Diurnal and seasonal variability of CO₂ fluxes over a degraded Woodland under a Sudanian climate in Northern Benin, West Africa

Expédit Evariste Ago1,2, Dominique Serca3, Eugôle Kossi Abugossou2, Sylvie Galle1 and Marc Aubinet1

1. Laboratoire d'Hydraulique et de Maîtrise de l'Eau, Faculté des Sciences Agronomiques (FSA), Université d'Abomey-Calavi, BP 2819 Cotonou, Benin
2. Laboratoire d’Écologie et de Modélisation des Ecosystèmes, Université d’Abomey-Calavi, BP 2819 Cotonou, Benin
3. Laboratoire d’Ecologie et de Climatologie, Université Paul Sabatier, Toulouse, France

Introduction

High uncertainties remain on Africa’s terrestrial carbon budget, especially on African’s Woodlands and Forests.

Models simulating carbon dynamics in terrestrial ecosystems need site level measurements for calibration and validation. With this goal, the AMMA-CATCH International program had installed few flux towers in West Africa, especially in Benin.

Objectives of this study

→ to estimate the net ecosystem exchange and their major components of a Sub-Saharan Woodland in Western Africa.

→ to determine some mechanisms and factors that control the daytime and nighttime fluxes in the Woodland.

Methods

- Measurement period : Seventeen (17) months between November 2005 and March 2007
- CO₂ and H₂O fluxes measured by eddy-covariance method.
- Micrometeorological measurements & dominating species inventory around the fluxes tower (1km²).
- All data treated following standard methodology (Aubinet et al., 2012).
- Nighttime CO₂ flux correction, u* threshold 0.10 as found by (Ago et al., 2014).
- Daytime gaps were filled using the Misterlich equation and Nighttime gaps using the relationship with the daily means of relative humidity (RH)
- Flux-partitioning was performed into Gp and R, the two main components (Gilmov et al., 2013, 2010)

Results

- Degraded Woodland
 - in Benin, they occupy 2/3 of total dense forest area (Sokpon et al., 2006)
 - village of Nanbangor, Djojou district in Benin (West Africa)
 - 9.65°N, 1.74° E, 432 m alt

Vegetation : Woodland, Fallow and Crop.
No Herbaceous in dry season (burned by farmers).
Soil type : tropical ferruginous soil dominates.

Sudanian climate: One dry season (December to March), one wet season (June to September) and two transitional seasons (October-November and April-May)

Mean annual rainfall : 1200 mm
Mean annual temperature : 25.3 °C
Mean daily wind speed : 0.53 m/s to 3.12 m/s
Inter-tropical zone : 2 maxima et 2 minima PPFD
Winds: mainly SW (wet season), NE (dry season).

Figure 1. Location of site and land use on 1km² around the flux tower.

Figure 2. Mean daily meteorological conditions at the Djojou region and CO₂ fluxes overview.

Nighttime CO₂ fluxes response to temperature

No clear dependence of ecosystem respiration on the temperature was observed.

Figure 4. Relationship between Nighttime net exchange ecosystem (Ne) and temperature.

Seasonal variability of carbon fluxes

- A strong seasonal variability was observed.
- Carbon sink (dry season) and source (wet season).
- During dry season, Ecosystem respiration (R) and Gross primary productivity (Gp) were reduced.
- At annual scale (during 2006), the site was near of the equilibrium with the cumulated Ne equal to 29 ± 16 g C m⁻².

Discussion and main conclusions

- Response to radiation: Larger CO₂ assimilation (up to 20 μmol m⁻² s⁻¹) in wet season due to the importance of green vegetation. Practically, a very small response to radiation was found in dry season (reduced green leaves, stomatal limitation due to the drought).
- Response to temperature: No clear respiration response to temperature was found probably because it was masked by the response to soil moisture or the respiration was insensitive to the temperature range at this region?
- Seasonal variability: A strong variability of carbon fluxes were observed due to the alternation between dry and wet seasons.
- Annual pattern : The site was near the equilibrium concerning the carbon exchanges with the atmosphere probably due to the high disturbance by local populations through the agricultural activities, fire, gazin and illegal trees logging.

Acknowledgements

This work was financed by “Agence Belge de Développement” (CTB) and “Association pour l’Agriculture et le Développement Durable” (AZD). We thank also members of AMMA-CATCH Benin program for supplying Eddy-covariance and complementary micrometeorological data set.

European Geosciences Union (EGU) General Assembly, Vienna, Austria, 12-17 April 2015