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Abstract

When resorting to numerical algorithms, we show that n@aimormal mode (NNM) computation is possi-
ble with limited implementation effort, which paves the waya practical method for determining the NNMs
of nonlinear mechanical systems. The proposed method r@lidwo main techniques, namely a shooting
procedure and a method for the continuation of NNM motiomsaddition, sensitivity analysis is used to
reduce the computational burden of the algorithm. A sinadlifiliscrete model of a nonlinear bladed disk is
considered to demonstrate the developments.

1 Introduction

Nonlinear normal modes (NNMs) offer a solid theoretical andthematical tool for interpreting a wide
class of nonlinear dynamical phenomena, yet they have aafehsimple conceptual relation to the LNMs
[1, 2, 3]. However, most structural engineers still view NIk a concept that is foreign to them, and they
do not yet consider NNMs as a useful concept for structurabdyics. One reason supporting this statement
is that most existing constructive techniques for comgubNiNMs are based on asymptotic approaches and
rely on fairly involved mathematical developments.

There have been very few attempts to compute NNMs using noahenethods [4, 5, 6, 7]. Algorithms for
the continuation of periodic solutions are really quitelgsficated and advanced (see, e.g., [8, 9, 10]), and
they have been extensively used for computing the forcqubrese and limit cycles of nonlinear dynamical
systems (see, e.g., [11]). Interestingly, they have nom Ifielly exploited for the computation of nonlinear
modes.

The objective of this paper is to support that these numesigarithms pave the way for an effective and
practical computation of NNMs. In the present paper, we skivat the NNM computation is possible
with limited implementation effort. The proposed algonithimplemented in MATLAB, relies on two main

techniques, namely a shooting procedure and a method foptttemuation of NNM motions. The algorithm

is demonstrated using a simplified discrete model of a neatiladed disk.

2 Nonlinear Normal Modes (NNMs)

A detailed description of NNMs and their fundamental prdigsr(e.g., frequency-energy dependence, bifur-
cations and stability) is given in [1, 2, 3]. For complete)dghe two main definitions of an NNM are briefly
reviewed in this section.



The free response of discrete conservative mechanicamgstvithn degrees of freedom (DOFs) is consid-
ered, assuming that continuous systems (e.g., beamss shgllates) have been spatially discretized using
the finite element method. The equations of motion are

M (t) + K x(t) + fo {x(£), %()} = 0 )

where M is the mass matrixK is the stiffness matrixx, x and x are the displacement, velocity and
acceleration vectors, respectivety; is the nonlinear restoring force vector.

There exist two main definitions of an NNM in the literatureedo Rosenberg and Shaw and Pierre:

1. Targeting a straightforward nonlinear extension of ihedr normal mode (LNM) concept, Rosenberg
defined an NNM motion as @bration in unisonof the system (i.e., a synchronous periodic oscilla-
tion).

2. To provide an extension of the NNM concept to damped syst&imaw and Pierre defined an NNM as
a two-dimensional invariant manifold in phase space. Sunhmifold is invariant under the flow (i.e.,
orbits that start out in the manifold remain in it for all tifnevhich generalizes the invariance property
of LNMs to nonlinear systems.

At first glance, Rosenberg’s definition may appear resigcin two cases. Firstly, it cannot be easily ex-

tended to nonconservative systems. However, the dampeaihrdys can often be interpreted based on the
topological structure of the NNMs of the underlying consdite system [3]. Secondly, in the presence of
internal resonances, the NNM motion is no longer synchrenbut it is still periodic.

In the present study, an NNM motion is therefore defined(@®a-necessarily synchronous) periodic motion
of the conservative mechanical system (1). As we will shbig, éxtended definition is particularly attractive
when targeting a numerical computation of the NNMs. It eealihe nonlinear modes to be effectively
computed using algorithms for the continuation of pericbtutions.

3 Numerical Computation of NNMs

The numerical method proposed here for the NNM computatidies on two main techniques, namely a
shooting technique and the pseudo-arclength continuatietihod. A detailed description of the algorithm
is given in [12].

3.1 Shooting Method
The equations of motion of system (1) can be recast into spatee form

z =g(z) (2)

wherez = [x* x*]" is the2n-dimensional state vector, and star denotes the transpesatmn, and

g(z) = < —M-! [ka—i- £ (x, )] ) 3)

is the vector field. The solution of this dynamical systemifdtial conditionsz(0) = zy = [x{, xg]* is
written asz(t) = z(t,z) in order to exhibit the dependence on the initial condition®), zy) = zo. A
solutionz, (¢, z,) is a periodic solution of the autonomous system (2),ift, z,0) = z,(t + 1, zp0), where
T is the minimal period.



The NNM computation is carried out by finding the periodiciains of the governing nonlinear equations
of motion (2). In this context, thehooting methods probably the most popular numerical technique. It
solves numerically the two-point boundary-value problesfireed by the periodicity condition

H(zp0,T) = 2,(T,2p0) — 2po =0 4)

H(zo,T) = z(T,z0) — 2z¢ is called theshooting functiorand represents the difference between the initial
conditions and the system response at tifnéJnlike forced motion, the period of the free response is not
known a priori.

The shooting method consists in finding, in an iterative Wag,initial conditionsz,, and the period” that
realize a periodic motion. To this end, the method relies ioect numerical time integration and on the
Newton-Raphson algorithm.

Starting from some assumed initial conditimf,%), the motionzﬁ,o) (t,z;%)) at the assumed pericl®) can
be obtained by numerical time integration methods (e.gagetKutta or Newmark schemes). In general, the

initial guess(z;%),T(O)) does not satisfy the periodicity condition (4). A NewtonpRaon iteration scheme

is therefore to be used to correct an initial guess and toergevto the actual solution. The correctimnsgg)

andAT(¥) at iterationk are found by expanding the nonlinear function

u (Z%) + Azl ) 4 AT(k)) —0 (5)

in Taylor series and neglecting higher-order terms (H.O.T.

The phase of the periodic solutions is not fixed.z(f) is a solution of the autonomous system (2), then
z(t + At) is geometrically the same solution in state space for Any Hence, an additional condition,
termed thephase conditionhas to be specified in order to remove the arbitrarinesseoinitial conditions.
This is discussed in detail in [12].

In summary, an isolated NNM is computed by solving the augatketwo-point boundary-value problem

defined by

F(zpo,T)z{ M =0 (6)

whereh(z,) = 0 is the phase condition.

3.2 Continuation of Periodic Solutions

Due to the frequency-energy dependence, the modal pananoéten NNM vary with the total energy. An
NNM family, governed by equations (6), therefore traces mveutermed an NNM branch, in thén +
1)-dimensional space of initial conditions and peri@g,7'). Starting from the corresponding LNM at
low energy, the computation is carried out by finding sudeesgsoints(z,,7") of the NNM branch using
methods for theumerical continuatiorof periodic motions (also callgghth-following methodd8, 9]. The
space(z,o, T') is termed the continuation space.

Different methods for numerical continuation have beerppsed in the literature. The so-called pseudo-
arclength continuation method is used herein.

Starting from a known solutiofz,, (;), 7(;)), the next periodic solutiofz, (;11), 7(;+1)) on the branch is
computed using predictor stepand acorrector step

Predictor step



At stepj, a prediction(z,o,j11), T(;+1)) Of the next solution(z, (;+1), 7(;+1)) is generated along the tan-
gent vector to the branch at the current paipf ;)

Zy, j+1) } _ { Zy0,(5) ] s [ P=.(j) ] %
[ T4y ) D prg)

wheres ;) is the predictor stepsize. The tangent vegigs = [p} ) pr,(;)]" to the branch defined by (6) is
solution of the system

OH oH
P20 (2o, ) 1) O #0000 T0) { Pz,j) ] - { 0 } (8)
Oh 0 Pr(j) 0
PO (zpo,(5))
with the condition||p;|| = 1. The star denotes the transpose operator. This normalizatin be taken

into account by fixing one component of the tangent vectorsaidng the resulting overdetermined system
using the Moore-Penrose matrix inverse; the tangent véctben normalized to 1.

Corrector step

The prediction is corrected by a shooting procedure in a@solve (6) in which the variations of the initial
conditions and the period are forced to be orthogonal to tedigtor step. At iteratiotk, the corrections

k1) (k) *)
Zpo,Gi41) = Zp0.Gi41) T Ao (1)
k1) () *)
Ty = Ty T AT 0 ©)

are computed by solving the overdetermined linear systéng tise Moore-Penrose matrix inverse

oH

oH
el B . T | (g™ (k) (k) (k)
Pzp0 (z;’g)’uﬂ),T&)l)) or |( p0.G+1) T (j+1) Azgf))(jﬂ) _H(ZpO,(]('l;l—)l)’T(j+1))
dh_* ) —
B0 | (8 0 AT® —h(Z0, 1) (10)
izpo.,<j+1)) (G+1) 0
P4 Pr.(5)

yvhere the prediction is used as initial guess,dé%,(j+l) = Zpo,(j+1) andT((jOJ)rl) = T(j+1)' The last equation

in (10) corresponds to the orthogonality condition for tberector step.

This iterative process is carried out until convergenceclieved. The convergence test is based on the
relative error of the periodicity condition:

[H(zpo, )|l _ [|12p(T', 2p0) — zpo |
”zpo” HZPOH

<e (11)

wheree is the prescribed relative precision.

3.3 Sensitivity Analysis

Each shooting iteration involves the time integration ef éguations of motion to evaluate the current shoot-
ing residueH (zgf)),T(k)) = 2P (T(k),zgf))) - zgé). As evidenced by equation (10), the method also
requires the evaluation of tt# x 2n Jacobian matrix

OH _ 0z(t,z)

20 (20,T) = -1 (12)

Oz |;—p



wherel is the2n x 2n identity matrix.

The classical finite-difference approach requires to perawccessively each of tha initial conditions
and integrate th@onlinear governing equations of motion. This approximate methodefioee relies on
extensive numerical simulations and may be computatipnaténsive for large-scale finite element models.

Targeting a reduction of the computational cost, a sigmtigenprovement is to use sensitivity analysis
for determiningdz(t, zg)/0zo instead of a numerical finite-difference procedure. Thesisigity analysis
consists in differentiating the equations of motion (2)hwiéspect to the initial conditiong which leads to

d [02(t,20)] _ Og(2) Oat,20) (13)
dt 0z Oz z(t,20) 920
with 9
92(0,20) _ (14)
0zg

sincez(0,zg) = zo. Hence, the matriX)z(t,zg)/0zo att = T can be obtained by numerically integrating
overT the initial-value problem defined by tti@ear ordinary differential equations (ODES) (13) with the
initial conditions (14).

In addition to the integration of the current solutiafi,x,) of (2), these two methods for computing
0z(t,zo)/0z¢ require2n numerical integrations dfn-dimensional dynamical systems, which may be com-
putationally intensive for large systems. However, equeti(13) are linear ODEs and their numerical inte-
gration is thus less expensive. The numerical cost can lteefureduced if the solution of equations (13) is
computed together with the solution of the nonlinear egquiatiof motion in a single numerical simulation
[13].

The sensitivity analysis requires only one additionalatien at each time step of the numerical time inte-
gration of the current motion to provide the Jacobian matiike reduction of the computational cost is

therefore significant for large-scale finite element madkisaddition, the Jacobian computation by means
of the sensitivity analysis is exact. The convergence tezutegarding the chosen perturbations of the finite-
difference method are then avoided. Hence, the use of Bétgsitnalysis to perform the shooting procedure

represents a meaningful improvement from a computationial pf view.

As the monodromy matrixz, (7, z,,)/ 0z iS computed, its eigenvalues, the Floquet multipliers, cdre
tained as a by-product, and the stability analysis of the NWdions can be performed in a straightforward
manner.

3.4 Algorithm for NNM Computation

The algorithm proposed for the computation of NNM motiongisombination of shooting and pseudo-
arclength continuation methods, as shown in Figure 1. Itdess implemented in the MATLAB environ-
ment. Other features of the algorithm such as the step dptiteoreduction of the computational burden and
the method used for numerical integration of the equatidmsation are discussed in [12].

So far, the NNMs have been considered as branches in thenoatitin spacéz,q,7’). An appropriate
graphical depiction of the NNMs is to represent them in adssgy-energy plot (FEP). This FEP can be
computed in a straightforward manner: (i) the conserveal ttergy is computed from the initial conditions
realizing the NNM motion; and (ii) the frequency of the NNM tiom is calculated directly from the period.

4 Numerical Experiment - Nonlinear Bladed Disk System

The NNM computation method is now demonstrated using a gieghimathematical model of a nonlinear
bladed disk assembly. The lumped parameter model admitggke siegree of freedom for each blade and
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Figure 1: Algorithm for NNM computation.

includes a similarly simplified representation of the flégitisk. The bladed disk is composed3ofsectors
assembled with cyclic periodicity; a single sector is reprdged in Figure 2. Each sector is modeled using
disk (M) and blade«:) lumped masses, coupled by line&aj &nd cubic k,,;) springs. The nonlinear springs
can, for instance, be representative of geometricallyineat effects in slender blades. The disk masses are
connected together by linear springs The equations of motion of th&)-DOF system are

m (EZ + k(mi — XZ') + knl(fﬂi — XZ‘)3 =0
MXi+ KX — X)) + K(X; — X 1)+ k(X — ) + k(Xi —2)2 = 0 (15)
fori=1,...,30; X31 = X1, Xo = X3¢ (conditions of cyclic periodicity).X; andz; are the displacements

of the disk and blade masses of thie sector, respectively. The valugs = 1, m = 0.3, K = 1, k = 1,
kn; = 0.1 are used in this study.



Figure 2: One sector of the nonlinear bladed disk asseméglycantinuous structure; (b) discrete model.

Mode | Nodal Nodal Freq. || Mode | Nodal Nodal Freq.
circles | diameters| (rad/s) circles | diameters| (rad/s)

1 0 0 0.000 31 1 0 2.082
2,3 0 1 0.183 || 32,33 1 1 2.084
4,5 0 2 0.363 || 34,35 1 2 2.092
6,7 0 3 0.536 || 36,37 1 3 2.104
8,9 0 4 0.700 || 38,39 1 4 2.123
10,11 0 5 0.850 || 40,41 1 5 2.147
12,13 0 6 0.985 || 42,43 1 6 2.178
14,15 0 7 1.103 || 44,45 1 7 2.215
16,17 0 8 1.202 || 46,47 1 8 2.258
18,19 0 9 1.282 || 48,49 1 9 2.304
20,21 0 10 1.346 || 50,51 1 10 2.350
22,23 0 11 1.394 || 52,53 1 11 2.394
24,25 0 12 1.428 || 54,55 1 12 2.431
26,27 0 13 1.452 || 56,57 1 13 2.460
28,29 0 14 1.465 || 58,59 1 14 2.478
30 0 15 1.470 60 1 15 2.485

Table 1: Natural frequencies of the underlying linear bthdssembly.

4.1 Modal Analysis of the Underlying Linear System

Before studying the nonlinear bladed disk assembly, therabfrequencies and mode shapes of the under-
lying linear system are first discussed. All bladed assarahiith circumferential symmetry exhibit certain
well-defined types of vibration mode [14]. A key feature is #xistence of two types of modgingleand
double

e The modes that occur in pair represent the majority. Theg i same natural frequency and similar
mode shapes. In fact, no unique mode shapes can be spedifiedse modes. Rather, itis sufficient to
specify two suitably orthogonal shapes and to note thatnwh@ating freely at that natural frequency,
the structure can assume any form given by a linear combimafithe two specified shapes. The mode
shape is characterized bynodal diametersince the displacement is constrained to be zero along n-
equally spaced diametral lines. The mode shapes of a moddga mutually orthogonal nodal
diameters.

e The assembly also possesses a smaller number of single mbues correspond to motion with all
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Figure 3: Representative LNMs of the bladed assembly; thdebhnd disk masses are shown in black and
grey, respectively. One mode of the mode pair (a) (0,1);@D5); (c) (1,5) and (d) (1,14).

the blades having the same amplitude of motion, either isg@kdth each other (0 nodal diameter) or
out of phase with their neighbors (N/2 nodal diameters).

The natural frequencies of the underlying linear blade@ragdy are listed in Table 1. In this table, the
modes are denoted by the integer paimg), which corresponds to the number of nodal circles and nodal
diameters for the considered mode, respectively. In theeindd), the nodal circle parametercan only
take the values = 0 or n = 1, according to whether the blade and disk masses undergaaisepor out-
of-phase motion, respectively. One observes the existein28 pairs of double modes and 4 single modes.
Figure 3 depicts four representative LNMs of the bladedrabbe namely mode (0,15) and one mode of the
mode pairs (0,1), (1,5) and (1,14).

4.2 Nonlinear Normal Modes (NNMs)

Modal analysis of the nonlinear bladed assembly is carnigdincthis section using the previously described
algorithm. Starting from the corresponding LNMs at low gyeand gradually increasing the total energy
in the system, NNM branches are computed. These branchegddackbone branches, are represented in
Figure 4 and form the skeleton of the FEP. As we shall seer BiN& branches bifurcate from and coalesce
into these backbone branches.

The first noticeable feature in Figure 4 is the frequencyrggnelependence of the NNMs. The oscillation
frequency of the modes with 1 nodal circle is strongly atfeldby the nonlinearities in the system. For these
modes, the blade and disk masses vibrate in an out-of-phak®f, which enhances nonlinear effects. On
the other hand, the oscillation frequency of the modes witto@al circle is much less affected. This is
because the blade and disk masses vibrate in an in-phasenféshthese modes.

4.2.1 Similar and Nonsimilar NNMs

In addition to the dependence of their oscillation freqyettte NNMs may also have their modal shapes that
vary with the total energy in the system. According to Rogegk terminology [15], a similar NNM corre-
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Figure 4: Evolution of the NNM frequencies with the total Enein the system.

sponds to an (energy-independent) straight modal linedarcdmfiguration space and occurs only in systems
presenting certain spatial symmetries. A nonsimilar NNIvtegponds to a curve in the configuration space,
the shape of which varies with the total energy. Due to itsragtny properties, the system possesses both
similar and nonsimilar NNMs. Two examples of similar NNMdlire bladed disk are the nonlinear extension
of the LNMs with 0 nodal diameters, namely modes (0,0) an@)(IMMode (0,0) is a rigid-body mode, which

is obviously unaffected by nonlinearity. The FEP of mod®)1n Figure 5 clearly depicts that, while the
NNM frequency is altered by the nonlinearities in the systdma modal shape remains unchanged.

Nonsimilar NNMs resemble the corresponding LNMs at low ggerThe structure (i.e., the number of
nodal circles and diameters) is preserved, and, as for tlimsnaf the linear system, they mostly appear in
pair. Nonsimilar NNMs in this system are either weakly, madely or strongly affected by nonlinearity for
increasing energy levels:

e Figure 6 represents a mode of the mode pair (0,2), whose shapeost energy-independent.
e Figure 7 shows that the NNM motions of mode pair (0,14) haveagkad energy dependence.

e A remarkable property of the NNM motions of mode (1,14) istthee vibrational energy localizes
to a limited number of sectors, the remaining of the systemgoeirtually motionless (see Figure
8). The resulting spatial confinement of the energy causesetsponses of some blades to become
dangerously high and might lead to premature high cyclgdatof the blades. For illustration, the time
series corresponding to such an NNM motion are displayedjun€ 9. This localization phenomenon
was also observed in linear mistuned bladed assembliesji€here, it occurs even in the absence of
structural disorder. It results from the frequency-enaigpendence inherent to nonlinear oscillations
and is discussed in detail in references [17, 18, 19].

4.2.2 Modal Interaction: Internally Resonant NNMs

When carrying out the NNM computation at higher energiebgiotesonance scenarios can be observed
through the occurrence of tongues of internally resonanMNUnlike backbone branches, tongues are
localized to a specific region of the FEP. They bifurcate frarmnackbone branch of a specific mode and
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Figure 9: Time series corresponding to the localized NNMiomoof mode (1,14) (see Figure 8).

coalesce into the backbone branch of another mode, theeabying an internal resonance between the two
modes. For instance, Figure 10 depicts a 3:1 internal resenlaetween modes (0,6) and (1,12) in the FEP.
To better understand the resonance mechanism, the backbommle (1,12) is represented at the third of its
characteristic frequency (this is relevant, because agersolution of period” is also periodic with period
3T). This demonstrates that a smooth transition from mod@ (6,6hode (1,12) occurs on the tongue. A
further illustration is that motions M1 and M2, which are thetions right after and before the coalescence
of the two NNM branches, are almost identical.

During this 3:1 internal resonance, the system vibratesgab subharmonic NNM; i.e., an NNM motion
characterized by more than one dominant frequency compo@erthe branch of mode (0,6), the motion is
characterized by one dominant frequency componentys#&s we move along the tongue from this branch,
a third harmonic progressively appears, and the systemateibwith two dominant frequency components
w and3w. As we progress further on the tongue, the third harmonids¢a dominate the component at the
fundamental frequency, until this latter completely dizegrs. At this precise moment, a transition to mode
(1,12) is realized. This transition is illustrated in Figutl using time series representative of the NNM
motion at three different locations on the tongue.

Surprisingly, the ratio of the linear natural frequenciésnodes (0,6) and (1,12) is far from 3; it is equal to
2.47. A 3:1 internal resonance between the two modes cabetikalized, because the frequency of mode
(0,6) increases much less rapidly than that of mode (1,X25hawn in Figure 4. This clearly highlights
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thatNNMs can be internally resonant without necessarily hawogumensurate linear natural frequencies
a feature that is rarely discussed in the literature. Anoifteresting finding is thathere is a countable
infinity of branches of internally resonant NNMs in this systsimilar to what was reported for a 2DOF
system in [3, 12].

By means of the sensitivity analysis, the computation ofatteench depicted in Figure 10 requires 1 minute
using a 2GHz processor. The finite-difference approachrigpetationally intensive and demands 15 min-
utes. Therefore, the sensitivity analysis significantiyuees the computational cost of the algorithm. This
is an important feature when targeting a computationaligtable calculation of the NNMs. Due to the

presence of turning points, the computation of the tonguggnre 10 demands most of the CPU time.

Besides the NNMs described here, additional modes exigtatticular, NNM motions which take the form
of traveling waves occur. They are represented by ellipséisa configuration space. A detailed analytical
study of these modes is given in reference [20]. The exainimatf these additional modes is beyond the
scope of this paper and will be addressed in subsequenestjzdi].

5 Conclusion

In this paper, a numerical method for the computation of NNMmechanical structures was introduced.
The approach targets the computation of the undamped mbdeadures discretized by finite elements and
relies on the continuation of periodic solutions. The ptre was demonstrated using a simplified discrete
model of a nonlinear bladed disk, and the NNMs were computedrately in a fairly automatic manner.
Complicated NNM motions were also observed, including antahie infinity of internal resonances and
strong motion localization.

This method represents a first step toward a practical NNMpcation with limited implementation effort.
However, two important issues must be addressed adequatedyvelop a robust method capable of dealing
with large, three-dimensional structures:

¢ (i) Fundamental NNMs with no linear counterparts (i.e. siadhat are not the direct extension of the
LNMs) have not been discussed herein. These additional Nbifdscate from other modes, and a
robust branch switching strategy will be developed forrtkemputation.

e (i) The method relies on extensive numerical simulationd may be computationally intensive for
large-scale finite element models. As a result, a furthanatoh of the computational cost is the next
objective. To this end, a significant improvement was to essisivity analysis to obtain the Jacobian
matrix as a by-product of the time integration of the curmaation. An automatic time step control,
which selects the most appropriate time step in view of threecti dynamics, will also be considered
to speed up the computations.
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