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Abstract. Theoretical and experimental suppression of aeroelastic instabilities by means of
broadband passive targeted energy transfers has been recently studied. A single-degree-of-
freedom (SDOF) nonlinear energy sink (NES) was coupled to a 2-DOF rigid wing modeled in
the low-speed, subsonic regime with quasi-steady aerodynamic theory. The nonlinear attach-
ment was designed and optimized to suppress the critical nonlinear modal energy exchanges
between the flow and the (pitch and heave) wing modes, thus suppressing the (transient) trig-
gering mechanism of aeroelastic instability. We performed bifurcation analysis to find regions
of robust passive aeroelastic suppression in parameter space. Then, we employed multi-degree-
of-freedom nonlinear energy sinks (MDOF NESs) to improve robustness of the aeroelastic in-
stability suppression. Bifurcation analysis by a numerical continuation technique demonstrated
that controlling the occurrence of a limit point cycle (LPC or saddle-node) bifurcation point
above a Hopf bifurcation point is crucial to enhancing suppression robustness. MDOF NESs
not only can enhance robustness of suppression against even strong gust-like disturbances, but
they require lower NES mass compared to SDOF NES designs. The validity of the theoretical
findings was proven by a series of wind tunnel experiments.

1 INTRODUCTION

Classical linear theory predicts that a flexible wing will exhibit divergent response at flow speeds
above a critical flutter speed, implying that catastrophic failure will occur when this critical
speed is exceeded. Fortunately, real structures are often sufficiently nonlinear, displaying hard-
ening stiffness for example, that their response at supercritical speeds takes the form of a steady
limit cycle oscillation (LCO) rather than diverging. Even when they do not cause damage,
such oscillations are extremely undesirable because they limit the operating envelope of high-
performance aircraft such as the F-16 and F/A-18 [1, 2].

Many authors have studied the causes of LCOs. The common factor in all aircraft systems
exhibiting limit cycle behavior is aeroelastic nonlinearities. These nonlinearities can exist in
the flow field, the structure, or both. Dowell et al. [3] provides an excellent summary of recent
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studies done in the fields of aerodynamics and structural dynamics to understand nonlinear
aeroelasticity.

Regarding methods for controlling or suppressing LCOs, several control laws such as linear
theory, partial feedback linearization, and adaptive control have been utilized to stabilize an
inherently unstable aeroelastic system with a single trailing edge control surface [4] or with
leading and trailing edge control surfaces [5]. These studies have shown that active control
can be used to raise the threshold velocity above which LCOs occur. While active control
has been shown to be effective in suppressing LCOs, these methods require significant use of
control resources. Active methods also require sensors capable of constantly providing accurate
measurements of the system state for feedback into the controller.

On the other hand, targeted energy transfer (alternatively, nonlinear energy pumping) refers to
the irreversible transfer of vibration energy from the main structure of a dynamic system to an
attachment with essentially nonlinear (nonlinearizable) stiffness and linear damping. Vakakis
and Gendelman [6] and Vakakis et al. [7] showed that when the essentially nonlinear oscilla-
tor resonates with a mode of the main system, energy is transferred (pumped) from the main
system to the nonlinear attachment irreversibly. The attachment thus acts as a nonlinear energy
sink (NES), which is a completely passive device with no state measurement or energy input
required.

The NES has been developed and studied at the University of Illinois at Urbana-Champaign
[6, 7, 8, 9, 10]. Unlike a linear dynamic absorber, which is effective in narrow frequency
bands, the NES works against broadband disturbances. In addition, while the linear absorber is
a steady-state device, the NES provides transient protection as well.

Lee et al. [11] showed the applicability of nonlinear energy pumping to suppress the LCO
of a van der Pol oscillator, which is analogous to a nonlinear aeroelastic problem. The LCO
suppression mechanism was found to be a series of captures into, and escapes from, resonances,
from superharmonic to subharmonic order. This successful demonstration of NES applicability
to suppress a self-excited instability was, in particular, the catalyst for the present work, which
provides both analytical and experimental demonstrations of suppressing aeroelastic instability
with a nonlinear energy sink.

2 ANALYTICAL STUDY

2.1 System descriptions

We consider the 2-DOF in-flow rigid wing coupled to a single-DOF ungrounded NES (Fig. 1).
The main motivation for considering this configuration lies in the LCO triggering mechanism[12]
in the wing with no NES attached; that is, an initial excitation of the heave mode of the wing
acts as the triggering mechanism for the development of LCOs with the wing oscillating pre-
dominantly in its pitch mode. Because both the initial excitation (trigger) of the heave mode
and the eventual development of the LCO are transient phenomena, a successful strategy for
aeroelastic instability suppression should address directly the transient problem before the full
LCO has developed.

Assuming small motions and quasi-steady aerodynamics, one can derive the nondimensional
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Figure 1: 2-DOF rigid wing model coupled with an SDOF NES (ac, ea, and cg stand for the
aerodynamic center, elastic axis, and center of gravity, respectively).

equations of motion of the wing-NES assembly as

y′′+ xαα
′′+Ω

2y+ξyy3 +µCL,αΘ
(
y′+Θα

)
+ελ

(
y′−δα

′− v′
)
+C (y−δα− v)3 = 0

r2
αα

′′+ xαy′′+ r2
αα+ξαα

3− γµCL,αΘ
(
y′+Θα

)
(1)

+δελ
(
δα

′+ v′− y′
)
+δC (δα+ v− y)3 = 0

εv′′+ ελ
(
v′+δα

′− y′
)
+C (v+δα− y)3 = 0

where y, α, and v are the heave, pitch, and NES displacements, respectively; xα, the static
mass unbalance of the wing (positive aft of the ea); Ω, the ratio of the uncoupled linear natural
frequencies for the heave and pitch modes; ξy and ξα, the coefficients for the cubic nonlinear
terms; µ, the density ratio; Θ, the reduced velocity; CL,α, the slope of the lift curve; rα, the
radius of gyration of the wing; γ, the location of the ac measured from the ea (positive ahead
of the ea); ε, λ, and C, the NES mass, damping, and coefficient of the essential nonlinearity,
respectively; and δ, the offset attachment of the NES (positive ahead of the ea). We adopted the
system parameters for this study,

xα = 0.2, rα = 0.5, γ = 0.4, Ω = 0.5, µ = (10π)−1, CL,α = 2π, ξy = ξα = 1

giving a flutter speed ΘF = 0.87.

2.2 Suppression mechanisms

Three distinct mechanisms for suppressing aeroelastic instability by means of targeted energy
transfers are identified; that is, recurring suppressed burst-outs, partial suppression, and com-
plete suppression of instability. A synoptic presentation of the three basic LCO suppression
mechanisms identified in the numerical simulations is provided in the following, focusing on
their main dynamical features.

3



−5

0

5

10

15
x 10

−3

H
ea

ve
, y

(τ
)

Θ = 0.9, δ = 90%, ε = 0.01, λ = 0.1, C = 10

w/ NES w/o NES

−0.1

0

0.1

P
itc

h,
 α

(τ
)

0 100 200 300 400 500 600 700

−0.02

0

0.02

Nondimensional time, τ

N
E

S
, v

(τ
)

(a) Time responses

H
e

a
v

e

Instantaneous frequency via wavelet transform

0

1

2

3

P
it

ch

0

1

2

3

Nondimensional time, τ

N
E

S

0 100 200 300 400 500 600 700
0

1

2

3

0.5hω = Ω =

1
α

ω =

3 3
α

ω =

0.5hω = Ω =

1
α

ω =

3 3
α

ω =

0.5hω = Ω =

1
α

ω =

3 3
α

ω =

(b) Wavelet transforms

Figure 2: The first suppression mechanism when Θ = 0.9, δ = 90%, ε = 1%, λ = 0.1, and
C = 10. All initial conditions were zero except y′(0) = 0.01.

The first suppression mechanism (Fig. 2) This mechanism is characterized by a recurrent
series of suppressed burst-outs of the heave and pitch modes of the wing, followed by
eventual complete suppression of the aeroelastic instabilities. In the initial phase of tran-
sient burst-outs, a series of developing instabilities of predominantly the heave mode is
effectively suppressed by proper transient ‘activation’ of the NES, which tunes itself to the
fast frequency of the developing aeroelastic instability; as a result, the NES engages in 1:1
transient resonance capture (TRC) with the heave mode, passively absorbing broadband
energy from the wing, thus eliminating the burst-out. In a later phase of the dynamics,
the energy fed by the flow does not appear to directly excite the heave and pitch modes
of the wing but, instead, to get transferred directly to the NES until the wing is entirely at
rest and complete LCO suppression is achieved. At the initial stage of the recurrent burst-
outs, at time instants when the pitching LCO is nearly eliminated, most of the energy
induced by the flow to the wing is absorbed directly by the NES with only a small amount
being transferred to the heave mode, so that both the NES and the heave mode reach their
maximum amplitude modulations. This is followed by suppression of the burst-out, a
process that is repeated until at a later stage complete suppression of the aeroelastic in-
stability is reached. The beating-like (quasi-periodic) modal interactions observed during
the recurrent burst-outs turn out to be associated with Neimark-Sacker bifurcations [13]
of a periodic solution and to be critical for determining domains of robust suppression.

The second suppression mechanism (Fig. 3) Intermediate suppression of LCOs is the typ-
ical behavior in this case, and is commonly observed when there occurs partial LCO
suppression. The initial action of the NES is the same as in the first suppression mech-
anism. Targeted energy transfer to the NES then follows under conditions of 1:1 TRC,
followed by conditions of 1:1 permanent resonance capture (PRC) where both heave and
pitch modes attain constant (but nonzero) steady-state amplitudes. We note that the heave
mode response can grow larger than in the corresponding system with no NES attached
(exhibiting an LCO), while suppressing the pitch mode. We also note that, in contrast to
the first suppression mechanism, the action of the NES is nonrecurring in this case, as it
acts at the early phase of the motion stabilizing the wing and suppressing the LCO.

The third suppression mechanism (Fig. 4) In this mechanism energy transfers from the wing
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(b) Wavelet transforms

Figure 3: The second suppression mechanism when Θ = 0.9, δ = 90%, ε = 1%, λ = 0.2, and
C = 20. All initial conditions were zero except y′(0) = 0.01.
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Figure 4: The third suppression mechanism when Θ = 0.9, δ = 90%, ε = 1%, λ = 0.4, and
C = 40. All initial conditions were zero except y′(0) = 0.01.

to the NES are caused by nonlinear modal interactions during 1:1 RCs. Both heave and
pitch modes as well as the NES exhibit exponentially decaying responses resulting in
complete elimination of LCOs.

In order to analytically prove that the LCO suppression is due to resonance captures, one can
utilize the complexification-averaging technique [14]. Based on the wavelet transform (WT)
results in Figs. 2–4, we assume the multifrequency decomposition for the heave, pitch and NES
transient responses,

y(τ) = y1(τ)+ y2(τ), α(τ) = α1(τ)+α2(τ), v(τ) = v1(τ)+ v2(τ) (2)

where the components with subscripts 1, 2 correspond to slow modulations of the fast frequency
components, e jΩτ, e jτ, respectively. Specifically, the two fast frequencies are the two natural
frequencies of the heave and pitch modes in the uncoupled linearized system; we designate these
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components as LF (lower-frequency) and MF (middle-frequency) components, respectively, for
notational convenience and also for consistency with the notation used in Lee et al. [12].

Introducing the new complex variables[14]

ψ1 = y′1 + jΩy1, ψ3 = y′2 + jy2; ψ2 = α
′
1 + jΩα1, ψ4 = α

′
2 + jα2;

ψ5 = v′1 + jΩv1, ψ6 = v′2 + jv2; (3)

we express the original variable for the heave mode in the form

y =
1

2 jΩ
(ψ1−ψ

∗
1)+

1
2 j

(ψ3−ψ
∗
3)

y′ =
1
2

(ψ1 +ψ
∗
1)+

1
2

(ψ3 +ψ
∗
3) (4)

y′′ = ψ
′
1 +ψ

′
3−

jΩ
2

(ψ1 +ψ
∗
1)−

j
2

(ψ3 +ψ
∗
3)

Similar expressions hold for the variables corresponding to the pitch mode and the NES.

Substitute the previous expressions into the equations of motion (1), expressing the complex
variables in polar form, ψ1(τ) = ϕ1(τ)e jΩτ, ψ3(τ) = ϕ3(τ)e jτ; ψ2(τ) = ϕ2(τ)e jΩτ, ψ4(τ) =
ϕ4(τ)e jτ; ψ5(τ) = ϕ5(τ)e jΩτ, ψ6(τ) = ϕ6(τ)e jτ, where ϕi(τ) is the slowly-varying complex-
valued amplitude modulation of the respective fast-varying component e jΩτ or e jτ. Applying
two-frequency averaging over the two fast components, e jΩτ and e jτ, we obtain a set of six
complex-valued modulation equations governing the slow-flow dynamics,

ϕ
′ = F(ϕ) (5)

where ϕ ∈ C6; the details of F are not included here.

Introducing the final polar-form expressions, ϕi(τ) = ai(τ)e jbi(τ) where ai(τ), bi(τ) ∈ R, i =
1, 2, . . . , 6, we express the set of six (complex-valued) slow flow modulation equations (5) in
terms of a set of twelve (real-valued) modulation equations governing the slow evolutions of
the amplitudes and phases,

a′ = f(a,ϕ), ϕ
′ = g(a,ϕ) (6)

where a ∈ R6
+ and ϕ ∈ S6. The slowly-varying amplitudes a1, a3 (a2, a4; a5, a6) are respec-

tively LF and MF components of the heave (pitch; NES) mode. The independent phase angle
vector ϕ possesses the components ϕi j = bi− b j. Note that all independent phase interactions
occur between same frequency components (LF-LF or MF-MF).

Resonance captures and escapes can be illustrated by the phase interactions in Fig. 5. An in-
teresting observation is that the resonance captures between the heave and pitch modes occur
ahead of those between the heave mode and NES, or those between the pitch mode and NES.
This implies that in the first suppression mechanism there occur nonlinear modal energy ex-
changes between the heave and pitch modes (i.e., the triggering mechanism [12] is activated)
before TET to the NES (with the ensuing instability suppression) occurs. This early occurrence
of RCs between the heave and pitch modes makes the repetition of suppression and burst-out in
the first suppression mechanism possible.
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Figure 5: Analytical suppression mechanism via two-frequency averaging technique for the first
mechanism shown in Fig. 2.

3 EXPERIMENTAL STUDY

The nonlinear aeroelastic test apparatus (NATA) at Texas A&M University was developed to
experimentally test linear and nonlinear aeroelastic behavior. The low-speed wind tunnel with
a 3ft width× 2ft height (0.91× 0.51m) test section is a closed-circuit type with capacity of
air speeds up to 45m/s. The device consists of a rigid NACA 0015 wing section capable of
movement with two DOF, pitch and heave (Fig. 6 (a)).

Experiments using the NATA are conducted at very low speeds and at very low reduced fre-
quency. The wing section spans the entire wind tunnel, so the flow can be considered two-
dimensional. For this flow environment, lift and drag can be modeled with quasi-steady aero-
dynamics. This type of aerodynamic model has provided very good agreement with NATA
experimental results in the past, which can be referred to for the NATA parameters [4, 5].

For the first proof-of-concept experiments with an NES in an aerodynamic application, the
design goals were similar to what would be desired of flight hardware, tempered by the realities
of the laboratory environment and the scale of the test program. It was expected to design a
light-weight, passive, self-contained attachment that would significantly improve the dynamic
response of the NATA under typical operating conditions. On the basis of previous studies [15],
values of the stiffness and damping were selected, then refined through a series of numerical
simulations, carried out using MATLAB.

A typical experimental bifurcation diagram with the standard NES[15] is presented in Fig. 6 (b).
The dashed lines with triangles represent the results with this typical NES parameters. The
flutter speed is significantly increased from 9m/s to 11m/s (22% improvement). Moreover,
transitions appear sequentially from the third to second suppression mechanism.

Figure 6 (c) depicts the first suppression mechanism observed when the flow speed U = 11m/s,
and the NES of a lighter mass, weaker stiffness and higher damping was applied. As in the
theory, both the aeroelastic modes and the NES exhibit a nonlinear beating phenomenon; i.e.,
recurring burst-out and suppression of aeroelastic instability. The frequency ratio of the two
aeroelastic modes exhibits 1:1 relation around 2–3 Hz by counting the number of waves per a
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Figure 7: Application of an MDOF NES in series coupling for the 2-DOF rigid wing.

second. On the other hand, the frequency ratio between the NES and heave (or pitch) mode
becomes a 1:2 (or 1:3) subharmonic.

This observation can suggest that this first suppression mechanism predominantly consists of re-
curring (or transient) subharmonic resonance captures between the NES and aeroelastic modes,
while the two aeroelastic modes are continually in 1:1 internal resonance exchanging the re-
spective modal energy.

4 ENHANCING ROBUSTNESS OF SUPPRESSION WITH A MDOF NES

In order to improve robustness of instability suppression compared to an SDOF NES, we con-
sider an MDOF NES configuration, shown in Fig. 7. This kind of MDOF NESs in series
coupling was studied in Tsakirtzis et al. [16], basically showing that application of the MDOF
NESs can induce even richer dynamics on the frequency-energy plot (FEP) [8]. This means, in
turn, that there exists higher possibility for a system to possess more ‘baits’ to seize the dynam-
ics caused by any disturbances onto a branch in the FEP, making it stick to (or, at least, very
close to) the branch until a significant amount of energy is dissipated by a damper in the process
of resonance captures.

The MDOF NES is composed of the three equal masses, which in total make the same mass
ratio as the SDOF NES. The first mass of the MDOF NES is coupled to a wing only through
a linear stiffness, and its main role is a ‘bridge’ for efficient energy transfers from the wing to
the other nonlinear attachments. The second and third ones coupled through essentially nonlin-
ear stiffnesses. The best performance is achieved when the order of the essential nonlinearity
between the second and third masses is much smaller than than between the first and second
masses; the former is set 50 times less than the latter.
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The nondimensional equations of motion can be written

y′′+ xαα′′+Ω2y+ξyy3 +µCL,αΘ(y′+Θα)+C1 (y−δα− v1) = 0
r2

αα′′+ xαy′′+ r2
αα+ξαα3− γµCL,αΘ(y′+Θα)+δC1 (δα+ v1− y) = 0

1
3εv′′1 + ελ(v′1− v′2)+C1 (v1 +δα− y)+C (v1− v2)

3 = 0
1
3εv′′2 + ελ(v′2− v′1)+ ελ

(
v′2− v′3

)
+C (v2− v1)

3 + 1
50C (v2− v3)

3 = 0
1
3εv′′3 + ελ

(
v′3− v′2

)
+ 1

50C (v3− v2)
3 = 0

(7)

Then, numerical bifurcation analysis by means of MatCont [17] is performed to examine changes
in LCO branches. A typical result is depicted in Fig. 8. For the purpose of comparison, the LCO
branches without an NES and with an SDOF NES are superimposed. The coefficients of the
damping and essential nonlinearity are the same for both NES configurations; the mass ratios
(ε) for the SDOF and MDOF NESs are 0.02 and 0.014, respectively. The offset attachments (δ)
for both are selected as ±1.

Robustness enhancement at a relatively high reduced velocity is demonstrated in Fig. 9, where
the mass ratio of 2% (1.4%) is considered for the SDOF (MDOF) NES. The aeroelastic system
controlled by the MDOF NES exhibits robustness against the impulsive disturbance to the heave
mode at the steady state (Fig. 9 (b)), whereas there exists a transition from lower-amplitude un-
stable quasi-periodic LCO branch to higher-amplitude stable stable LCO branch for the control
only with the SDOF NES (Fig. 9 (a)).
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Figure 9: Demonstration of enhancing robust suppression of instability under the impulsive
disturbance of 20× y′(0) at τ = 200 when Θ = 0.98, δ = −1, λ = 0.4, C = 10, C1 = 0.01
(a) with an SDOF NES (ε = 0.02), and (b) with an MDOF NES (ε = 0.014). The thick lines
indicate the controlled responses.

4.1 Targeted Energy Transfers (TETs)

We now investigate the TET mechanisms in the case of MDOF NESs. As a first step, wavelet
transforms (WTs) are performed to examine the instantaneous frequency behaviors (i.e., tran-
sient resonant interactions between the aeroelastic and NES modes), as are summarize in the
following.

The WT involves a windowing technique with variable-sized regions so that it performs a multi-
resolution analysis, in contrast to the (fast) Fourier transform (FFT) which assumes signal sta-
tionarity. Small time intervals are considered for high-frequency components whereas the size
of the interval is increased for lower-frequency components, thereby giving better time and fre-
quency resolutions than the FFT. The Matlabr codes used for the WT computations in this work
were developed at the Université de Liège (Liège, Belgium) by Dr. V. Lenaerts in collaboration
with Dr. P. Argoul from the Ecole Nationale des Ponts et Chaussées (Paris, France). The Morlet
wavelet, ψM(τ) = e−τ2/2e jω0τ, which is a Gaussian-windowed complex sinusoid of frequency
ω0, is considered as a mother wavelet in this study. The frequency ω0 for the Morlet WT is
a user-specified parameter which allows one to tune the frequency and time resolutions of the
results. The plots represent the amplitude of the WT as a function of frequency (vertical axis)
and time (horizontal axis). Heavily shaded areas correspond to regions where the amplitude of
the WT is high, whereas lightly shaded regions correspond to low amplitudes. Such plots en-
able one to deduce the temporal evolution of the dominant frequency components of the signals
analyzed. Comparing the instantaneous frequency contents of the aeroelastic and NES modes
provides an additional (direct) way to verify the occurrence of resonance captures, or frequency
locking in the transient dynamics.

The instantaneous kinetic and potential energies, which are stored in the masses and springs,
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respectively, can be written:

T̄ (τ) = 1
2y′(τ)2 + xαy′(τ)α′(τ)+ 1

2α′(τ)2 + 1
3ε

[
v′1(τ)

2 + v′2(τ)
2 + v′3(τ)

2]
V̄ (τ) = 1

2Ω2y(τ)2 + 1
2r2

αα(τ)2 + 1
4ξyy(τ)4 + 1

4ξαα(τ)4

+ 1
4C [v1(τ)− v2(τ)]

4 + 1
200C [v2(τ)− v3(τ)]

4 + 1
2C1 [y(τ)−δα(τ)− v1(τ)]

2
(8)

so that the total energy can be computed from

ETotal(τ) = T̄ (τ)+V̄ (τ) (9)

The energy input from the flow, which is a sum of the initial energy provided by the initial
conditions and the nonconservative work done by the flow, can be expressed

EInput(τ) = ETotal(0)+W y
nc(τ)+W α

nc(τ) (10)

where

W y
nc(τ) = µCL,αΘ

Z
τ

0

{
y′(s)+Θα(s)

}
y′(s)ds

W α
nc(τ) = −γµCL,αΘ

Z
τ

0

{
y′(s)+Θα(s)

}
α
′(s)ds

The total energy dissipation by the MDOF NES can be written

ENES
d (τ) = ENES1

d (τ)+ENES2
d (τ) (11)

where

ENES1
d (τ) = ελ

Z
τ

0

[
v′1(s)− v′2(s)

]2ds, ENES2
d (τ) = ελ

Z
τ

0

[
v′2(s)− v′3(s)

]2ds (12)

As a result, the following instantaneous energy balance should hold:

ETotal(τ) = EInput(τ)−ENES
d (τ) (13)

We set the flow speed as Θ = 0.92, for which a complete elimination of aeroelastic instability
can be realized (see Fig. 8). For all zero initial conditions except for y′(0) = 0.1, one obtains
the responses shown in Fig. 10 (a). Initial transients exhibits beating-like interactions between
the aeroelastic and NES modes. One can see, from Fig. 10 (c), that a significant amount of
energy is extracted to the MDOF NES masses in the first two big interactions (i.e., τ ∈ [0,100];
Ey, Eα, Eu, Ev and Ew respectively denote the energies contained the heave and pitch modes,
the first, second, and the third of the MDOF NES). Moreover, a balance between the energy
input and the energy dissipation by the NES is reached in this period. It should be desirable that
more energy dissipation occurs in the second damper (i.e., ENES1

d < ENES2
d ), which demonstrates

more energy is transferred to the third mass than the second mass. Also, WTs in Fig. 10
(b) proves that there exist strong nonlinear modal interactions involving transient resonance
captures [12] in this period.

12



−0.05
0

0.05
0.1

H
ea

ve
Θ=0.92, δ=−1, ε=0.014, λ=0.4, C=10, C

1
=0.01; y′(0)=0.1

−0.2

0

0.2

P
itc

h

−0.5

0

0.5

N
E

S
1

−0.5

0

0.5

N
E

S
2

0 100 200 300 400 500

−0.5
0

0.5

N
E

S
3

Nondimensional time

(a)

H
ea

ve

0

1

2

3

P
itc

h

0

1

2

N
E

S
1

0

1

2

N
E

S
2

0

1

2

N
E

S
3

Nondimensional time
0 100 200 300 400 500

0

1

2

(b)

0

50

100
Modal energy exchanges

%

 

 

0

50

 

 

0

50

100
Energy input and dissipation

%

 

 

0 50 100 150 200
0

2

4

Nondimensional time

× 
10

−
3

 

 

 

 

EyEα

Eu

Ev Ew

E
d
NES1 E

d
NES2

ETotal

EInput E
d
NES

(c)

Figure 10: Wing responses when the MDOF NES is applied (Θ = 0.92, ε = 0.014, λ = 0.4,
C = 10, C1 = 0.01, δ =−1, y′(0) = 0.1): (a) Time series (thin lines for uncontrolled responses);
(b) wavelet transforms; (c) energy exchanges between the aeroelastic and NES modes.

Another interesting observation, which is not included in this paper, is that, for a smaller y′(0),
it takes longer time to reach a steady state (i.e., a balance between the input energy and energy
dissipation). Also, the smaller disturbances yield energy transfer mechanism which make the
second mass possess the more energy than the third one. Different from the case with a strong
y′(0), more energy dissipation occurs in the first damper (i.e., ENES1

d > ENES2
d ). This observation

again proves that more efficient nonlinear energy pumping can be realized for sufficiently large
input energy (see, for example, Vakakis and Gendelman [6]). The MDOF NESs with a positive
offset tend to exhibit less number of initial transient interactions.

5 CONCLUSIONS

Suppression of aeroelastic instability (or LCO) in a 2-DOF rigid wing by means of passive
targeted energy transfers (TETs) was investigated. Three distinct mechanisms for LCO sup-
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pression were identified both in theory and experiments: recurrent burst-outs and suppression,
partial suppression and complete suppression. It was found that the passive TETs are activated
by transient resonant interactions between the NES and the aeroelastic modes.

In order to improve robustness of aeroelastic instability suppression in a rigid wing with struc-
tural nonlinearities, we considered a MDOF NES configuration. From the bifurcation analysis
of the dynamics of the integrated wing-NES system by means of a numerical continuation tech-
nique, we showed that the control of the occurrence of the lower LPC bifurcation point above
a Hopf bifurcation point is crucial to enhancing robustness. Moreover, we demonstrated that
the proposed MDOF NES design (composed of multiple masses coupled in series by means of
essentially nonlinear springs and viscous dampers) not only greatly enhances the robustness of
LCO suppression against even strong impulsive disturbances, but also achieves comparable or
better suppression performance for smaller total masses compared to SDOF NESs under identi-
cal disturbances. Nonlinear modal interactions between the wing and the attached MDOF NES
were studied by means of WTs, as well as the resulting modal energy exchanges.

The results reported in this work, which should be viewed in conjunction with earlier theoretical
and experimental results[18, 19], indicate that appropriately designed lightweight passive non-
linear absorbers with essential stiffness nonlinearities can suppress LCO instabilities effectively
and robustly.
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