form II = e du

2

+ 2 f du dv + g dv

2 (Pressley, 2010,
ch. 7), the normal curvature reads
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02
+ 2 f u

0
v

0
+ g v
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E u
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v

0
+Gv
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which is the ratio of the fundamental forms along E . It measures how the constraint surface
1 Geodesics extend the notion of straight lines to curved space and are interpreted as the shortest curve

among all piecewise-differentiable curves on S connecting two points (Gray, 1996, ch. 26). Mathematically,
a geodesic is a curve which is everywhere locally a distance minimizer. These surface curves are identified as
lines of zero geodesic curvature such that, along geodesics, the rod bending energy solely arises from the normal
curvature.
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bends in the tangential direction d

3

and is positive if S bends toward its unit normal N . The
geodesic torsion is a further measure of the local geometry of the surface along the rod centerline
complementary to the normal curvature, its expression

⌧

g

(s) =

(f E � e F )u

02
+ (g F � f G) v

02
+ (g E � eG)u

0
v

0

(E u
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+ 2F u

0
v

0
+Gv

02
)

p
EG� F

2

, (III.1.19)

similarly involves the coefficients of both first and second fundamental forms; its derivation is
presented in Appendix A.2. It equals the torsion of the geodesic passing through the point
(u, v) in the direction d

3

and, therefore, introduces a geometrical notion of twist. It may also
be interpreted as a measure of departure of the rod centerline from alignment with a principal
curve, that is a direction along which the normal curvature is maximum or minimum.

As any given curvature and torsion functions determine exactly one space curve (up to rigid
body motion), the geodesic and normal curvatures with the geodesic torsion suffice to fully
characterize the spatial configuration of the rod centerline. This description of the space curve
E incorporates redundancy, however, and the three geometric invariants (

g

,

n

, ⌧

g

) are not
independent since they are functions of only two parametric coordinates, namely (u (s) , v (s)).
Consequently, only two relations involving the geometric invariants are required to express the
equilibrium of the rod centerline.

It has already been mentioned that, upon orthogonal re–parameterization of S (u, v), the
rod’s centerline may alternatively be described by means of its local inclination ✓ (s) with respect
to the u–parameter line, see Figure III.1.2. If this re–parameterization was further chosen such
that the parameter lines are aligned with the surface’s principal directions of curvature, the
geometric invariants could be expressed as (Gray, 1996, p 372, p 520, p 587)
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g

(s) = (

2

� 
1

) sin ✓ cos ✓, (III.1.22)

where 
u

and 

v

are the geodesic curvatures of the parameter lines, 
1

and 

2

are the prin-
cipal curvatures of the surface. As these intrinsic and extrinsic properties of S explicitly de-
pend on the position of the rod centerline on the surface, viz. the parametric coordinates
(u (s) , v (s)), their evaluation along the rod centerline requires the integration of the relations
(u̇, v̇) = ↵

⇣p
G cos ✓,

p
E sin ✓

⌘
/

p
EG. This entanglement of the rod local inclination ✓ (s) and

its coordinates (u (s) , v (s)) is a further source of complexity that justifies the choice made here
to favor a formulation in which the rod centerline is explicitly represented.
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Figure III.1.2: Local inclination ✓ of a surface curve E in an orthogonal parameterization of S .
The local inclination of E at any of its point (u (s) , v (s)) is the acute angle ✓ (s) measured from
the u–parameter line through (u (s) , v (s)) along which u (s) increases.

III.1.1.3 Strain variables

The orientation of the directors with respect to the Darboux frame being entirely described by
the rotation angle  (s) about d

3

, the twist vector may be expressed as u (s) = ↵h +  

0
d

3

with the Darboux vector h (s) = 

g

N � 
n

N ⇥ d

3

+ ⌧

g

d

3

characterizing the kinematics of
the triplet {d

3

,N ⇥ d

3

,N} along the surface curve E . Differentiating both sides of equa-
tions (III.1.7–III.1.8) and exploiting the kinematics equations (II.1.9) and (III.1.10–III.1.12),
the strain variables indeed read

u
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sin � ↵
n

cos , (III.1.23)
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sin , (III.1.24)

u

3

(s) = ↵ ⌧

g

+  

0
, (III.1.25)

where the geometric invariants 
g

, 
n

and ⌧
g

maintain identical values regardless of coordinate
transformation, that is whether the surface curve E is parameterized by the coordinate s asso-
ciated to the rod unstressed configuration, its arc-length parameter s̄ or any other curvilinear
coordinate.

Under the isotropy assumption, the rod bending stiffness about the directors d

1

and d

2

are
equal and the constitutive laws (II.1.14–II.1.15) that relate the stretch and strain variables to the
components of the internal force F (s) = F

k

d

k

and moment M (s) = M

k

d

k

may be expressed
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in the Darboux frame {d
3

,N ⇥ d

3

,N} as

F (s) = F
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+ F
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N +A (↵� 1)d

3

, (III.1.26)
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⌘
d

3

, (III.1.27)

where, again, A, B and C denote the axial, bending and torsional stiffnesses, respectively.

III.1.2 Force and moment balance

Along a continuous contact, the constraint surface S exerts on the elastic rod an a priori
unknown normal reaction pressure p (s) that enters the equilibrium equations through the body
force f (s) = f

g

N ⇥ d

3

+ (f

n

+ p)N + f

3

d

3

with (f

g

, f

n

, f

3

) the projections of the known
body force (e.g. its weight) per unit arc-length in the Darboux frame. Although in effect
acting on the surface of the rod and not at its centerline, the assumption that the rod radius is
much smaller than its length implicitly leads to ignore the otherwise resulting body couple per
unit arc-length. Note that potential distributed couples arising from alternative sources (e.g.,
magnetic field) may however enter the rod governing equations through the body couple per
unit reference length m (s) = m

g

N ⇥ d

3

+m

n

N +m

3

d

3

. The projection of the conservation
of linear and angular momenta (II.1.12–II.1.13) in the Darboux frame, while expressing the
dependance of the internal force and moment in the strain variables through the substitution of
the constitutive relations (III.1.26–III.1.27), leads to
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After elimination of the shear components of the internal force and introduction of the defi-
nitions (III.1.4,III.1.13,III.1.18,III.1.19) for the stretch and geometric invariants, this coupled
system of equations may be reduced to a set of three nonlinear differential equations: one fourth
order, (III.1.28), and one third order, (III.1.30), in the parametric coordinates (u (s) , v (s)) as
well as one second order, (III.1.33), in the rotation angle  (s); the remaining equation, (III.1.29),
providing an expression for the reaction pressure p (s). Although straightforwardly obtained,
the resulting mixed order system of ODEs is cumbersome and will not be presented here.



53

III.1.3 Dimensionless formulation for weightless elastic rods

Consider a weightless elastic rod laying on a smooth surface and denote by `? a characteristic
length of the problem. The arc-length parameter and the geometric invariants therefore scale
as � = (s� s

a

) /`

? and

{
g

(�) = 

g

(s (�)) `

?

, {
n

(�) = 

n

(s (�)) `

?

, {
t

(�) = ⌧

g

(s (�)) `

?

, (III.1.34)

respectively. Additionally introducing the characteristic force F

?

= B/`

?2 leads to the definition
of the scaled internal force F (⇠) = F (s (�)) /F

? and moment M (�) = M (s (�)) /`

?

F

?. Being
naturally dimensionless, the stretch and the rotation angle are redefined as ↵ (�)

:

= ↵ (s (�))

and  (�)

:

=  (s (�)).
In the absence of body couple, the bending and twisting behaviors of an isotropic rod with a

circular cross section uncouple. The projection of the moment balance (II.1.13) on the unit tan-
gent d

3

therefore reveals that the twisting moment M
3

is uniform along its length. Accounting
for the constitutive relation (III.1.27), it reads

(1 + ⌫)M
3

= ↵{
t

+  

0
, (III.1.35)

with Poisson ratio ⌫ = B/C � 1 and where a prime now denotes differentiation with respect to
the dimensionless coordinate �. This relation reveals the partition of the twisting moment, M

3

,
into the internal twist,  0, and a measure of the kinematic torsion of the rod’s centerline, ↵{

t

.
It is analogous to the usual partition of the twist of an elastica into its internal twist and the
torsion of its centerline (van der Heijden and Thompson, 2000). It also expresses that, along a
twist free elastic rod, the pair of directors (d

1

,d

2

) rotates about the unit tangent d

3

with an
angular velocity equal and opposite to ↵{

t

.
Similarly, plugging the constitutive relation (III.1.27) in the moment balance (II.1.13) and

projecting the resulting equation on the geodesic N ⇥ d

3

and normal N directions leads to
equations (III.1.31–III.1.32) or
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for the geodesic and normal components of the internal force, respectively. Substitution of these
expressions in the force balance (II.1.12) and projection along the Darboux frame {d

3

,N ⇥ d

3

,N}
provides the necessary governing equations relating the geometric invariants ({

g

,{
n

,{
t

) along
the rod centerline as well as an expression for the scaled normal reaction pressure ⇢ (�) = p `

?

/F

?.
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Equations (III.1.28–III.1.30) indeed become
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where the axial component of the internal force reads F
3

(�) = ⌘

�2

(↵� 1) and the dimensionless
parameter ⌘2 = F

?

/A = B/A `

?2 is a measure of the rod slenderness that reflects the relative
magnitude of the rod flexural and extensional stiffnesses. A consequence of the symmetric decom-
position of the flexural strains (III.1.23–III.1.24) between the geodesic and normal curvatures is
the parity of equations (III.1.39–III.1.40), whose left-hand sides are identical under permutation
of {

g

and {
n

with a change of sign for the last two terms. Equations (III.1.35,III.1.38–III.1.40)
constitute the set of equations governing the response of a weightless elastic rod constrained on
a smooth surface.

Premultiplication of equation (III.1.38) by ↵ (s) and integration yields
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where ↵
0

> 0 is a constant of integration. This expression relates the stretch, interpreted as the
Jacobian of the mapping s 7! s̃ (s), to the rod intrinsic curvature { =

q
{2

g

+ {2

n

. Additionally,
by combining the scaled versions of equations (III.1.28–III.1.30), an alternative expression for
the reaction pressure is obtained
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3
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2F
n
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which expresses its magnitude in terms of dynamical quantities rather than kinematical ones.

III.1.3.1 Weightless elastica and elastic curves

Inextensible rod models are common as the stretching strain (↵� 1) is often small and negligible
compared to the bending strains ↵{

g

and ↵{
n

. A generalization of Euler’s planar elastica model
to arbitrary surfaces can be obtained easily by degenerating the governing equations (III.1.35,
III.1.38–III.1.40) to their inextensible counterpart. Indeed, by letting ⌘2 ! 0 and ↵ ! 1 such
that the product F

3

= ⌘

�2

(↵� 1) is finite, the constant twist moment equation (III.1.35)
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becomes
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while equation (III.1.38) may be re-written as
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such that the axial component of the internal force reduces to
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The parameter F
0

is a constant of integration, corresponding to the axial force at points char-
acterized by {2

= {2

g

+ {2

n

= 0. Accordingly, relations (III.1.39–III.1.40) become
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which are to be compared with the equations derived for elastic surface curves (Nickerson and
Manning, 1988; Guven and Vázquez-Montejo, 2012; Guven et al., 2014). The intrinsic equations
for these twist-less inextensible rods constrained on a smooth surface, which are obtained by
minimizing the bending energy of curves along their length, may indeed be recovered by posing
M

3

= 0 in equations (III.1.46–III.1.47).
As a result of the similitudes between the Frenet-Serret and the Darboux formulas, the classic

governing equations for an unconstrained elastica, see for instance equations (4.1a–4.1b) in (Shi
and Hearst, 1994), may easily be retrieved by posing {

n

= ⇢ = 0 while swapping the geodesic
curvature and torsion with the elastica intrinsic curvature and torsion, respectively. This result
may alternatively be obtained by observing that the triplet ({

g

,{
n

,{
t

) may be identified to the
curvature functions of a curve in the Euclidean 4-space. The elastica being therefore confined
to the three–dimensional space if {

n

vanishes uniformly.

III.1.3.2 Elastic string and geodesics

Rods with zero or negligible bending stiffness, i.e., strings or cables, are of practical importance
in a wide variety of applications. The soft string model, that ignores the bending stiffness of
the drillstring, is for instance extensively used by the oil and gas industry. The scaling used to
derive equations (III.1.38–III.1.40) is however not optimal to identify the rod behavior in this
context as the characteristic force F

?

= B/`

?2 involves the rod bending stiffness.
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These structures essentially resist transverse loads by means of large displacements and axial
tension (Denoël and Detournay, 2009a). One may therefore denote by F

0

> 0 a representative
value of the axial force, e.g. its magnitude at one extremity of the cable, and rescale the internal
force and moment as F (�) = F (s (⇠)) /F

0

and M (�) = M (s (⇠)) /`

⇤
F

0

, respectively. Hence,
equations (III.1.36–III.1.37) read
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such that, assuming that the ratio B/C = (1 + ⌫) remains constant, the geodesic and nor-
mal components of the shear force vanish for B ! 0, that is F

g

= F
n

= 0. Accordingly,
equations (III.1.28–III.1.30) reduce to
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with ⌘

2

= F

0

/A, the scaled body force � (�) = `

?

f (s (�)) /F

0

and reaction pressure ⇢ (�) =

`

?

p (s (�)) /F

0

. For cables of constant body weight, these equations may be interpreted as the
extension to non planar surfaces of the notion of catenary.

In the absence of body force, i.e., weightless catenary, these equations yield

{
g

(�) = 0, (III.1.53)
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2
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, (III.1.54)

↵ (�) = 1 + ⌘

2

, (III.1.55)

which emphasize the proportionality between the reaction pressure and the normal curvature.
Equation (III.1.53) expresses that cables constrained to lie on a surface follow geodesics. Math-
ematically, a geodesic is a curve which is everywhere locally a distance minimizer and, therefore,
presents an obvious mechanical lure as it minimizes the strain energy associated with the elon-
gation of a cable constrained on a surface. According to the definition (III.1.13) of the geodesic
curvature, imposing {

g

= 0 leads to the establishment of geodesic equations. In dimensional
form, these equations read (Gray, 1996, p 597)
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with the Christoffel symbols �i
jk

(u (S) , v (S)) defined in equations (III.1.14–III.1.16).
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III.1.4 Benefits and shortcomings of the formulation

The particularization of the rod governing equations to surface bound configurations lead to
an explicit representation of the rod centerline in which the strain variables, measuring the
rod deformation, are expressed in terms of the geometric invariants ({

g

,{
n

,{
t

). As a result,
the influence of the constraint local geometry on the configuration of the rod centerline and
the reaction pressure has been emphasized. For regular boundary value problems associated
with a fixed rod length ` = s

b

� s

a

, the formulation (III.1.9) indeed may lead to a substantial
improvement in the understanding of the rod behavior or simplify its governing equations.

The elementary problem defined in Section I.3.3 is however characterized by clamped-sliding
sleeve boundary conditions that are responsible for the rod self-feeding, see Figure II.1.4. Along-
side with the general Lagrangian formulation (II.1.1), this formulation therefore results in a free
boundary problem and the boundary conditions specifying the locations S (u (s

a

) , v (s

a

)) and
S (u (s

b

) , v (s

b

)) of the rod centerline at both extremities lead to the establishment of isoperi-
metric constraints, which again contribute to the numerical burden of the method.

It should additionally be stressed that solutions of physical interest are those associated with
a normal reaction pressure of constant sign. For interior applications, such as the drilling prob-
lem, this reaction is indeed expected to be inward-pointing with the rod leaving the constraint
where this pressure drops to zero. Conversely, exterior applications, such as the twinning plants
problem, are meant to be associated with an outward-pointing reaction.

III.1.5 Application to spherical constraint

As a first insight into the behavior of rods in continuous contact with differentiable surfaces,
consider a weightless elastic rod embedded on a sphere of radius R

S (u, v) = R (cosu cos v e

1

+ cosu sin v e

2

+ sinu e

3

) , (III.1.58)

where �⇡/2  u  ⇡/2 and 0  v  2⇡. Although leading to surprisingly complex equilibrium
configurations, the sphere is a remarkably simple constraining surface. Due to its symmetry,
all directions are indeed equivalent and both the normal curvature and geodesic torsion are
constant, 

n

= 1/R and ⌧

g

= 0. Hence, the arc-length parameter and the geometric invariants
are naturally scaled by the radius of the sphere according to equations (III.1.34) with `? = R.

The elastica model being often favored for its simplicity, the continuous contact between the
rod and the sphere is first investigated under the assumption of inextensibility. The broader
problem of an extensible rod is then explored by relaxing this assumption.
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III.1.5.1 Inextensible rod

According to equations (III.1.36–III.1.37,III.1.45) with ↵ ! 1, the scaled components of the
internal force read

F
g

(�) = �{0
g

�M
3
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g

M
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where M
3

and � = 2F
0

� 1 are two constants of integration. Similarly, equation (III.1.46)
reduces to
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which is known to be the intrinsic equation of a planar elastica with end tension 2� (Lee and
Forsythe, 1973; Brunnett, 1993). Using a variational approach, a similar equation has been
obtained by Langer and Singer (1984a,b) for the curvature of regular curves in a 2–manifold of
constant sectional curvature. Consequently, the geodesic curvature of an elastica constrained on
a sphere and the intrinsic curvature of a planar elastica satisfy identical differential equations,
an observation already made by Nickerson and Manning (1988) as well as Brunnett and Crouch
(1994) and Guven and Vázquez-Montejo (2012). Note that stationary solutions of this equation
are either geodesics, i.e., {

g

(�) = 0, or circles of constant geodesic curvature {
g

(�) = ±p�.
Finally, the reaction pressure ⇢ (�) = pR/F

? is obtained from equation (III.1.47) as

⇢ (�) =

{2

g

� �
2

� {0
g

M
3

, (III.1.61)

which emphasizes that, although the geodesic curvature is unaffected by the magnitude of the
twist, the reaction pressure depends on both the tension parameter � and the twisting moment
M

3

. For a planar constraining surface, i.e., {
n

= {
t

= 0, equation (III.1.47) reduces to
⇢ (�) = �{0

g

M
3

.

General solutions

While the formulation and the study of the planar elastica dates back to J. Bernoulli, the
complete solution and characterization of this family of curves is generally attributed to L.
Euler (Levien, 2008). Through the years, the planar elastica has been thoroughly investigated
and solutions are now commonly classified in two families based on the presence or absence of
inflection points (Love, 1927, pp. 402 – 405). Although, on the 2–sphere, the intrinsic curvature
of an elastica is bounded from below by the constant normal curvature {

n

, this classification
is maintained in the following by reference to the geodesic curvature. If {

g

(�) is a non-trivial
solution of equation (III.1.60), the squared geodesic curvature function {2

g

(�) is known to have
a global maximum {2

m

6= 0 that satisfies {2

m

� � and conditions the nature of the solution
(Brunnett, 1993). For inflectional or wavelike elastica, the global maximum squared curvature
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satisfies {2

m

> 2� and the solution reads

{
g

(�) = {
m

cn

✓
�� �

m

2 k

{
m

, k

2

◆
, (III.1.62)

with the abscissa �
m

such that {2

g

(�

m

) = {2

m

and

k

2

=

{2

m

2 ({2

m

� �) . (III.1.63)

Conversely, for {2

m

 2�, the squared geodesic curvature satisfies 2��{2

m

 {2

g

 {2

m

and the
elastica is said to be non-inflectional or orbitlike. The corresponding solution reads

{
g

(�) = {
m

dn

✓
�� �

m

2

{
m

,

1

k

2

◆
. (III.1.64)

In these expressions, cn (z,m) and dn (z,m) are the Jacobi elliptic cosine and delta amplitude
functions of modulus m (Olver et al., 2010, ch. 22), respectively. Both inflectional and non-
inflectional solutions are periodic with period 8 kK

�
k

2

�
/{

m

for the former and 4K

�
1/k

2

�
/{

m

for the latter, where K(m) denotes the complete elliptic integral of the first kind of modulus m

(Olver et al., 2010, p 553).
With the solutions (III.1.62) and (III.1.64) for the geodesic curvature {

g

(�), it is now
straightforward to (numerically) integrate expression (III.1.13) under the unit speed condition
↵ (�) = 1 and obtain the coordinates (u (�) , v (�)) of the elastica on the sphere. In the present
context, the conservation of angular momentum (II.1.12) may however be integrated and an
alternative coordinate system advantageously introduced. Due to the symmetry of the con-
straining surface, the reaction pressure is indeed everywhere aligned with the position vector of
the elastica centerline and the total moment about the center of the sphere

I = M�N ⇥F , (III.1.65)

is constant along E . Consistently introducing a cylindrical coordinate system (%,#, ⇣) with the
⇣–axis along this natural direction, that is posing I = I e

⇣

with I = kIk, the scaled position
vector reads & (�) = % e

%

+ ⇣ e

⇣

with %2+ ⇣2 = 1. Taking the inner product of both I and &

0⇥I
with & lead (see Appendix A.3.1)

⇣ (�) = �{
g

I , #

0
(�) =

2 + � � {2

g

2 I (1� ⇣2) , (III.1.66)

for the axial component and the derivative of the polar angle, respectively. The former relation
expresses the ⇣–coordinate as a rescaling of the geodesic curvature such that ⇣ (�) and {

g

(�)

share the same periodicity, extrema of both quantities being therefore concurrent. Additionally,
while inflection points (in the geodesic sense) associated with wavelike solutions (III.1.62) arise
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on the equator ⇣ = 0, non-inflectional solutions (III.1.64) are confined to one hemisphere of the
constraining sphere and never cross this geodesic. The latter relation in (III.1.66) expresses the
derivative of the polar angle in terms of the squared geodesic curvature, solely. Finally, the
radial component reads % (�) =

p
1� ⇣2 and is everywhere well-defined since

I2

= 1 +

{4

m

+ �

2

4

+

�

2

�
2� {2

m

�
, (III.1.67)

is always larger than {2

m

provided both {
m

and �  {2

m

are real, see Appendix A.3.2.

Closed solutions

Inflectional and non-inflectional solutions for the geodesic curvature {
g

(�) being periodic func-
tions, the conditions under which the elastica closes around the sphere are now investigated.
Both ⇣ (�) and % (�) having a periodicity compatible with that of the geodesic curvature in order
for the elastica to close in an integer multiple of the period of {

g

, one must ensure that the
integral of #0 (�), as given in expression (III.1.66), over one period of {

g

is rationally related
to 2⇡. Depending on the nature of the solution, this quantity may either be interpreted as the
wavelength ⇤ of the inflectional elastica or the angular progression �# of its non-inflectional
counterpart. This distinction, which legitimatizes the wavelike and orbit-like denominations,
respectively, is emphasized in Figures III.1.3(a–b). Both families of solutions are investigated in
the following.

Inflectional elastica
�
{2

m

> 2�

�
Integrating expression (III.1.66) for the derivative of the

polar angle over one period of the geodesic curvature and accounting for the symmetry of {
g

(⇠),
the wavelength of closed inflectional solutions (III.1.62) reads

⇤ (�,{
m
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, (III.1.68)

where ⇧ (n,m) is the complete elliptic integral of the third kind (Olver et al., 2010, ch. 19).
This real valued function (over its domain) is even with respect to {

m

, that is ⇤ ({
0

,{
m

) =

⇤ ({
0

,�{
m

).
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Figure III.1.3: Elastica on the sphere. Definition of (a) the wavelength ⇤ of an inflectional
elastica ({2

m

> 2� or 2{
�

> {2

m

) and (b) the angular progression �# of an non-inflexional
elastica ({2

m

 2� or 2{
�

 {2

m

). (c) Contour representation of the scalar quantities ⇤/2⇡ and
�#/2⇡ in the parameter space

�
{
�

,{2

m

�
with {

�

= {2

m

� �; closed solutions arise for rational
values of these quantities. The white dots labeled (e,f,i,k,n,o,r) identify the corresponding closed
solutions depicted in Figure III.1.4.



62

Non-inflectional elastica
�
{2

m

 2�

�
Similarly integrating expression (III.1.66) for #0 (�)

over one period of the geodesic curvature, the angular progression of non-inflectional solu-
tions (III.1.64) reads
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, (III.1.69)

which is odd with respect to {
m

, i.e, �# (�,{
m

) = ��# (�,�{
m

).

Irrespectively of the nature of the solution, the closure condition is seen to depend on the
two constants � and {

m

solely and is, therefore, uninfluenced by the twisting moment M
3

.
Figure III.1.3(c) depicts the values taken by both quantities ⇤/2⇡ and �#/2⇡ in the parameter
space

�
{
�

,{2

m

�
where {

�

= {2

m

� � is a reduced tension parameter that is always non-negative
since �  {2

m

. Closed solutions arise along contours corresponding to rational values of the
represented quantities. For a contour ⇤/2⇡ = q or �#/2⇡ = q with q = n/m 2 Q, the
elastica closes after m periods of its geodesic curvature and going n times around the poles.
Besides the boundary {2

m

= 2{
�

between wavelike and orbit-like solutions, the parameter
space is traversed by characteristic curves marking the transitions between different varieties of
solutions or corresponding to pathological behaviors. The straight lines {

m

= 0 and {
�

= 0

are, for instance, associated with circular solutions along the equator and around the poles,
respectively; the elastica reducing to one point for {

m

! ±1. These straight lines contain
the complete set of planar solutions attainable on the sphere. Additionally, the line {

�

= 2

corresponds to the passage of the elastica across the poles and, therefore, is associated with a
discontinuity jump of 4⇡ and 2⇡ in the value of ⇤ and �#, respectively.

A gallery of twenty closed elasticae is presented in Figure III.1.4. The position of each
sphere in the Figure has been chosen to roughly match the coordinates of the represented
solution in the parameter space

�
{
�

,{2

m

�
. The dashed curve, which symbolizes the characteristic

line {2

m

= 2{
�

, marks the frontier between wavelike (below) and orbit-like (above) solutions.
Although most solutions are represented from a lateral point of view, the south to north pole
axis e

⇣

laying in the plane of the Figure, elasticae (a,b,c) and (e,f) are pictured as seen from a
point situated below the south pole. Subfigures (m) and (q) depict two pathological solutions
corresponding to circular elasticae around the south pole and the equator, respectively. As these
solutions correspond to singular regions of the parameter space

�
{
�

,{2

m

�
, they are not associated

with a q value. The contour on which the inflectional solutions depicted in Subfigure (r,o,p) lay
is crossed by the characteristic curve {

�

= 2 and, therefore, is associated with a jump in its
value. This jump from q = 2 in (r) to q = 0 in (o) and (p) is seen to correspond to the passage of
the elastica through the poles. Similar comments may be made regarding the solutions (n,k,l).
Although also laying on rational contours that are crossed by the characteristic curve {

�

= 2,
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Figure III.1.4: Gallery of closed elasticae on the sphere. The positions of the sphere in the
Figure schematically correspond to the coordinates ({

0

,{
m

) of the represented solutions in the
associated parameter space. The dashed curve, symbolizing the characteristic line {2

m

= 2{2

0

,
marks the frontier between wavelike (above) and orbit-like (below) solutions. Depending on the
nature of the depicted elastica, the value q 2 Q corresponds to ⇤/2⇡ or �#/2⇡. Although most
solutions are represented from a lateral point of view, elasticae (a,b,c) and (e,f) are pictured as
seen from a point situated below the south pole.
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the sets of non-inflectional elasticae (a,b,c,d), (e,f) and (i,g,h) are associated with a unitary
jump in their respective contour value as these solutions are confined to one hemisphere of the
constraint.

III.1.5.2 Extensible rod

Relaxation of the inextensibility assumption slightly complicates the rod governing equations.
The parallelism with planar configurations that was emphasized in the previous Section is how-
ever carried over to extensible rods. With {

n

(�) = 1 and {
t

(�) = 0, equation (III.1.39) for the
rod geodesic curvature indeed becomes

✓
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g
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0

↵
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� ⌘�2

(↵� 1)↵{
g

= 0, (III.1.70)

where, according to equation (III.1.41), the stretch reads ↵2

�
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. Although the
stretch of the rod reduces to ↵2

�
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+ {2

g

�
= ↵

2

0

for planar configurations, equation (III.1.70) is
identical to the intrinsic equation of its planar counterpart. Stationary solutions of this equation
are again either geodesics, viz. {

g

(�) = 0 with ↵ (�) = ↵

0

/

p
1 + ⌘

�2, or circles characterized
by {

g

(�) = ±
p
↵
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0

� ⌘�2 � 1 and ↵ (�) = 1. Similarly, equation (III.1.40) yields
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◆0
, (III.1.71)

for the reaction pressure.
Due to the nonlinearities of equation (III.1.70) and the entanglement between the stretch

↵ (�) and the geodesic curvature {
g

(�), closed-form solutions for elastic rods constrained on
a sphere are, to the author’s knowledge, unfortunately not available. The symmetry of the
problem is however not affected by the extensibility of the rod and the total moment about the
center of the sphere (III.1.65) is again conserved along E . Its constant magnitude reads
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)

2

, (III.1.72)

which reduces to its inextensible counterpart (A.3.9) for ⌘ ! 0 provided the constant of inte-
gration ↵

0

> 0 is determined such that the axial force F
3

of the rod and that of the elastica are
equal at points of zero geodesic curvature, that is

↵

0

=

p
1 + ⌘

�2

✓
� ⌘

2

2

+ 1

◆
. (III.1.73)

From this definition, it appears that one must further require � ⌘2 > �2 to ensure the injectivity
of the mapping s 7! s̄ (s) and preserve the rod orientation along its centerline.

The phase portrait of the total moment I �{
g

,{0
g

�
is presented in Figure III.1.5(a) for two
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Figure III.1.5: Extensible rod (⌘ = 1/20) on the sphere. (a) Phase portraits of the total moment
about the center of the sphere I �{

g

,{0
g

�
for � = �10 and � = 10. Orbits associated with

the extensible rod (solid lines) are compared to their elastica counterpart (dashed lines). (b)
Extrema {

m

,{
n

of the geodesic curvature as a function of both the total moment I and the
tension parameter �. The pale yellow region comprehends the set of non-inflexional solutions
and the green curve identifies the stationary solutions characterized by {

m

= ±
p
↵

0

� ⌘�2 � 1.

values of the tension parameter � and ⌘ = 1/20. The extensible rod model, described by
equation (III.1.72) and depicted in solid lines, is compared to the elastica model, specified by
equation (A.3.9) and pictured in dashed lines. Each curve represents a different orbit associated
with a given value of I. Two distinct families of orbits may be identified and the distinction be-
tween inflectional and non-inflectional solutions appears to be carried to extensible rods. Orbits
centered on the origin (0, 0) and crossing the line {

g

= 0 are indeed associated with inflectional
or wavelike solutions, while orbits around the stationary solutions

⇣
±
p
↵

2

0

� ⌘�2 � 1, 0

⌘
corre-

spond to non-inflectional or orbit-like solutions. Both families of orbits being closed, they are
associated with periodic solutions.

While inflectional solutions are associated with a symmetric range of the geodesic curvature
{
g

2 [�{
m

,{
m

], non-inflectional solutions are bounded to an asymmetric range {
g

2 [{
n

,{
m

],
with |{

n

| < |{
m

|, that is confined to either negative or positive values. Posing {0
g

= 0 in
expression (III.1.72) for the total moment I, the extrema {

m

,{
n

of the geodesic curvature
may be obtained as functions of both the total moment I and the tension parameter �. Fig-
ure III.1.5(b) compares these ranges of amplitudes (solid lines) to their inextensible counterparts
(dashed lines) for discrete values of I. The frontier between inflectional and non-inflectional so-
lutions may be obtained by elimination of the total moment about the centre of the sphere from
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I (0, 0) = I ({
m

, 0). Disregarding the trivial solution {
m

= 0, yields
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, (III.1.74)

which reduces to {2

m

= 2� for ⌘ ! 0. The pale yellow region in Figure III.1.5(b) represents the
set of non-inflexional solutions, viz. solutions associated with values of {2

m

lower than the right-
hand side of expression (III.1.74). Finally, the green curve identifies the stationary solutions
characterized by {

m

= ±
p
↵

0

� ⌘�2 � 1 and ↵ = 1.

III.2 Eulerian formulation adapted to normal ringed sur-
face

The formulation (III.1.9) presented in Section (III.1) adapts the general Lagrangian formulation
of elastic rods to surface bound rods, without restriction regarding the nature of the surface
provided its orientability. In this curve-angle representation, the coordinates (u (s) , v (s)) of
the rod centerline in the parameter space associated with the parameterization S (u, v) of the
constraint surface are defined as smooth functions of the Lagrangian coordinate s. In some
circumstances, it may however be beneficial to substitute this parametric representation of the
rod centerline with an explicit one of the form (u, v (u)) along with the mapping u 7! s (u), from
the independent variable to the Lagrangian curvilinear coordinate.

Normal ringed surfaces are generated by sweeping a circle of variable radius along a directrix
curve and, therefore, distinguish by possessing circles as one family of parameter lines. In this
context, the formulation (III.1.9) may indeed be particularized to account for this specific feature.
Aiming at a formulation comparable to the Eulerian description of the rod governing equations
introduced in Section (II.2), the Lagrangian parameterization (III.1.1) for surface bound rods is
re-written as

r (s (S)) = S (S,� (S)) , (III.2.1)

where, as shown next, � (S) = v (s (S)) is the angular position of the rod centerline in the
cross section of the constraint. The parameter S is again referred to as the Eulerian curvilinear
coordinate, the reason for conserving this nomenclature will become clear in the following. Note
however that this curvilinear coordinate differs from the (natural) Lagrangian coordinate s,
parameterizing the rod in its unstressed configuration, and the stretched coordinate s̄, associated
with the arc-length parameterization of the rod in its deformed configuration.

The interest of this Eulerian description of surface bound rods relies on the role played
by the directrix curve in the definition of normal ringed surfaces and their particularity of
possessing circles as one family of parameter lines. Also this family of surfaces presents an
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obvious appeal for torque-and-drag applications and the simulation of minimally invasive medical
interventions. In the following, the general geometric features of this class of surfaces are first
briefly investigated. Starting from the parameterization (III.2.1), the details and the scope of
the proposed formulation are then explored. Henceforth, derivatives of scalar and vector valued
functions with respect to the Eulerian coordinate S will be denoted by the apposition of a prime
while derivatives with respect to the Lagrangian coordinate s and the stretched coordinates s̄

are explicitly specified.

III.2.1 Geometry of the constraint

In Chapter I, the constraint surface S has been defined generically as a perfectly stiff normal
ringed surface, that is a surface generated by sweeping a circle with variable radius along a
directrix curve C while maintaining the circle in the normal plane to the directrix (Johnstone,
1993; Aumann, 1995), see Figure III.2.1. This broad class of surfaces has been investigated
mainly for blending purposes or shape reconstruction in computer-aided design. Well-known
subclasses include canal surfaces, which are defined as the envelopes of a one-parameter family
of spheres (Bastl et al., 2014; Bizzarri and Lávička, 2015), as well as pipe surfaces (generated by
spheres of constant radius) and surfaces of revolution (generated by spheres whose centers are
located on a straight line.) These surfaces belong to the general class of swept surfaces, which
are defined as the envelopes of a one-parameter family of cross-sectional curves.

The constraint surface S is the normal ringed surface parameterized by

[S

a

, S

b

]⇥ [0, 2⇡[ 3 (S,�) 7! S (S,�) 2 E3

, (III.2.2)

with S (S,�) defined as the envelope of a one–parameter family of circles with radii Q (S) and
centers R (S), hence

S (S,�) = R (S) +Q (S) (cos�D

1

+ sin�D

2

) , (III.2.3)

where the pair of unit orthogonal vectors D
1

(S) ,D

2

(S) spans the normal plane to the directrix
C , indistinctly referred to as the reference curve in the present context. As in Chapter II,
the parameterization R (S) of this space curve is assumed to be arc-length with the triplet of
orthonormal vectors {D

j

} defined such that R

0
(S) = D

3

is the unit vector tangent to C for
all S. The kinematics of this adapted frame along the directrix may univocally be described by
means of a Darboux vector U (S) = U

j

D

j

satisfying the skew-symmetric relation (II.2.1). As
previously emphasized, there is more than one way to frame a curve (Bishop, 1975) and, although
the choice of orthonormal frame does not affect the properties of the constraint surface or the
rod’s deformed configuration, some definitions may result in a substantially simpler formulation.
Defining the {D

j

}–basis such that it constitutes a Bishop natural frame is again advocated as
this adapted frame, also referred to as parallel transport frame, has zero twist uniformly, i.e.,
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Figure III.2.1: Elastic rod constrained to lie on a normal ringed surface S . The constraint is
defined as the surface generated by sweeping a circle with variable radius Q (S) along a directrix
curve C while maintaining the circle in the normal plane to the directrix. The position of the rod
centerline on the surface reduces to the knowledge of the polar angle � (S) along the directrix.

U

3

(S) = 0 and is everywhere well-defined. Conversely, and in spite of its natural appeal, the
Frenet-Serret apparatus may lead to existence and continuity issues as it ceases to be defined at
points where R

0 and R

00 are not linearly independent, viz. where the curvature of the directrix
K =

p
U

2

1

+ U

2

2

vanishes. Note finally that, comparing the parameterization (III.2.3) of normal
ringed surfaces with the definition (II.2.2) of the eccentricity vector, the angle � (S) may be
related to the components of the eccentricity vector as tan� = �

2

/�

1

.
Although canal surfaces have been investigated more thoroughly than ringed surfaces, it

has been shown that all normal ringed surfaces with rational directrix and radius function are
rational (Lü and Pottmann, 1996; Bizzarri and Lávička, 2015). Additionally, the normal ringed
surface S (S,�) is locally n–times continuously differentiable, i.e., Cn, if the directrix curve is
of class C

n+1 and the radius function Q (S) of class C

n (Hartmann, 2001). Denoting partial
derivatives by subscripts, the surface is said to be regular if it is smooth and the vectors S

S

and S
�

are linearly independent at all points (S,�). Using the first fundamental form, the
necessary condition for normal ringed surfaces without local self-intersections, that is singular
points where S

S

⇥S
�

= 0, may be expressed as QK < 1 and Q

0 6= 0. Details of this result are
presented in Appendix A.4.

III.2.2 Mappings and Jacobians

As in Section II.2, the restatement of the rod local equilibrium (II.1.12–II.1.13) within the Eu-
lerian framework requires to substitute the Lagrangian curvilinear coordinate s by the mapping
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s 7! s (S) and express the natural derivatives d ·/ds in terms of Eulerian derivatives d ·/dS. Fol-
lowing the methodology applied in the previous Chapter, the Jacobian of the mapping S 7! s (S)

from Eulerian to Lagrangian coordinates is obtained by differentiating expression (III.2.1) with
respect to the Eulerian coordinate

s

0
(S) = ± kS

S

+ �

0S
�

k / kvk . (III.2.4)

Besides the similitude between this expression and the Jacobian (II.1.12) derived in the previous
Chapter, note that the drift existing between the two curvilinear coordinates is again two-fold.
Rewriting this Jacobian in terms of the coefficients of the first fundamental form, viz.

s

0
(S) = ↵

�1

p
E + 2F �

0
+G�

02
, (III.2.5)

the two components of this drift are readily identifiable as (i) the arc-length of a line element
on the surface S along E , and (ii) the stretch kvk = ↵ of the rod itself. As in Section II.2,
imposing the mapping s (S) to be increasing by selecting the positive sign in expression (III.2.4)
restricts the range of potential configurations adopted by the rod and prevents the appearance
of parasitic solutions associated with curling, writhing or other configurations involving self-
contact. The first fundamental form being positively definite, expression (III.2.5) is always
well-defined provided � (S) is a smooth function of the Eulerian coordinate.

Redefining the stretch as ↵ (S) = ds̄/ds|
s=s(S)

and resorting to a notation comparable to
the one introduced previously, the Eulerian functions J

k

(S) and ¯

J

k

(S) are redefined as
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(S) =

d

k

S

ds

k

����
s=s(S)

,

¯

J

k

(S) =

d

k

S

ds̄

k

����
s̄=s̄(S)

, (III.2.6)

with J

1

(S) = 1/s

0
(S) and ¯

J

1

= 1/s̄

0
(S) the Jacobians of the mappings s 7! S (s), from

Lagrangian to Eulerian coordinates, and s̄ 7! S (s̄), from stretched to Eulerian coordinates,
respectively. Similarly, the recursive relations

J

k

(S) = J

0
k�1

J

1

,

¯

J

k

(S) =

¯

J

0
k�1

¯

J

1

, (III.2.7)

for k > 1 and the circular relation J

1

= ↵

¯

J

1

previously introduced remain valid.

III.2.3 Directors and strain variables

In the Lagrangian description of surface bound rods introduced in the previous Section, the
director d

3

is expressed as a linear combination of S
u

and S
v

, both laying in the tangent plane
to the constraint surface and aligned with the parametric curves embedded in S (u, v). Similarly,
differentiating the parameterization (III.2.1) of the surface curve E with respect to the Eulerian
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coordinate, the rod local inclination reads

d

3

(S) =

¯

J

1

(S
S

+ �

0S
�

) , (III.2.8)

which is to compare with equation II.2.6 obtained for the general Eulerian formulation, i.e., not
specific to continuous contact configurations.

The objective of this section being to highlight the relations between the geometrical features
of the rod centerline and the constraint surface, the rotation of the rod cross section about its axis
is described with respect to the Darboux frame attached to E rather than the intermediate {k

j

}–
basis as in Section II.2. This distinction is essential to the adaptation of the Eulerian formulation
to normal ringed surfaces. Therefore, with the unit normal to the constraint surface (III.1.6),
the rotation of the pair {d

1

,d

2

} about d
3

is specified through the angle  (S) they subtend with
the normal and geodesic directions, that is

d

1

(S) = cos N ⇥ d

3

+ sin N , (III.2.9)

d

2

(S) = � sin N ⇥ d

3

+ cos N . (III.2.10)

The tangent and normal vectors, N ⇥ d

3

and N , are indeed preferred to k

1

and k

2

, which are
in general neither tangent nor perpendicular to S .

To account for the change of parameterization of the surface curve E , the kinematics (III.1.10–
III.1.12) of the Darboux frame is adapted as

¯

J

1

d

0
3

= 

g

N ⇥ d

3

+ 

n

N , (III.2.11)
¯

J

1

(N ⇥ d

3

)

0
= �

g

d

3

+ ⌧

g

N , (III.2.12)
¯

J

1

N

0
= �

n

d

3

� ⌧
g

N ⇥ d

3

, (III.2.13)

where the geodesic curvature 
g

(S,�), the normal curvature 
n

(S,�) and the geodesic torsion
⌧

g

(S,�), being geometrical invariants, maintain identical values as they are not affected by the
re-parameterization. Their expressions in the Eulerian parameterization of the rod centerline
are obtained by substituting u (s) * S and v (s) * � (S) in their definitions (III.1.13,III.1.18–
III.1.19), which yield
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02
+ (g E � eG)�
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0
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p
EG� F
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, (III.2.16)
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where the Christoffel symbols are similarly obtained from equations (III.1.14–III.1.16). As to the
strain variables u

j

(S), their expressions (III.1.23–III.1.25) in terms of the geometric invariants
remain valid provided the Eulerian curvilinear coordinate is substituted for the Lagrangian one
and differentiations account for this change of variable. In the Darboux frame, they read

u

g

(S) = �↵
n

, u

n

(S) = ↵

g

, u

3

(S) = ↵ ⌧

g

+ J

1

 

0
, (III.2.17)

with u

g

(S) = u · (N ⇥ d

3

) and u

n

(S) = u ·N .

III.2.4 Dimensionless governing equations and boundary conditions

Due to inherent similarities between the general Eulerian formulation and its adaptation to
normal ringed surfaces, the scaling introduced in this Section closely follows the one introduced
in Section II.2.3 on page 27. The Eulerian coordinate S is therefore naturally scaled by the
known length of the boundary value problem, L = S

b

� S

a

, leading to the introduction of the
dimensionless curvilinear coordinate ⇠ = (S � S

a

) /L. Analogously scaling the Lagrangian and
stretched curvilinear coordinates by L, the stretch is redefined as ↵ (⇠)

:

= ↵ (S (⇠)) while the
Jacobians (III.2.6) read

J
k

(⇠) = L

k�1

J

k

(S (⇠)) ,

¯J
k

(⇠) = L

k�1

¯

J

k

(S (⇠)) , (III.2.18)

for k � 1. Denoting again by F

?

= B/L

2 the characteristic force, the following vector fields are
defined

F (⇠) = F (S (⇠)) /F

?

, M (⇠) = M (S (⇠)) /LF

?

, (III.2.19)

� (⇠) = Lf (S (⇠)) /F

?

, µ (⇠) = m (S (⇠)) /F

?

, (III.2.20)

for the scaled internal force and moment, body force and body couple scale, respectively. Hence,
according to the constitutive relation (III.1.27), the dimensionless counterpart to the strain
variables (III.2.17) are analogous to the projection of the scaled internal moment in the Darboux
frame

M
g

(⇠) = Lu

g

, M
n

(⇠) = Lu

n

, M
3

(⇠) = Lu

3

(1 + ⌫)

�1

, (III.2.21)

with (1 + ⌫) = B/C where, for rods with a circular cross section, ⌫ is Poisson’s ratio. Similarly,
the geometric invariants scale as

{
g

(⇠) = L

g

(S (⇠)) , {
n

(⇠) = L

n

(S (⇠)) , {
t

(⇠) = L ⌧

g

(S (⇠)) , (III.2.22)
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while both the angular position and the rotation angle are redefined as

� (⇠)

:

= � (S (⇠)) ,  (⇠)

:

=  (S (⇠)) . (III.2.23)

Scaling the surface parameterization (III.2.3) by the characteristic length L, the previous def-
initions for the dimensionless radius function ✏ (⇠) = Q (S (⇠)) /L and the Darboux vector
U (⇠) = LU (S (⇠)) remain valid leading to

E (⇠) = E (S (⇠) ,� (⇠)) , e (⇠) = Le (S (⇠) ,� (⇠)) , (III.2.24)

F (⇠) = F (S (⇠) ,� (⇠)) /L, f (⇠) = f (S (⇠) ,� (⇠)) , (III.2.25)

G (⇠) = G (S (⇠) ,� (⇠)) /L

2

, g (⇠) = g (S (⇠) ,� (⇠)) /L, (III.2.26)

for the scaled coefficients of the first and second fundamental forms, respectively. According to
relations (III.2.5) and (III.2.6), the first Jacobians therefore read

¯J
1

(⇠) =

1p
E+ 2F�

0
+ G�

02
, (III.2.27)

and J
1

(⇠) = ↵

¯J
1

, where primes now denote differentiation with respect to the dimensionless
coordinate ⇠.

Substituting the definitions (III.2.19) and (III.2.22) in the constitutive relations (III.1.26–
III.1.27) leads to

F (⇠) = F
g

N ⇥ d

3

+ F
n

N + ⌘

�2

(↵� 1)d

3

, (III.2.28)
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t

+ J
1

 

0
)d

3

, (III.2.29)

with the dimensionless parameter ⌘2 = F

?

/A already introduced in Section II.2.3. Accordingly,
the projection of the equilibrium equations (II.1.12–II.1.13) in the Darboux frame yields

J
1

F 0
g

+ ↵

�
{
g

(↵� 1) ⌘

�2 � {
t

F
n

�
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g

= 0, (III.2.30)
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= 0, (III.2.32)
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J
1

�
↵

0 {
g

+ ↵{0
g

�� ↵{
n

1 + ⌫

(↵{
t

⌫ � J
1

 

0
) + ↵F

g

+ µ

n

= 0, (III.2.34)
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3

= 0, (III.2.35)
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with ⇢ (⇠) the scaled reaction pressure, (�
g

(⇠) ,�

n

(⇠) ,�

3

(⇠)) and (µ

g

(⇠) , µ

n

(⇠) , µ

3

(⇠)) the pro-
jections of the dimensionless body force and body couple in the Darboux frame. Further substi-
tution of the definitions (III.2.14–III.2.16) for the geometric invariants and (A.4.7–A.4.9,A.4.11–
A.4.13) for the coefficients of the first and second fundamental forms, leads to a system of differ-
ential algebraic equations. Solving equation III.2.33 for the normal component F

n

of the internal
force, the remaining equations of the system involves two first order ODE’s, (III.2.30–III.2.32),
in ↵ (⇠) and F

g

(⇠); one second order, (III.2.35), in  (⇠); and one third order, (III.2.34), for the
polar angle � (⇠); and one algebraic equation, (III.2.31), for the reaction pressure ⇢ (⇠). Again,
although easily derived, the resulting system is cumbersome and will not be explicitly presented
here.

Due to the decrease in the number of degrees of freedom along continuous contacts, the
resulting system requires the specification of only seven constants of integration (compared
to the eleven ones prescribed in Section II.2.3). The Eulerian counterpart to the boundary
conditions (II.1.16) prescribing the clamped extremity of the rod reads

{ (0) ,� (0) ,�

0
(0)} , (III.2.36)

which can be recovered from the boundary conditions (II.2.54), associated with the general
Eulerian formulation, by imposing the magnitude of the eccentricity vector, that is k�k = ✏. At
the opposite extremity of the boundary value problem, the position of the rod centerline and the
orientation of its unit tangent are imposed together with the axial force and twisting moment.
According to the constitutive relations (III.2.28–III.2.29), the boundary conditions (II.1.17)
corresponding to a frictionless sliding sleeve become

{↵ (1) , 

0
(1) ,� (1) ,�

0
(1)} , (III.2.37)

which are to compare with the boundary conditions (II.2.55). Besides the benefits resulting
from the particularization of the rod governing equations to surface bound configurations, the
suppression of the isoperimetric constraints, an acknowledged source of difficulty associated with
the specification of the rod location at its extremities in the Lagrangian formulation, contributes
to the global interest of the proposed formulation.

In Section II.2, the Eulerian description of the rod configuration led to a curve-angle repre-
sentation involving the components �

1

(⇠) , �

2

(⇠) of the eccentricity vector and the angle ' (⇠)

characterizing the rotation of the rod cross section about the director d
3

. Similarly, the rod con-
figuration along a continuous contact with a normal ringed surface S parameterized by S (⇠,�)

reduces to the knowledge of the two Eulerian functions

[0, 1] 3 ⇠ 7! � (⇠) , (⇠) 2 R, (III.2.38)

with the boundaries ⇠ = {0, 1} of the canonical problem corresponding to the rod extremities s
a
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and s

b

, respectively. In this alternative curve-angle representation, the rod centerline is explicitly
described by the polar angle � (⇠) corresponding to its angular position on the constraint surface
while the rotation of the material frame is characterized by the angle  (⇠), which generally
differs from ' (⇠). Although this Eulerian description of surface bound rods is, in all respects,
comparable to the Eulerian formulation derived in Section II.2 for contact-free configurations,
the number of degrees of freedom is decreased by one as the rod is compelled to lie on the
constraint surface. The formulation (III.2.38) may indeed be recovered from the general Eulerian
formulation (II.2.56) by imposing the magnitude of the eccentricity vector, that is k� (⇠)k = ✏ (⇠).
The normal reaction pressure ⇢ (⇠), ensuring the continuous contact with the constraint surface,
remains however a priori unknown. The relation giving its magnitude in terms of the Eulerian
functions � (⇠) , (⇠) is readily obtained by projecting the conservation of linear momentum on
the unit normal to S .

Specific constraint: Bishop pipe surface

In many applications of practical interest, the radius function of the constraint surface is constant
or varies only slightly at the lengthscale of the continuous contact. Hence, the constraint surface
may often be regarded as a canal surface with ✏0 (⇠) = 0. Additionally, the adapted frame {D

j

}
attached to the constraint directrix may always be defined such that it constitutes a Bishop
natural frame, viz. U

3

(⇠) = 0. In the following paragraphs, the geometric features characterizing
such a Bishop pipe surface are investigated. The geometric features characterizing the general
normal ringed surface, i.e., not Bishop-like and with Q

0 6= 0, are presented in Appendix A.4. In
this context, the (dimensionless) partial derivatives S

⇠

(⇠,�) = @S/@⇠ and S
�

(⇠,�) = @S/@�

of the constraint surface parameterization (III.2.3) read

S
⇠

(⇠,�) = (1 + ✏ (U
1

sin� � U
2

cos�))D

3

, (III.2.39)

S
�

(⇠,�) = ✏ (� sin�D

1

+ cos�D

2

) , (III.2.40)

such that

kS
⇠

⇥ S
�

k2 = ✏

2

(1 + ✏ (U
1

sin� � U
2

cos�))

2

, (III.2.41)

and the Bishop pipe surface with constant radius function ✏ has no self-intersection if and
only if 1 + ✏ (U

1

sin� � U
2

cos�) 6= 0. Expressing the components of the Darboux vector as
U
1

(⇠) = K sin� and U
2

(⇠) = K cos� with the directrix curvature K (⇠), the latter condition
may be rewritten as 1� ✏K cos (� + �) 6= 0 such that, since cos (� + �) varies between �1 and
1, there will be no self-intersection if ✏K < 1.
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First fundamental form Equations (III.1.3) for the coefficients of the first fundamental form
lead to

E (⇠,�) = (1 + ✏ (U
1

sin� � U
2

cos�))

2

, F (⇠,�) = 0, G (⇠,�) = ✏

2

, (III.2.42)

and the Christoffel symbols defined in equations (III.1.14–III.1.16) reduce to
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and �

1

22

(⇠,�) = �

2

22

(⇠,�) = �
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12

(⇠,�) = 0, where � c

ab

(⇠,�) is the nondimensionalized form of
�

c

ab

(S,�).

Second fundamental form Let N (⇠,�) be the outward pointing unit normal to the surface
S (⇠,�) given by

N (⇠,�) = & (cos�D

1

+ sin�D

2

) , (III.2.46)

with & = sign (1 + ✏ (U
1

sin� � U
2

cos�)). Then, according to equations (III.1.17), the coeffi-
cients of the second fundamental form read

e (⇠) = �
p
E (U

1

sin� � U
2

cos�) , f (⇠) = 0, g (⇠) = �& ✏. (III.2.47)

Geometric invariants Accordingly, the geometric invariants ({
g

,{
n

,{
t

) defined in equa-
tions (III.2.14–III.2.16) read
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02
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02 , (III.2.49)

{
t

(⇠) =

(g E� e G)�

0

(E+ G�

02
)

p
EG

, (III.2.50)

such that the governing equations (III.2.30–III.2.35) substantially simplify.

III.2.5 Application to torus knots

Due to their simplicity and topology, tori constitute an appealing subclass of normal ringed
surfaces to investigate the behavior of rods in continuous contact. Open and closed curves lying
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on the surface of a torus have indeed been studied from various perspectives, from knot theory to
the quantization of energy levels in models of atoms (Jantzen, 2010). Additionally, free elasticae
(understand weightless and contact-free) are known to lie on tori of revolution (Shi and Hearst,
1994; Ivey and Singer, 1999), however with a nearly but not precisely circular cross section.
Closed solutions have further been shown to be in a 1-to-1 correspondence with torus knots.

In this Section, we consider a weightless and inextensible rod constrained to lie on the
(circular) torus

S (S,�) = (R+Q cos�) cos

S

R

e

1

+ (R+Q cos�) sin

S

R

e

2

+Q sin� e

3

, (III.2.51)

where 0  S  2⇡R and 0  �  2⇡. Supposing Q < R, R and Q are referred to as the major
and minor radii, respectively. Further assuming the constraining surface to be frictionless, the
body couple is taken identically null such that the normal reaction pressure arising from the
contact constitutes the sole loading acting on the elastica. In the following, we consider closed
solutions on the (circular) torus that are topologically equivalent to (p, q)–torus knots, where
p, q are relatively prime. These solutions, referred to as elastic torus knots, loop through the hole
of a torus p times with q revolutions before joining their ends. As the length of a rod that circle
around the torus and satisfies periodic boundary conditions is a priori unknown, the Eulerian
formulation derived in this Chapter is particularly well adapted to investigate this family of
solutions.

In this context, both the Eulerian coordinate and the geometric invariants are scaled by the
major radius as ⇠ = S/R and

{
g

(⇠) = 

g

(S (⇠))R, {
n

(⇠) = 

n

(S (⇠))R, {
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(⇠) = ⌧

g

(S (⇠))R, (III.2.52)

such that, according to (III.1.20–III.1.22),
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{
n

(⇠) = {
1

cos

2

#+ {
2

sin

2

#, (III.2.54)

{
t

(⇠) = ({
2

� {
1

) cos# sin#, (III.2.55)

where the elastica local inclination in the orthogonal parameterization of the torus, see equa-
tions (III.2.42), satisfies

tan# =

✏ �

0

1 + ✏ cos�

, (III.2.56)

while the surface principal curvatures and the geodesic curvatures of the parameter lines read
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(Gray, 1996, pp. 384–385, 587)

{
1

(⇠) = � cos�

1 + ✏ cos�

, {
2

(⇠) = �1

✏

, {
⇠

(⇠) =

sin�

1 + ✏ cos�

, {
�

(⇠) = 0, (III.2.57)

respectively, with ✏ = Q/R and the Jacobian (III.2.27) given by

¯J
1

(⇠) =

cos#

1 + ✏ cos�

, (III.2.58)

with # 2 [�⇡/2,⇡/2].
We consider first the planar solutions embedded on the torus. At any point of this sur-

face, four families of circles can be drawn. One is parallel to the equatorial plane of the
torus (# = 0), an other is perpendicular to it (# = ⇡/2) and the other two are Villarceau
circles, which meet every parallel circle at the same angle # = arcsin ✏ (Melzak, 2014, pp.
63–72). According to equations (III.2.53–III.2.55), the former families of circles, i.e., parallels
(# = 0) and meridians (# = ⇡/2), are characterized by constant values of the geometric invari-
ants ({

g

,{
n

= cst.,{
t

= 0) and, as expected, are solutions of the governing equations (III.1.46–
III.1.47) provided

{
g

F
3

= 0, (III.2.59)

where F
3

is the constant axial force along the elastica. One may therefore distinguish geodesics
({

g

= 0) that are associated with a non-zero reaction pressure ⇢ = �{
n

F
3

from non-geodesic
parallels corresponding to # = 0 and � 6= 0+ k ⇡ (with k 2 N), which are associated with a zero
reaction pressure. On the other hand, accounting for the constant inclination sin# = ✏ along the
Villarceau circles, equation (III.2.56) can be integrated with, without loss of generality, � (0) = 0

such that the polar angle reads

tan

�

2

=

r
1 + ✏

1� ✏ tan
⇠

2

, (III.2.60)

while equations (III.2.53–III.2.55) and (III.2.57) yield

{
g

(⇠) = sin ⇠, {
n

(⇠) = � cos ⇠, {
t

(⇠) = �1� ✏ cos ⇠p
1� ✏2 . (III.2.61)

It can easily be shown that these circles are solutions of equations (III.1.46–III.1.47) for F
3

(⇠) =

0 and are associated with a zero reaction pressure.
Although the parallels and meridians are not sensu stricto knots, the Villarceau circles are

probably the most simple knots on the torus with (p, q) = (1, 1). Unfortunately, to the author’s
knowledge, no closed form solutions exists for higher order elastic torus knots and one must
resort to numerical techniques to gain insight into these solutions. As their thorough study
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and classification is beyond the scope of this work, only a few elastic torus knots are presented
in the following. Using the collocation method detailed in Section IV.1.1.2, the system of
differential-algebraic equations (III.2.30–III.2.35) is solved on the domain ⇠ 2 [0, 2⇡ q] to account
for overlapping of the torus and under periodic boundary conditions, that is

� (2⇡ q)� � (0) = 2⇡ p, �

0
(0) = �

0
(2⇡ q) = c, (III.2.62)

where c is chosen such that the rod internal force and moment are continuous across the bound-
aries of the domain. As it will become clear in Section III.3, imposing F

n

(0) = F
n

(2⇡ q)

is sufficient to achieve this continuity and properly close the problem. According to the def-
inition (III.2.48–III.2.50) of the geometric invariants ({

g

,{
n

,{
t

) and equation (III.1.37), this
condition indeed ensures the periodicity of �00

(⇠) and, therefore, the continuity of the internal
force and moment.

A gallery of trivial, i.e., with either p or q equal to 1 or �1, elastic torus knots is presented in
Figure III.2.2 for ✏ = 1/5, F

3

(0) = 0 and M
3

= 0. For each solution, the offset � (S)�p ⇠/q with
respect to the corresponding torus solenoid as well as the reaction pressure ⇢ (S) are depicted.
It is seen that these knots are associated with positive reaction pressures, that is pointing
outward along the constraint normal, and thus present a physical interest in exterior applications.
Alternatively, large negative values of F

3

(0) may lead to elastic torus knots associated with
inward-pointing reaction pressure, i.e., negative, such as the one depicted in Figure III.2.3(a).
Figure III.2.4 depicts three simple nontrivial elastic torus knots, namely the trefoils (2, 3) and
(3, 2) as well as the cinquefoil (2, 5), for ✏ = 1/5, F

3

(0) = 0 and M
3

= 0.
Finally, this family of solutions allow us to validate the Eulerian formulation derived in this

Chapter. According to the results presented in Section III.1.3.2, as the imposed axial force F
3

(0)

is increased, elastic torus knots indeed converge towards the closed geodesics to which they are
topologically equivalent; the reaction pressure being proportional to the normal curvature, see
equation (III.1.54). This is exemplified in Figure III.2.3 for the elastic torus knot (1, 5).

III.3 Point contact with a differentiable surface

Although the notion of continuous contact is generally well apprehended, the concept of point
contact is somehow less obvious. In the previous Sections, the continuous contact of elastic rods
has been investigated through the theory of surface bound curves by assuming the space curve E ,
materializing the rod centerline, to be restricted to the constraint surface S along its non-zero
length. Emphasizing the influence of the constraint geometry on the rod deformed configura-
tion and the reaction pressure, it was shown that these geometrical objects share fundamental
geometric features. For instance, the surface normal curvature 

n

along the rod centerline was
shown to match the orthogonal projection of the rod intrinsic curvature n on the unit normal
N to the constraint surface, see equation (III.1.10). While it could be tempting to consider
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Figure III.2.2: Gallery of trivial elastic torus knots obtained for ✏ = 1/5, F
3

(0) = 0 and M
3

= 0:
(a) Villarceau circle (1, 1), (b) type (1, 2), (c) type (1, 3), (d) type (1, 4), (e) type (1, 6), and (f)
type (1, 6).
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Figure III.2.3: Influence of the axial force on the elastic torus knots (1, 5) for ✏ = 1/5 and
M

3

= 0: (a) F
3

(0) = �20, (b) F
3

(0) = 10 and (c) F
3

(0) = 10

4. On the torus, the elastica is
drawn in blue where the reaction pressure is positive (exterior problem) and in red where it is
negative (inside problem).

Figure III.2.4: Gallery of nontrivial elastic torus knots for ✏ = 1/5, F
3

(0) = 0 and M
3

= 0:
(a) the trefoil knot (2, 3), (b) the cinquefoil (2, 5) and (c) the trefoil (3, 2). On the torus, the
elastica is drawn in blue where the reaction pressure is positive and in red where it is negative.
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point contacts as continuous ones whose lengths have shrunk to zero, this would lead to the
erroneous conclusion that, at these points, this relation between the rod curvature and the con-
straint surface normal curvature remains valid. In the following, we indeed show that, at a point
contact, the rod curvature is not determined by the constraint local geometry and, therefore,
should be distinguished from continuous contacts of zero length.

III.3.1 Geometrical considerations

In differential geometry, the notion of contact slightly differs from the one commonly acknowl-
edged in mechanics. Two geometrical objects (e.g. two curves or surfaces, a curve and a surface)
are indeed said to have a contact on the sole condition that they share a common intersection
point, therefore disregarding the tangency requirement essential in mechanics. The foundations
of contact geometry of curves and surfaces were laid by Lagrange (1797) and Cauchy (1826) with
the introduction of the concept of contact order. A space curve E parameterized by r (s) and a
surface S defined by S (u, v) are said to have a contact of order n 2 N at r (s

c

) = S (u

c

, v

c

) if
there exists a regular parameter transform s 7! (u

?

(s) , v

?

(s)) such that

d

k

ds

k

r (s

c

) =

d

k

ds

k

S (u

?

(s

c

) , v

?

(s

c

)) , (III.3.1)

for k = 0, . . . , n. The existence of a point contact between a rod and a regular constraint surface,
in the conventional mechanical sense, therefore requires a contact order of at least 1.

III.3.2 Mechanical considerations

Assuming the constraint to be frictionless, the reaction force developing at a point contact
between an elastic rod and a perfectly stiff constraint is aligned with the local normal to the
constraint and balances the jump discontinuity in the shear components of the internal force. In
the absence of concentrated external loading or other singularities, e.g. localized body couple or
force, both the internal moment M and the axial component F

3

of the internal force are indeed
continuous across the discrete contact.

Assuming a point contact at ⇠ = ⇠

c

, the tangency of the rod centerline with the constraint
surface is sufficient to identify the Darboux frame {d

3

,N ⇥ d

3

,N} at this point of S and
project the internal force F (⇠

c

) and moment M (⇠

c

) onto these directions. Hence, denoting by
R the magnitude of the reaction force, the rod satisfies

JF
g

(⇠

c

)K = 0, JF
n

(⇠

c

)K = R, JF
3

(⇠

c

)K = 0, (III.3.2)

J{
g

(⇠

c

)K = 0, J{
n

(⇠

c

)K = 0, JM
3

(⇠

c

)K = 0, (III.3.3)

where double brackets indicate the increment of the quantity across a discontinuity, e.g. JF (⇠

c

)K =
lim

@⇠!0

(F (⇠

c

+ @⇠)� F (⇠

c

� @⇠)). The curvatures {
g

= {n · (N ⇥ d

3

) and {
n

= {n · N
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are to be understood as the projections of the rod intrinsic curvature {n onto the geodesic
and normal direction at the contact point and, therefore, generally differ from the definitions
given in equations (III.1.13–III.1.18) in the context of continuous contacts. Additionally, the
continuity of the director basis along the rod centerline and equations (III.3.3.c) ensure that
J{

t

(⇠

c

)K = J 0
(⇠

c

)K = 0. Therefore, substituting (III.3.2–III.3.3) into equations (III.1.36–
III.1.38) yields

J↵0
(⇠

c

)K = ↵{
n

⌘

2 R, (III.3.4)
q
{0
g

(⇠

c

)

y
= �{

g

{
n

⌘

2 R, (III.3.5)

J{0
n

(⇠

c

)K = � �1 + ⌘

2



2

n

�R, (III.3.6)

which, for inextensible rods
�
⌘ ! 0,↵! 1,↵

0 ! ⌘

2F 0
3

�
, degenerates to

JF 0
3

(⇠

c

)K = {
n

R, (III.3.7)
q
{0
g

(⇠

c

)

y
= 0, (III.3.8)

J{0
n

(⇠

c

)K = �R. (III.3.9)

These expressions, which remain valid at the extremities of continuous contacts, emphasize that
the first derivatives of the rod curvature and axial force possess finite jump discontinuities whose
magnitude are proportional to the reaction force. One may conclude that contacts with order
n � 3 are characterized by a zero reaction force and, therefore, mark the transition between
contact and no contact.

III.3.3 From discrete to continuous contact

Equations (III.3.1) with k = 0, 1 constitute the necessary conditions for the rod to have a contact
point with the constraint surface. They are however not sufficient to ensure the validity of the
unilateral contact condition as the curvature of the rod centerline may be incompatible with the
constraint surface local geometry. To be verified at a point contact, relation (III.1.10) indeed
requires a contact of order n � 2. The normal curvature of a surface bound curve E being an
extrinsic property of the surface S on which it lays, its magnitude is inevitably conditioned
by the embedding of the surface in the ambient space and, by definition, ranges between the
surface principal curvatures, see equation (III.1.21). As defined in equation (III.1.18), the normal
curvature {

n

is positive if the surface bends towards its unit normal. Therefore, assuming
the unit normal N to the constraint surface to be outward pointing for interior problems and
inward pointing for exterior problems, the projection of the rod intrinsic curvature on the surface
normal at a contact point must be smaller or equal to the surface normal curvature along the
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rod centerline. That is

{n ·N  {
n

, (III.3.10)

where n is the unit normal to the space curve E , see equation (II.1.4–II.1.5). Hence, this
inequality is strictly satisfied at the transition from discrete to continuous contact and a discrete
contact of order n � 2 is equivalent to a continuous contact of zero length. Note that, for a
planar elastica inside a conduit of constant clearance, this criterion is equivalent to the results
of Denoël and Detournay (2011) who showed that, for a contact to be discrete, the conduit wall
curvature must be larger than the curvature of the contacting side of the rod.

III.4 Summary

Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications,
the rod deflection is restricted by an external constraint and a significant part of the rod is in
continuous contact with a constraining surface. To assess the influence of the constraint local
geometry on the configuration of the rod centerline and the reaction pressure, the continuous
contact between an elastic rod and a rigid surface has been investigated from a geometrical per-
spective. The equation governing the static equilibrium of elastic rods have been particularized
to surface bound configurations by (i) specifying the location of the rod axis in terms of its
coordinates in the parameter space associated with the constraint surface parameterization, and
(ii) characterizing the orientation of the rod material frame through its rotation with respect
to the surface normal. This formulation leads to an explicit representation of the rod centerline
in which the strain variables, measuring the rod change of shape, are expressed in terms of
the geometric invariants (

g

,

n

, ⌧

g

). The resulting set of governing equations was additionally
shown to properly degenerate into that of elastic curves by imposing zero twist and neglecting
the stretch deformation, that is assuming the rod to be twist-free and inextensible.

Particularizing the Lagrangian description of surface bound rods to the continuous contact
with normal ringed surfaces, an Eulerian formulation analogue to the one obtained in Section II.2
was then derived. Again, the restatement of the rod local equilibrium in terms of the Eulerian
curvilinear coordinate is particularly appropriate to treat free boundary value problems that
are subjected to self-feeding. The isoperimetric constraints that would otherwise ensue from
a conventional Lagrangian formulation indeed vanish and the resolution reduces to that of a
system of differential-algebraic equations associated with classical boundary conditions. As in
Chapter II, this Eulerian formulation restricts the range of potential configurations adopted by
the rod and prevents the appearance of parasitic solutions associated with curling or writhing.
Similarly, this formulation reaches its limits with the single-valuedness of the mapping S (s)

and s (S) which fail as a section along the constraint surface is crossed multiple times, viz.
sections at which d

3

· D
3

changes sign, or if the constraint self-intersects, i.e., points where
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S
⇠

⇥ S
�

= 0. Both situations are however avoided provided that ✏ (U
2

cos� � U
1

sin�) � 1.
Finally, degenerating this approach to a single point, the criterion governing the transition
between discrete and continuous contacts.

As already emphasized, the physical interest of solutions associated with a normal reaction
pressure of non-constant sign is limited. The rod would indeed leave the constraining surface
where the pressure drops to zero and the solution computed with the proposed formulation ceases
to be valid. More generally, global solutions for the applications mentioned in the introductory
Chapter require the assemblage of finite pieces of solutions (with a reaction pressure of constant
sign) of the constrained problem studied here with pieces of contact-free solutions investigated
in Chapter II. This procedure is further investigated in the next Chapter.

“There is geometry in the humming of strings. There is music in the spacing
of the spheres ”.

Pythagoreas (5th century BC)



Chapter IV

Computational Model

With the ambition to contribute to the modeling and understanding of real-world phenomena,
the global objective of this thesis consists in the analysis of constrained elastic rod problems
that involve both continuous contact and contact-free segments. Although these two elementary
configurations have been investigated independently in Chapters II and III, their recombination
towards the resolution of the complete problem has not been described yet. Focusing on the
canonical problem defined in Section I.3.1, the methodology proposed in this work consists in
partitioning the global problem in a sequence of rod segments either in continuous contact with
the constraint or contact-free between their extremities. As emphasized in Chapter I, the nub
of this segmentation strategy is the determination of the positions of the contacts between the
rod and the constraint as well as the extent of these contacts. The methodology leading to the
establishment of this contact pattern, essential to the resolution of the global problem, is detailed
in this Chapter. Combining this segmentation strategy with the systematic resolution of the
sequence of elementary problems, a computational model that solves the quasi-static deflection
of an elastic rod constrained to deform inside or around a tube-like surface is formulated.

IV.1 Segmentation strategy

Conceptually the segmentation strategy is a very natural way to cope with complex problems
involving multiple continuous and discrete contacts. By sequencing the global problem into
elementary problems, comparatively simpler, one may resort to methods specifically designed
to treat each type of elementary problem individually. The identification of the correct contact
pattern, which ensures that the rod remains inside or outside the constraint and preserves the
rod integrity along the global problem, however requires (i) the establishment of the number
of contacts and their nature (either discrete or continuous), and (ii) the determination of the
rod position, inclination and rotation angle at the connections between successive elementary
problems. The identification of these features, which fully characterize the contact pattern, may

85
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be systematized in an algorithm involving three nested loops. This strategy is conceptualized
in Algorithm IV.1. The outer loop (ContactPatternSwitcher), concerned with the iden-
tification of the sequence of elementary problems satisfying the unilateral contact condition,
establishes the number of contacts and their nature, that is either discrete or continuous. For a
given sequence, the median loop (SolveSequence) determines the position and inclination of
the connections that ascertain the continuity of the rod between elementary problems. This pro-
cedure requires the evaluation of the rod configuration along the global problem and, therefore,
yield yet an additional loop (PropagateSolution) that resolves the sequence of the elemen-
tary problems. To ensure the correct transmission of the axial force and twisting moment, this
resolution is conducted sequentially by propagating the solution from on extremity of the global
problem to the other. The collocation method implemented to solve each elementary problem
(SolveElmProb) is presented in the following Section. Then, starting from the inner loop and
progressively working our way out, these procedures leading to the establishment of the correct
contact pattern are investigated in the following Sections.

Algorithm IV.1 Resolution of the global problem through segmentation strategy

while wrong contact pattern do . ContactPatternSwitcher

modify contact pattern (add, delete, merge or split contacts)
while not in equilibrium do . SolveSequence

adjust connections (position, inclination and rotation angle)
loop on elementary problems . PropagateSolution

solve rod configuration . SolveElmProb

end loop
check rod integrity at the connections

end while
check unilateral contact condition (penetration, positivity of the reactions, etc.)

end while
return rod configuration along the global problem

IV.1.1 Elementary problem (SolveElmProb)

Various numerical methods have been applied to two-point boundary value problems, see As-
cher et al. (1995) and references therein. The so-called shooting method, which combines a
root-finding algorithm and a high-order differential equation solver, has been frequently applied
to the Lagrangian problem associated with rods of known length (van der Heijden et al., 2003;
da Fonseca and de Aguiar, 2003; Li and Chen, 2014). Although this numerical technique has
also been successfully extended to the Lagrangian free boundary value problem associated with
a planar elastica and its Eulerian reformulation (Denoël and Detournay, 2011), a collocation
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method was favored to treat the mixed order systems of nonlinear ordinary differential equa-
tions (II.2.48–II.2.53) and (III.2.30–III.2.35) associated with the boundary conditions (II.2.54–
II.2.55) and (III.2.36–III.2.37), respectively.

Besides the recognized robustness and efficiency of collocation codes (Russell and Shampine,
1972; Ascher et al., 1979, 1981; Ascher and Spiteri, 1994), this choice is mainly motivated by the
simplicity of the collocation procedure which makes its programming reasonably straightforward.
While alternative methods often require the conversion of the problem to a first order system,
the collocation maintains the algebraic structure of the discretized problem. Considering the
relative complexity of the rod governing equations in the Eulerian framework, the collocation
method presents a considerable advantage to reliably solve the boundary value problems under
consideration. Due to the differences in their respective structures, we distinguish the contact-
free and continuous contact configurations.

IV.1.1.1 Contact-free configuration

Defining a partition ⇧ of the domain [0, 1] constituted of N subintervals, an approximate solu-
tion {�⇤,'⇤

,F⇤} is formed as a linear combination of a suitable set of functions, the coefficients
of which being determined by requiring the approximate solution to satisfy the boundary con-
ditions (II.2.54–II.2.55) as well as the differential equations (II.2.48–II.2.53) at certain points
(de Boor and Swartz, 1973). For reasons of efficiency, stability, and flexibility in order and
continuity, B–splines are chosen as basis functions (Ascher et al., 1979) such that

�

⇤ 2 P
k+3,⇧

\ C

2

[0, 1] , (IV.1.1)

'

⇤ 2 P
k+2,⇧

\ C

1

[0, 1] , (IV.1.2)

F⇤ 2 P
k+1,⇧

\ C

0

[0, 1] , (IV.1.3)

where k � 3 is the number of collocation points per subinterval and P
n,⇧

is the set of all
piecewise polynomial functions of order n on the partition ⇧. The differentiability class of the
approximate solution components ensures the existence and continuity of their highest derivative
entering the governing equations while the minimum number of collocation points is given by
the highest differential order of the system.

In other words, over each of the N subintervals of the domain, the components of the
eccentricity vector are approximated by B–splines (piecewise polynomial functions) of degree
k + 3. Accounting for the imposed C

2–continuity between intervals, the approximate solutions
�

?

i

(i = 1, 2) are associated with k N+3 unknown coefficients, each. Similarly, to the approximate
solutions '? for the rotation angle and F?

j

(j = 1, 2, 3) for the components of the internal force,
correspond k N + 2 and k N + 1 unknown coefficients, respectively, for a total of 6 k N + 11

unknown coefficients. The value of 11 of these coefficients may readily be determined through
the imposition of the 11 boundary conditions (II.2.54–II.2.55). The remaining 6 k N unknown
B–spline coefficients are determined by solving a system of 6 k N nonlinear equations obtained
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by collocating the governing equations (II.2.48–II.2.53) at k points on each subinterval of the
domain.

IV.1.1.2 Continuous contact configuration

A similar method is applied to the system of differential-algebraic equations (III.2.30–III.2.35).
For stability reasons, the prevailing approach to this general class of system of differential equa-
tions is however to eliminate the algebraic components of the system (Ascher and Spiteri, 1994).
To this end, the normal component F

n

of the internal force is isolated from equation (III.2.33)
and substituted in the remaining equations of the system. Hence, an approximate solution�
�

?

, 

?

,F?

g

,F?

3

 
satisfying
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is build by imposing the 7 boundary conditions (III.2.36–III.2.37) and solving a system of 4 k N
nonlinear equations obtained by collocating the governing equations (III.2.30, III.2.32, III.2.34–
III.2.35) at k Gaussian points on each subinterval of the domain. The normal component F

n

of
the internal force and the algebraic component of the system, namely the reaction pressure ⇢,
are ulteriorly obtained from equations (III.2.33) and (III.2.31), respectively.

IV.1.1.3 Determination of the B–spline coefficients

In both contact-free and continuous contact configurations, the resolution of an elementary
boundary value problem by collocation requires to identify the B–splines coefficients by solving
a system of nonlinear equations. This procedure has been implemented in MATLAB by com-
bining the Spline Toolbox (de Boor, 2005) to evaluate the B–splines and their derivatives with a
backtracking line-search algorithm (Dennis and Schnabel, 1996) to solve the system of nonlinear
collocation equations. This general procedure, outlined in Algorithm IV.2, is further described
in the following.

Gathering the unknown B–spline coefficients in a vector x, we denote by F (x,BC) = 0 the
system of nonlinear equations obtained by collocating the appropriate set of governing equations,
that is either (II.2.48–II.2.53) or (III.2.30, III.2.32, III.2.34–III.2.35), and the corresponding
boundary conditions BC, (II.2.54–II.2.55) or (III.2.36–III.2.37), respectively. We additionally
define the associated Jacobian matrix J (x) such that J

ij

= @F

i

/@x

j

. Although this matrix could
theoretically be evaluated analytically, the present implementation relies on a finite difference
scheme to approximate its non-zero elements.

Starting from and initial guess x0, the algorithm associates the Newton’s method and a back-
tracking line-search strategy to guarantee some progress towards the solution at each iteration.
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The basic idea of this globally convergent method is to ensure that the norm f

�
x

i

�
=

1

2

kFk2
sufficiently decreases at each iteration (Press et al., 2007, pp. 477–483). In practice, we require
the average rate of decrease of f

�
x

i

�
to be at least some fraction c

1

2 [0, 1] of the initial rate of
decrease rfi p, that is
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�  f
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�
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1

�rfi p, (IV.1.7)

where p = �JF is the Newton step for the set of equations F
�
x

i

,BC

�
= 0 and rfi p = FJp < 0

is a descent direction for f

�
x

i

�
. The common procedure is to try the full Newton step and, if

� = 1 fails to satisfy criterion (IV.1.7), to backtrack along the direction defined by this step
until an acceptable point is found. A relatively efficient strategy consists in using a polynomial
interpolation to estimate the location of the minimum of m (�) = f

�
x

i

+ �p

�
. Knowing f

�
x

i

�
,

rfi p and f

�
x

i

+ p

�
at the end of the first step, a new step size ˆ

� minimizing the quadratic
approximation of m (�) is computed. It can be shown that, since the Newton step failed, this
new step size satisfies 0 <

ˆ

� > 1/2 for small c
1

(Dennis and Schnabel, 1996, pp. 126–129);
in the current implementation c

1

= 10

�4. For the subsequent steps, the preceding trial step
(�

s

,m(�

s

)) is stored and a cubic approximation of m (�) may be used to locate its minimum
(MinCubic). The step size selection Algorithm IV.3 further ensures that ˆ

� lies between �
s

/10

and �
s

/2.

Algorithm IV.2 Resolution of an elementary problem
Description: Given the boundary conditions BC of the elementary problem and an initial guess

x

0 for the B–spline coefficients of the approximate solution, finds the root of F (x,BC) by a
globally convergent method.

1: procedure SolveElmProb(x0,BC)
2: i 0

3: while not converged do
4: F F

�
x

i

,BC

�
. collocation of the governing equations and BC

5: J JacobianMatrix

�
x

i

,BC

�
. finite difference

6: p �JF,rfi  FJ

7: � StepSize

�
x

i

,p,rfi� . see Algorithm IV.3
8: x

i+1  x

i

+ �p, i i+ 1

9: end while
10: return x

i

. rod configuration along the elementary problem
11: end procedure

The termination criterion of this procedure determines if a suitable x

i was found at the end
of the current iteration. Due to the inherent finite-precision of numerical algorithms, only an
approximate solution to the system F (x) = 0 may possibly be found. Practically, to prevent
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Algorithm IV.3 Step size selection for the backtracking line-search algorithm

Description: Given a point x, the gradient rf
0

of a function f (x) at this point, and a direction
p, finds a step size along p from x that sufficiently decreases the function f (x).

1: procedure StepSize(x,p,rf
0

)
2: f

0

 f (x) ,� 1 . start with a Newton step
3: while � � �

min

do
4: f

�

 f (x+ �p)

5: if f

�

 f

0

+ c

1

�rf
0

then
6: return � . sucessful search
7: else
8: if � = 1 then
9: �

tmp

 �rf
0

/2 (f

�

� f

0

�rf
0

) . first backtrack
10: else
11: �

tmp

 MinCubic(f

0

,rf
0

,�, f

�

,�

s

, f

s

) . subsequent backtrack
12: end if
13: �

s

 �, f

s

 f

�

,� max (�/10,min (�/2,�

tmp

))

14: end if
15: end while
16: return �

min

. failed search
17: end procedure

divergent iterations to run endlessly, a maximum number of iterations i_max is fixed. Addi-
tionally, the decision on wether to stop or not the procedure at the end of the current iteration
may be based on the absolute residual

��
F

�
x

i

���  tol_Fn and on the relative change of the
solution

��
x

i+1 � x

i

��
/

��
x

i

��  tol_step, which is not sensitive to the characteristic size of x.
The convergence of the algorithm towards the solution is however not guaranteed. This pro-
cedure may indeed fail at solving the elementary problem if the initial guess x

0 is chosen close
to a local minimizer of f (x) that is not a root of F (x). When facing such a situation, a simple
strategy consists in providing a new initial guess that is closer to the root of F (x), if possible.
This situation is however infrequent in practice as, whenever possible, a continuation method is
used to “educate” the guess x

0 through the incremental loading of the structure.

IV.1.2 Propagation of the solution (PropagateSolution)

As defined in Section I.3.1, the global boundary value problem prescribes the rod position and
inclination with respect to the reference curve at its extremities although the rod length is
unknown. In terms of standard support conditions, one extremity of the rod is clamped while
the other may be seen as moving freely through a frictionless sliding sleeve under the combined
action of known axial force and twisting moment. Recasting these boundary conditions in the
Eulerian framework, the global problem that spans the constraint axis between S = 0 and S = L
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is subjected to global boundary conditions BC

G of the form (II.2.54–II.2.55), viz.

{' (0) ,�

i

(0) ,�

0
i

(0)} , {↵ (L) ,'

0
(L) ,�

i

(L) ,�

0
i

(L)} , (IV.1.8)

with i = 1, 2. Assuming a contact pattern of n elementary problems and the associated position
�

i

(S

k

), inclination �0
i

(S

k

) and rotation angle ' (S

k

) at the connexions S

k

(k = 1, . . . , n� 1),
the evaluation of the rod configuration along the global problem may be organized sequentially
by propagating the solution from one extremity to the other. The determination of these features
of the contact pattern is the central concern of the procedure SolveSequence that is described
in the following Section. Denoting by Elm

k

the elementary problem with domain S 2 [S

k�1

, S

k

]

and boundary conditions BC

k
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)} , (IV.1.9)

with k = 1, . . . , n and 0 = S

0

< · · · < S

k

< · · · < S

n

= L, the resolution of the sequence
starts with the evaluation of the rod configuration along the elementary problem Elm

n

. Both
the stretch ↵ (L) and twist '0

(L)at its extremity S

n

= L resulting from the global boundary
conditions (IV.1.8), this boundary value problem is well defined and can be solved. The stretch
↵ (S

n�1

) and twist '0
(S

n�1

) at its extremity S

n�1

may then be evaluated and transmitted to
the boundary condition of Elm

n�1

, which in turn yields the values of these quantities at its
origin. Hence, the set of elementary problem may be resolved sequentially by propagating the
solution from Elm

n

to Elm

1

. This procedure is conceptualized in Algorithm IV.4.
The n � 1 connections resulting from the segmentation of the global problem are either

discrete contacts or extremities of continuous contacts and, therefore, correspond to points at
which the rod contacts the constraint surface. At these points, the tangency condition requires
that the components of the eccentricity vector satisfy

�

1

(S

k

) = Q cos�, �

0
1

(S

k

) = Q

0
cos� � �0

Q sin�, (IV.1.10)

�

2

(S

k

) = Q sin�, �

0
2

(S

k

) = Q

0
sin� + �

0
Q cos�, (IV.1.11)

where Q (S) is the known radius function of the constraint surface. Additionally, the rotation of
the rod cross section about the director d

3

may equivalently be identified through its rotation
with respect to the intermediate {k

j

}–basis or with respect to the normal and geodesic direc-
tions at this point of the constraint surface, that is in terms of either ' (S

k

) or  (S

k

). The
definitions (II.2.10–II.2.11) and (III.2.9–III.2.10) of these angles indeed lead to the relations

cos = � sin'k

1

·N + cos'k

2

·N , (IV.1.12)

sin = cos'k

1

·N + cos'k

2

·N , (IV.1.13)
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while equations (II.2.19) and (III.1.25) for the twist density yield

 

0
= '

0
+ J

�1

1

( ew
3

� ↵ ⌧
g

) . (IV.1.14)

Hence, for elementary problems corresponding to rod segments in continuous contact with
the constraint, the boundary conditions (IV.1.9) may easily be re-expressed in a form simi-
lar to (III.2.36–III.2.37) that involves the polar angle � and the rotation angle  rather than
the components of the eccentricity vector �

1

,�

2

and the rotation angle '. Accounting for the
known magnitude of the eccentricity vector at the connections, it will be convenient to use

�
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0
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0
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0
k

} , (IV.1.15)

as a shorthand for the elementary boundary conditions (IV.1.9).

Algorithm IV.4 Propagation of the solution along the sequence of elementary problems

Description: Given the global boundary conditions BCG, and the rod position, inclination and
rotation angle at the connections y = {S

k

,'

k

,�

k

,�

0
k

} with k = 1, . . . , n� 1, propagates the
resolution of elementary problems along the global problem.

1: procedure PropagateSolution(y,BCG)
2: deduce BC

n from y and BC

G

3: provide initial guess x

n

0

for the solution of Elmn

4: x

n  SolveElmProb(x

n

0

,BC

n

)

5: for k = n� 1! 2 do
6: deduce BC

k from y and x

k+1

. see equation (IV.1.9)
7: provide initial guess x

k

0

for the solution of Elmk

8: x

k  SolveElmProb

⇣
x

k

0

,BC

k

⌘
. see Algorithm IV.2

9: end for
10: deduce BC

1 from BC

G and x

2

11: provide initial guess x

1

0

for the solution of Elm1

12: x

1  SolveElmProb

�
x

1

0

,BC

1

�

13: return X �
x

1

, . . . , x

n

 
. rod configuration along each Elm

14: end procedure

IV.1.3 Continuity of the sequence (SolveSequence)

Although the clamped-sliding sleeve boundary conditions (IV.1.9) imposed at each elementary
problem guarantee the continuity of both the space curve E and its tangent, the rod curvature
and, therefore, the bending moment may present jump discontinuities at these connections.
In the absence of concentrated body couple or other singularities at the connections, these
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discontinuities are however not physical. Similarly, the boundary conditions (IV.1.9) fail to
maintain a smoothness of the rotation angle ' sufficient to ensure the continuity of the directors
{d

j

} along the rod. Finally, while the propagation of the axial force and twisting moment
from one extremity of the global problem to the other assure the continuity of these internal
efforts, the component F

g

of the shear force may also present unrealistic jump discontinuities
at these connections. The median loop, which is concerned with the determination of the rod
position � (S

k

), inclination �

0
(S

k

) and rotation angle ' (S

k

) at the connections, reestablishes
the integrity of the rod between elementary problems.

The role of this procedure is therefore to identify the 4 (n� 1) quantities

{S
k

,'

k

,�

k

,�

0
k

} , k = 1, . . . , n� 1, (IV.1.16)

entering the boundary conditions (IV.1.15) that ensure the rod integrity along the global prob-
lem, viz. satisfying the 4 (n� 1) equations

J' (S

k

)K = 0, J
g

(S

k

)K = 0, J
n

(S

k

)K = 0, JF
g

(S

k

)K = 0. (IV.1.17)

Note that, according to equations (III.3.8–III.3.9), the curvatures derivatives need not to be
continuous at these connections. Generally, this nonlinear system of equations cannot be solved
analytically (e.g. based on symmetry arguments) and one must resort to a root-finding algo-
rithm.

The method adopted for the applications presented in this thesis is inspired by the back-
tracking line-search algorithm described in Section IV.1.1.3 for the resolution of the elementary
problems. Gathering the 4 (n� 1) unknowns (IV.1.16) in a vector y, we denote by G (X|y) = 0

the system of nonlinear equations (IV.1.17) obtained by propagating the resolution of the ele-
mentary problems according to the procedure detailed in Section IV.1.2. The Jacobian matrix
J (X|y) associated with this system and defined such that J

ij

= @G

i

/@y

j

is again approximated
by finite difference. Starting from and initial guess y

0, the algorithm ensures that the norm
g (X|y) = 1

2

kGk2 sufficiently decreases at each iteration according to the criterion

g

�
X|yi + �p

�  g

�
X|yi�+ c

2

�rgi p, (IV.1.18)

where c

2

2 [0, 1], p = �JG is the Newton step for the set of equations G
�
X|yi� = 0 and rgi p =

GJp < 0 is a descent direction for g

�
X|yi�. This procedure is outlined in Algorithm IV.5.

As in Section IV.1.1.3, the termination criterion of this procedure determines if a suitable y

i

was found at the end of the current iteration. Similarly, a maximum number of iterations i_max

is fixed and the stopping decision relies on the absolute residual
��
G

�
X|yi���  tol_Gn as well

as the relative change of the solution
��
y

i+1 � y

i

��
/

��
y

i

��  tol_step. Again, the convergence
towards the solution is not guaranteed for all y0.
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Algorithm IV.5 Resolution of the sequence of elementary problems

Description: Given an initial guess y

0 for the rod position, inclination and rotation angle at
the connections, finds the root of G (X|y) by a globally convergent method.

1: procedure SolveSequence(y0)
2: i 0

3: while not converged do
4: X PropagateSolution

�
y

i

,BC

G
�

. see Algorithm IV.4
5: G G

�
X|yi� . see equation (IV.1.17)

6: J JacobianMatrix

�
y

i

�
. finite difference

7: p �JG,rgi  GJ

8: � StepSize

�
y

i

,p,rgi� . see Algorithm IV.3
9: y

i+1  y

i

+ �p, i i+ 1

10: end while
11: return y

i

,X . rod configuration along each Elm, preserving its continuity
12: end procedure

IV.1.4 Number and nature of contacts (ContactPatternSwitcher)

Although, for some idealistic problems, one may imagine to test every (reasonable) sequence of
elementary problems, this approach is certainly not efficient nor realistic in most circumstances.
In this Section we propose to establish a pragmatic procedure leading to the identification of
the correct contact pattern, viz. that satisfies the unilateral contact condition. The crux of this
procedure is that it cannot be cast in a conventional form involving a finite set of unknowns and
objective functions that must be minimized or zeroed. One must instead establish a collection of
verifications that, once demonstrated true, ensure the correctness of the contact pattern. Based
on a diagnostic of the configuration, each unsatisfied verification must additionally be associated
with measures that secure the convergence towards the correct contact pattern.

The verification of the contact pattern is twofold. Firstly, the non-penetration condition
requires that, for interior (resp. exterior) problems, new contacts be created whenever the mag-
nitude � =

p
�

2

1

+�

2

2

of the eccentricity vector exceeds (resp. is inferior to) the radius Q of
the constraint, while the rod curvature at existing discrete contacts complies with the constraint
local geometry. Secondly, reaction forces at discrete contacts and reaction pressures along con-
tinuous contacts must not be tensile. As schematized in Figure IV.1.1, these verifications are
associated with three fundamental operations: the creation and elimination of discrete contacts,
and the conversion between different types of contacts.

In practice, due to the finite precision of the numerical scheme, the establishment of this
theoretically unique contact pattern is idealistic and one must generally settle for an acceptable
one, that is within a certain tolerance. This deviation from the actual contact pattern is at-
tributable to diverse origins. For instance, in Sections IV.1.1, it has been emphasized that the
rod governing equations are not precisely satisfied and only an approximate solution of the rod
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Figure IV.1.1: Fundamental operations associated with the contact pattern switcher: the cre-
ation and elimination of discrete contacts, and the conversion between different types of contacts

configuration can be obtained along each elementary problem. Similarly, the rod configuration
at the connections, determined through the procedure described in Section IV.1.3, do not exactly
ensure the rod integrity at these sections but rather guarantee that the discontinuities remain
sufficiently small. These approximations reverberate through the estimation of the reaction
forces and pressures, the evaluation of the rod curvature, the magnitude of the eccentricity vec-
tor and, therefore, to the subsequent verification of the unilateral contact condition. As already
emphasized, further simplifications of the governing equations, such as the small inclination
approximation presented in Section II.2.4, introduce additional inaccuracies on the detection of
emerging contacts or the distinction between continuous and discrete contacts. Also, elementary
problems whose shortness may lead to instabilities of the numerical scheme should be identified
and removed from the sequence, hence contributing to the general inexactitude of the contact
pattern. These approximations are however expected to have a limited impact on the global
behavior of the rod and to marginally modify the nature of the solution. These aspects of the
problem have been discussed more rigorously by Denoël and Detournay (2011) in the context of
a planar elastica constrained to deform inside a sinuous conduit.

In contrast with the propagation of the solution along the global problem, this verification
is not organized sequentially and, instead, is conducted iteratively by progressively adjusting
the contact pattern. Drastic modifications could indeed fail to converge to the correct contact
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pattern or cause instabilities of the numerical scheme. Also, for evolutive problems, events
leading to the modification of the contact pattern are expected to rarely arise simultaneously
such that, in general, none or only a few iterations are required between each loading step.

I. Length S

k

� S

k�1

Sweeping through each elementary problem, the procedure starts with
the suppression of every elementary problem that is considered to short, that is such that

S

k

� S

k�1

L

 tol_span. (IV.1.19)

Irrespectively of the nature of the elementary problem under consideration, this operation con-
sists in merging the connections at its extremities; if the adjoining elementary problems are
both in continuous contact with the constraint, they should however be combined in one sole
elementary problem. In Figure IV.1.1, this operation is indicated by the arrows marked I. It
is assumed that removing these elementary problems does not profoundly affect the global pat-
tern and, therefore, proceed with the verification. In the meantime, depending on the nature
of elementary problem under consideration and if its span does not satisfy inequality (IV.1.19),
the magnitude of the eccentricity vector or the reaction pressure is evaluated and their respec-
tive extrema stored. Similarly, the reaction force and the rod curvature are recorded at its
extremities.

II. Reaction R

k

The verification proceeds then with the identification of the lowest reaction
force R

min

and, be it tensile, the suppression of the corresponding connection by merging the
adjacent contact-free elementary problems, see Figure IV.1.1 transition II. This operation termi-
nates the current iteration and the subsequent verifications are by-passed, the rod configuration
along the resulting sequence of elementary is evaluated and the verification process re-initiated.

III. Curvature compatibility hi
k

If no such connection is however diagnosed, the rod
curvature (relative) compatibility

hi
k

= Q (n ·N � 
n

) , (IV.1.20)

is evaluated at every discrete contacts, that is according to equation III.3.10, and the most
critical contact with hi

max

identified. If this quantity exceeds the tolerance tol_curv, the
discrete contact is converted into a continuous one (transition III in Figure IV.1.1) and the
procedure re-initiated with the new contact pattern.
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IV. Penetration h�i Provided both previous verifications do not require a modification of
the contact pattern, the section associated with the highest relative penetration

h�i = ±��Q

Q

, (IV.1.21)

is identified. The sign of the relative penetration depends on the nature of the problem, we
define this quantity such that it is positive for interior problem and negative for exterior ones.
While, within the Lagrangian framework, this task would require the comparison of two curves
parameterized by distinct curvilinear coordinates (i.e., the constraint axis and the rod center-
line), it is trivialized by the Eulerian formulation. If h�i

max

� tol_pene, the corresponding
elementary problem is split by creating a discrete contact at this critical section (transition IV
in Figure IV.1.1); hence, terminating the verification and requiring the evaluation of the rod
configuration along the new sequence.

V. Reaction pressure p Alternatively, in the absence of such penetration, one must eventu-
ally ensure that the reaction pressure remains positive, i.e., compressive, along each continuous
contact. The elementary problem associated with the lowest negative reaction pressure p

min

is
therefore identified and, depending on its profile, replaced by a contact-free elementary problem,
split into two continuous contact delimiting a contact-free elementary problem, or in a contin-
uous contact and a discrete contact. In Figure IV.1.1, these transitions are marked V. If none
of these verifications leads to a modification of the contact pattern, the procedure is terminated
and the correct contact pattern established. This procedure is outlined in Algorithm IV.6.

IV.1.5 Summary

The numerical scheme obtained by combining the procedures described in Sections IV.1.1
to IV.1.4 solve the quasi-static deflection of an elastic rod constrained inside or around a per-
fectly stiff, frictionless, normal ringed surface. The main objective of this computational model
is to identify the contact pattern (i.e., the number of contacts and their nature, the rod config-
uration at the connections) that satisfies the unilateral contact condition and preserves the rod
integrity along the sequence of elementary problems. To establish this map of the contacts along
the global problem, the procedure is systematized in an algorithm that involves three nested
loops. Assuming a contact pattern and the associated rod configuration at the connections,
the inner loop propagates the resolution of elementary problems along the sequence, from one
extremity to the other. The median loop then restores the rod continuity at the connections by
adjusting the position and inclination of the connections. Eventually, the outer loop ensures that
the unilateral contact condition is respected along the global problem and, if required, modifies
the contact pattern. These procedures heavily rely on the resolution of the rod configuration
along each elementary problem and the assessment of the non-penetration. Both have been
drastically simplified through the reformulation of the elementary problems within the Eulerian
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Algorithm IV.6 Identification of the correct contact pattern

Description: Given an assumed contact pattern and an initial guess y0 for the rod position, in-
clination and rotation angle at the connections, establishes the contact pattern that satisfies
the unilateral contact condition.

1: procedure ContactPatternSwitcher(y0)
2: while wrong contact pattern do
3: y,X SolveSequence

�
y

0

�
. get rod configuration

4: for k = 1! n do
5: if (S

k

� S

k�1

) /L  tol_span then
6: y

0  remove Elm

k

. Figure IV.1.1(a) ! (d),(a,b,f,g) ! (e)
7: else
8: [h�i

k

, p

k

] TestElmProb

⇣
Elm

k

⌘

9: [R

k

, hi
k

] TestConnection

⇣
Elm

k

⌘

10: end if
11: end for
12: h�i

max

 max h�i
k

, p

min

 min p

k

13: R

min

 minR

k

, hi
max

 max hi
k

14: if L

2

R

min

/B  tol_reac then
15: y

0  remove discrete contact . Figure IV.1.1(d) ! (c)
16: else if hi

max

� tol_curv then
17: y

0  convert conection to continuous contact . Figure IV.1.1(d) ! (e)
18: else if h�i

max

� tol_pene then
19: y

0  add a discrete contact . Figure IV.1.1(c) ! (d)
20: else if L

3

p

min

/B  tol_reac then
21: y

0  split continuous contact . Figure IV.1.1(e) ! (a,b,f,g)
22: end if
23: end while
24: end procedure
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framework associated with the constraint surface, which eliminates the isoperimetric constraints
and trivializes the detection of new contacts.

The approach that is proposed in this thesis to establish the correct contact pattern is
unfortunately not guaranteed to converge. Additionally, it requires to fine tune the tolerance
involved in each loop and, especially, the verification of the contact pattern. As shown in the
following Sections, this approach however proves to be fairly conclusive for reasonably complex
contact patterns. The resulting approximate solutions further demonstrated a relatively low
dependence on these tolerances.

Finally, both the resolution of the elementary problems (SolveElmProb) and the veri-
fication of the contact pattern (ContactPatternSwitcher) require the knowledge of the
constraint surface geometry along the global problem, viz. the components U

j

(S) of the Dar-
boux vector U and the radius function Q (S). In the absence of analytical expressions, these
quantities may approximated by piecewise polynomial functions. To ensure the existence and
continuity of their highest derivative entering the governing equations and, therefore, a sufficient
smoothness of the approximate solution, these approximation must satisfy

U

? 2 P
k+2,⌦

\ C

1

[0, L] , (IV.1.22)

Q

? 2 P
k+3,⌦

\ C

2

[0, L] , (IV.1.23)

where ⌦ is a partition of the global domain [0, L] and k � ¯

k with ¯

k the largest number of
collocation points used in the resolution of the elementary problems.

IV.2 Illustration

To illustrate this computational model, we propose to further investigate the progressive buck-
ling of an elastic rod constrained inside a helical conduit whose response has been initiated in
Section II.3.3. The constraint consists in the canal surface defined by its helical axis, with pitch
angle ⇥ = ⇡/4 and radius ⌃ = R/L =

�
⇡

p
2

��1, and constant radius ✏ = Q/L where the
length L = ⇡R/ sin⇥ of the problem under consideration corresponds to a half helical turn.
Although axially unconstrained, i.e., free to flow in/out of the conduit, the rod is assumed to be
transversally clamped on the conduit axis at both extremities and subjected to an end torque
M

3

(1) = �1 and axial force F
3

(1) = T . With ⌘ = 1/20 and ⌫ = 1/3 and for two radii ✏ = 1/40

and 1/20, we analyze the rod behavior as the axial force T is varied from T
0

= �7.069 that
corresponds to a helical deformation centered on the constraint axis, see equation (II.3.19).

Maintaining the torque M
3

constant, the magnitude of the end force T is progressively
increased causing the rod to gradually leave the constraint axis and, eventually, contact the
constraint. The earliest steps of the loading, corresponding to the contact-free rod and the
rod contacting the constraint at one point, have been detailed in Section II.3.3. This Section
ends as, at the discrete contact, the projection of the rod curvature on the unit normal to the
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constraint reaches the surface normal curvature. At this stage of the loading, further increasing
the magnitude of the end force T would indeed lead to a violation of the unilateral contact
condition unless the discrete contact is replaced by a continuous contact. This forthcoming
stage is analyzed in this Section.

Figure IV.2.1, which extends the result presented in Figure II.3.2, depicts the evolution of
the unstretched length `/L, the magnitude of the reaction forces R,R

l,r

, and the scaled contact
length L

c

/L as the axial force T is varied. As the first derivatives of the geodesic and normal
curvatures at the extremities of the continuous contact are not continuous, the reaction pressure
is supplemented by two concentrated reaction forces R

l

and R
r

. Due to the symmetry of the
problem under consideration these forces remain equal. At the transition between discrete and
continuous contact, marked by rhombuses, the length of the continuous contact is null and the
magnitude of these forces is half that of the concentrated reaction prior to the transition. As the
magnitude of the end force increases, these forces and the contact length L

c

progressively grow.
Various intermediate configurations for ✏ = 1/40 are pictured in Figures IV.2.2 and IV.2.3.

For ✏ = 1/20, as the end force reach T = �24.37 |T
0

|, the reaction pressure along the central
element becomes locally outward pointing (i.e., positive) and this element must therefore be split
to allow for the central part of the rod to leave the constraint. This configuration is pictured
in Figure IV.2.4. As the magnitude of the end force is further increased, the length of this
contact-free element progressively grows.

Note that the oscillations observed in the deformed configuration presented in Figures IV.2.3(b)
and IV.2.4 are typical of the buckled configurations experienced by oilfield tubulars and empha-
sized experimentally for horizontal cylindrical constraint (Su et al., 2013; Miller et al., 2015).

“Children and scientists share an outlook on life. ’If I do this, what will
happen?’ is both the motto of the child at play and the defining refrain of
the physical scientist. [...] The unfamiliar and the strange – these are the
domain of all children and scientists”.

Gleick (2011)



101

Figure IV.2.1: Progressive buckling of an initially straight elastic rod constrained inside a helical
conduit. The rod is subjected to an end torque M

3

= �1 and axial force T . (a) Scaled
unstretched length of the rod `/L, (b) reaction forces R at the discrete contact and R

l,r

at the
extremities of the continuous contact, and (c) scaled contact length L

c

/L as functions of the
end force T / |T

0

| with T
0

= �7.069. Results obtained for ✏ = 1/40 and ✏ = 1/20 are plotted in
blue and orange, respectively. Circles mark the appearance of the discrete contacts and squares
identify the transition from discrete to continuous contact.
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Figure IV.2.2: Deformed rod constrained inside a helical conduit of radius ✏ = 1/40 for (a)
T = 10 |T

0

| and (b) T = 35 |T
0

|. The arrows picture the concentrated reaction forces at the
extremities of the continuous contact.
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Figure IV.2.3: Buckled rod constrained inside a helical conduit of radius ✏ = 1/40 for (a)
T = �10 |T

0

| and (b) T = �35 |T
0

|. The arrows picture the concentrated reaction forces at the
extremities of the continuous contact.
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Figure IV.2.4: Buckled rod constrained inside a helical conduit of radius ✏ = 1/20 for T =

�24.37 |T
0

|.



Chapter V

Conclusion & Discussion

V.1 Contributions

Driven by the wealth of biological, medical and engineering applications concerned with the con-
strained deformation of slender elastic structures, the research work presented in this manuscript
has lead to the formulation of a computational model for the solution of elastic rods constrained
inside or around tube-like surfaces. The segmentation strategy adopted to cope with this com-
plex class of problems consists in sequencing the global problem into, comparatively simpler,
elementary problems either in continuous contact with the constraint or contact-free between
their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach
is however associated with two major drawbacks. First, the boundary conditions specifying
the locations of the rod centerline at both extremities of each elementary problem lead to the
establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of
the rod. Second, the assessment of the unilateral contact condition requires, in principle, the
comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod center-
line and the constraint axis. Both conspire to burden the (numerical) computations associated
with the method. To streamline the solution along the elementary problems and rationalize
the assessment of the unilateral contact condition, we reformulated the rod governing equations
within the Eulerian framework of the constraint. The methodical exploration of both types
of elementary problems led to specific formulations of the rod governing equations that stress
the profound connection between the mechanics of the rod and the geometry of the constraint
surface.

Eulerian formulation of elastic rods deforming in space

Both elementary configurations corresponding to rod segments either in continuous contact with
the constraint or contact-free have been investigated simultaneously on the assumption that

105
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they essentially differ by the nature of the body force acting along the rod. A general Eulerian
formulation of elastic rods was derived by (i) describing the rod deformed configuration E by
means of its relative deflection with respect to the constraint axis C , and (ii) expressing the
kinematical as well as mechanical quantities pertaining to the rod in terms of the curvilinear
coordinate associated with the reference curve.

This formulation circumvents both drawbacks that afflict the conventional Lagrangian ap-
proach associated with segmentation strategy. The restatement of the rod local equilibrium
in terms of the Eulerian curvilinear coordinate indeed untangles the solution of free boundary
problems associated with rods forced to go through two distinct fixed points in space. The
isoperimetric constraints vanish and the resolution reduces to that of a classical boundary value
problem of mixed order. Additionally, the description of the rod deflection by means of its ec-
centricity with respect to the constraint axis trivializes the assessment of the unilateral contact
condition. The detection of emerging contacts throughout contact-free problems reduces to the
comparison of the eccentricity magnitude with the constraint radius while, along continuous
contacts, the rod is compelled to lay on the constraining surface by straightforwardly imposing
the amplitude of this eccentricity.

Lagrangian formulation of surface bound elastic rods

Focusing on the continuous contact between an elastic rod and a rigid surface, the equation
governing the static equilibrium of rods have been recast to emphasize the influence of the
constraint local geometry on the configuration of the rod centerline and the reaction pressure.
The resulting Lagrangian formulation, adapted to surface bound configurations, was obtained
by (i) specifying the location of the rod axis in terms of its coordinates in the parameter space
associated with the constraint surface parameterization, and (ii) characterizing the orientation
of the rod material frame through its rotation with respect to the normal to the surface. This
formulation led to an explicit representation of the rod centerline in which the strain variables,
measuring the rod change of shape, are expressed in terms of the geometric invariants (

g

,

n

, ⌧

g

).
Considering a spherical constraining surface, the proposed formulation was further investi-

gated and validated by recovering known results. It was shown that the geodesic curvature of an
elastica constrained on a sphere and the intrinsic curvature of a planar elastica satisfy identical
governing equations. Accounting for the symmetry of the problem, the conditions under which
the elastica closes around the sphere were derived. Although the relaxation of the inextensibility
assumption was associated with the loss of integrability, the parallelism with planar configura-
tions was shown to be maintained and the distinction between wavelike and orbit-like solutions
preserved.
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Eulerian formulation of elastic rods deforming on a normal ringed surface

Particularizing the Lagrangian description of surface bound rods to the continuous contact with
normal ringed surfaces, an Eulerian formulation was derived by (i) describing the rod deformed
configuration E by means of its angular position on the constraint surface and (ii) expressing
the kinematical as well as mechanical quantities pertaining to the rod in terms of the curvilinear
coordinate associated with the constraint axis.

The restatement of the rod local equilibrium in terms of the Eulerian curvilinear coordinate
again prove to be particularly appropriate to treat free boundary value problems that are sub-
jected to self-feeding. The isoperimetric constraints indeed vanish and the solution reduces to
that of a system of differential-algebraic equations associated with classical boundary conditions.
To illustrate this formulation, periodic solutions on the torus were then investigated and shown
to be topologically equivalent to torus knots.

Global computational model

Formalizing the segmentation strategy, a computational model that exploits the Eulerian for-
mulation of the rod governing equation has been assembled. To solve the quasi-static deflection
of elastic rods constrained inside or around a perfectly stiff, frictionless, normal ringed surface,
it identifies the contact pattern (i.e., the number of contacts and their nature, the rod configu-
ration at the connections) that satisfies the unilateral contact condition and preserves the rod
integrity along the sequence of elementary problems. This procedure was systematized in an
algorithm that involves three nested loops. Assuming a contact pattern and the associated rod
configuration at the connections, the inner loop propagates the resolution of elementary prob-
lems along the sequence, from one extremity to the other. The median loop then restores the
rod continuity at the connections by adjusting the position and inclination of the connections.
Eventually, the outer loop ensures that the unilateral contact condition is respected along the
global problem and, if required, modifies the contact pattern.

V.2 Limitations

Although, associated with a segmentation strategy, the Eulerian formulation for elastic rods
developed in this manuscript simplifies both the solution of the rod configuration along each
elementary problem and the assessment of the non-penetration condition, it limits the range
of potential configurations adopted by the rod. Selecting the positive sign in equations (II.2.3)
and (III.2.4) indeed imposes the mapping from Eulerian to Lagrangian coordinates to be increas-
ing and prevents the appearance of solutions associated with curling or writhing, or even the
formation of plies. While, in a vast majority of applications, these configurations are unlikely
to occur and may be regarded as parasitic, they may be essential to the simulation and under-
standing of other phenomena such as DNA supercoiling. The proposed Eulerian formulation
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actually prohibits solutions along which the tangent to the rod centerline is, at some points,
orthogonal to the constraint axis.

Build upon the rod theory, the Eulerian formulation shares its fundamental assumptions and,
therefore, inherits its limitations. This theory of one-dimensional elastic body, which allows
for approximate solutions of the three-dimensional equations of nonlinear elasticity, is only
satisfactory for a limited range configurations, loading and boundary conditions. Essential to its
validity, the slenderness assumption requires that the rod transverse dimensions be significantly
smaller than its length. This restriction may indeed limit the applicability of the method to
industrial or medical applications in which the rod is not sufficiently thin/long. Although
rotations with respect to the initial configuration may be large, the strains associated with the
deformed configuration must remain small. Also, the hypothesis of isotropic and perfectly elastic
Hookean material fails to account for the potential plastic deformations of the rod, which may
occur in some applications (e.g. oil and gas industry.) In this work, the shear deformations were
further neglected. For rods with a circular cross section, this assumption is however expected
to have little impact on the global solution.

As already emphasized, the approach proposed in this thesis to establish the correct contact
pattern is unfortunately not guaranteed to converge. In exceptional circumstances, several
adaptations of the contact pattern may indeed be required simultaneously, situations that the
present implementation of the procedure fail to account for. In this context, it may be beneficial
to punctually steer the procedure towards an educated guess of the correct contact pattern.

V.3 Directions for future work

As for every mathematical or numerical model, the computational model developed in this
research work requires to be verified and validated. These crucial steps not only allow to evaluate
the degree to which the model is an accurate representation of the real world, but also quantify
the confidence in its predictive capability. Although the Eulerian formulation, in both contact-
free and continuous contact configurations, has been shown to properly degenerate to known
analytical solutions, the numerical implementation of the global computational model presented
in the previous Chapter should be further verified through rigorous comparison with benchmarks,
experimental data and/or simulations obtained with commercial codes. Similarly, a proper
calibration of the parameters involved in this algorithm (such as the tolerances, the degree of
the B–spline approximations, etc.) should be conducted. As emphasized in the previous Section,
the contact pattern switcher, as presented in this work, should be seen as a proof of concept that
requires further investigations as well as the identification of its strength and potential flaws.

Although the Eulerian formulations proposed in Sections II.2 and III.2 are restricted to quasi-
static solutions of the governing equations, they can readily be extended to incorporate the rod
dynamics by adding inertial terms to equations (II.1.12–II.1.13) and redefining the eccentric-
ity vector and the polar angle, as well as every other dependent quantity, as time-dependent.
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Similarly, the assumption of frictionless interaction between the rod and the constraining sur-
face may be relaxed and friction forces introduced through the components (f

g

, f

3

) of the body
forces, however requiring to deal with evolutive problems as solutions become history depen-
dent. Finally, the definition of the constraint surface may be extended to include constraints
with non-circular cross sections, e.g., by describing its local geometry in the {D

1

,D

2

}–basis,
and account for its deformability, which is essential to biomedical applications.

The numerical solution of boundary value problems for ordinary differential equations, let
alone differential-algebraic equations, is an incredibly complex field of research involving nu-
merous areas of both mathematics and numerical analysis. Similarly, the techniques that may
be applied to the solution of system of nonlinear equations far outreach the scope of this the-
sis. The numerical implementation outlined in this manuscript is intentionally simple. However
inevitable, the means and methods that have been implemented indeed do not fundamentally
characterize the methodology formulated in this work and were essentially serving an illustrative
purpose. Hence, various enhancements could be brought to this numerical implementation in
order to streamline and accelerate the solution. One can for instance consider adaptive knot
sequences that optimize the error of the approximate solution along each elementary problem
by varying the number of Gauss points per subinterval, as well as the number and extent of
these subintervals. For higher order convergence and more stable numerical scheme, an al-
ternative basis could also be used for the piecewise polynomial solutions (Ascher et al., 1983;
Bader and Ascher, 1987). To lessen the computational expense incurred at every iteration, the
Jacobian matrix associated with the system (IV.1.17) could potentially be updated using Broy-
den’s method (Dennis and Schnabel, 1996; Press et al., 2007). For the same purpose and allow
real-time simulations, alternative programming languages should also be considered.

“[...] every word or concept, clear as it may seem to be, has only a limited
range of applicability”.

Heisenberg (1958)
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A.1 The Kirchhoff-Clebsch-Love Reduction

Restricting ourselves to rods of circular cross section initially straight, this Appendix is a sum-
mary of the general ideas of Kirchhoff-Clebsch-Love as presented by Dill (1992) in the framework
of modern continuum mechanics.

The position vector of a material point of the undeformed body can be expressed in the form
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where (a

1

, a

2

) are the coordinates of the point in the cross section s spanned by the directors
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(s) and d
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(s). Due to the combined effects of bending and twisting, the same material point
in the deformed configuration is tracked by the position vector
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where the b

j

’s account for the unknown local displacements of the material point. The compo-
nent b

3

is solely responsible for the wrapping of the cross section, that is a plane cross section
does not necessarily remains plane in the deformed body. Considering only configurations in
which these local displacement and their material derivatives are small, Kirchhoff’s equations
are obtained as the first order terms of an asymptotic expansion where the small parameter is
the largest of the numbers a/`, a kuk , (1� ↵) with a the radius of the rod cross section and
` = s

b

� s

a

the length of the rod in its reference configuration.
Further assuming the tractions on the sides of the body to be small and the rod to be made

of a homogenous and isotropic Hookean material, the local displacement is shown (Dill, 1992)
to be given by
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= 0, (A.1.5)

at first order, such that plane cross sections remain plane for rods with a circular cross section.
In these expressions ⌫ denotes Poisson’s ration. Accordingly, the only non-zero components of
the stress tensor read (at first order)
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where E is Young’s modulus and G is the shear modulus. The resultant of the contact forces
and the resultant couple of these forces are then obtained by integration of these stresses over
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the cross section A
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leading to
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where the axial, bending and torsional stiffnesses are defined as
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respectively. The surface integrals in equations (A.1.9) correspond to the surface area, the first
moment of inertia, and the moment of twist of the rod cross section, respectively.
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A.2 Geometric invariants of surface bound curves

Differentiating expression (III.1.5) for the director d
3

with respect to the Lagrangian coordinate
s, the following expression is obtained
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such that, upon projection on the unit normal to the constraint surface, we have
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which is equivalent to definition (III.1.18) of the normal curvature.
The geodesic curvature is obtained by projecting d
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on the unit vector N ⇥ d
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, i.e.,
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From equations (A.2.1) and (III.1.5), we have
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such that
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Using Gauss equations (Gray, 1996) and Lagrange identity, the coefficients of u

03, v

03, u

02
v

0,
u

0
v

02 on the righthand side of (A.2.7) may be expressed in terms of E, F , G and the Christoffel
symbols (Gray, 1996)
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and similarly
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Substituting equations (A.2.7–A.2.11) into (A.2.5), the definition (III.1.13) of the geodesic cur-
vature is recovered.
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Hence, we have
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where the coefficients of u0 and v
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and the definition (III.1.19) of the geodesic torsion is recovered upon substitution of equa-
tions (A.2.14–A.2.18) into (A.2.12).
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A.3 Closed elastica on the sphere

A.3.1 Components of & (�) in the cylindrical coordinate system

In the cylindrical coordinate system, the scaled position vector and the unit tangent to the
elastica axis read & (�) = % e
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since N ⇥F = F
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. Hence, projecting this vector on the scaled position vector
& (⇠) leads
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which reduces to the relation (III.1.66.a). Alternatively, the vector product between I and &
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+ 1)N , in the Darboux frame. Therefore, taking the dot product of both expressions
with the scaled position vector leads
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which, taking into account expression (III.1.59.c), reduces to the relation (III.1.66.b).

A.3.2 Magnitude of the constant vector

Equation (III.1.60) may be integrated to obtain
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where C
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is a constant of integration. As a global maximum point, �
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such that expression (A.3.6) reduces to
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As the term
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which, accounting for expression (A.3.8), reduces to (III.1.67).

A.4 Normal ringed surface

The first partial derivatives of the parameterization (III.2.3) read
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such that, defining C
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and the outward pointing unit normal to the surface is given by

N (S,�) =

C

3

(cos�D

1

+ sin�D

2

)�Q

0
D

3p
C

2

3

+Q

02
. (A.4.6)

First fundamental form Equations III.1.3 for the coefficients of the first fundamental form
lead to

E = S
S

· S
S

= (1 +Q (U

1

sin� � U

2

cos�))

2

+Q

2

U

2

3

+Q

02
, (A.4.7)

F = S
S

· S
�

= Q

2

U

3

, (A.4.8)

G = S
�

· S
�

= Q

2

, (A.4.9)



130

with the first partial derivatives S
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and the normal ringed surface with directrix R (S) and radius function Q (S) has no self-
intersection if and only if Q
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cos�) 6= 0. Expressing the
components of the Darboux vector as U
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curvature K, the latter condition may be rewritten as 1�QK cos (� + �) 6= 0 such that, since
cos (� + �) varies between �1 and 1, there will be no self-intersection if QK < 1 and Q
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Second fundamental form The coefficients of the second fundamental form therefore read
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