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ABSTRACT

The tuned mass damper (TMD) is a simple and efficient device, but it is only effective when it is precisely tuned
to the frequency of a vibration mode. Because nonlinear vibrating structures have resonant frequencies that vary
with the amount of total energy in the system, the efficiency of a TMD is questionable in this case. In the present
study, the performance of an essentially nonlinear attachment, termed a nonlinear energy sink (NES), is assessed.
It is shown that, unlike the TMD, an NES has no preferential resonant frequency, which makes it a good candidate
for vibration mitigation of nonlinear vibrating structures.

1 INTRODUCTION

The study dedicated to the dynamics of a linear oscillator (LO) coupled to a nonlinear energy sink (NES) has already been
extensively treated in the literature [1−10]. The results emanating from these studies have put forward two remarkable properties
that characterize the NES : (i) it has no preferential resonant frequency, which enables it to engage in resonance with any mode
of the system, irrespective of the frequency range, (ii) Targeted Energy Transfer (TET) from a primary structure to an attached
NES can be achieved through either single resonance captures, or resonance capture cascades.

However, even if from a theoretical viewpoint, the new dynamics created is of high interest, the question about the utility of using
an NES to damp out vibrations of a LO, can be raised. Indeed, a LO possesses only one invariant resonant frequency and linear
theories developed by Frahm [11] and Den Hartog [12] have clearly defined how to design an optimal linear dynamical vibration
absorber (also called Tuned Mass Damper (TMD)) to damp out the vibrations submitted to such a primary structure. Moreover,
the use of these design processes has shown that very good results can be reached whatever the criteria (performance or
robustness) considered for the optimization scheme. According to these observations, an NES is certainly meaningful in the
case of a MDOF primary structure or in the case of a SDOF structure submitted to mistuning.

Throughout this work, we consider a nonlinear SDOF primary system and in particular the Duffing oscillator. This system
possesses a frequency-amplitude dependence that prevents us from using a TMD to damp out vibrations. Indeed, in this case
the resonant frequency varies with the amplitude of excitation. The property of no preferential resonant frequency of the NES
seems to make this device very well suited to damp vibrations on Duffing oscillators, whatever the amplitude of excitation. The
resulting 2DOF system is depicted in Figure 1.

Even if the dynamics related to the introduction of an NES on a nonlinear primary structure has never been addressed from a
general viewpoint, it has already been introduced on some nonlinear primary structures on which, self-sustained vibrations take
place. As examples, one can note the LCOs that appear on an airplane wing [13] or on the drill-string system [14] submitted to



the flutter phenomena or a particular friction law, respectively. The results in both applications are very good and promising in
perspective of the general study.
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Figure 1: The 2DOF strongly nonlinear system.

In this study, the dynamics of the free conservative system will be addressed as it gives very good insight into the fundamental
nonlinear mechanism occurring in the 2DOF system. The mechanisms of energy dissipation occurring in the impulsively forced
and damped 2DOF system are assessed through the use of parametric studies as well as time and frequency analyzes. Fi-
nally, the harmonically forced dissipative configuration of the 2DOF system is investigated. In particular, the use of Nonlinear
Frequency Response Functions (NL-FRFs) is shown to be very useful to characterize the nonlinear dynamics of the system,
experimentally.

2 FREE RESPONSE OF THE CONSERVATIVE SYSTEM : FEP COMPUTATION

Before analyzing the nonlinear energy pumping phenomena that occurs in the damped system (Figure 1), it is necessary to
first examine the structure of the periodic orbits of the underlying undamped system (with c1 = c2 = 0). Indeed, this seemingly
simple system possesses a very complicated structure of periodic orbits, some of which are responsible for energy pumping
phenomena in the impulsively forced and damped system. The corresponding equations of motion are given by :

{

m1ẍ1 + k1x1 + knl1x3
1 + knl2(x1 − x2)

3 = 0,
m2ẍ2 + knl2(x2 − x1)

3 = 0.
(1)

with the following set of parameters :

Parameter Units Value Parameter Units Value
m1 [kg] 1 m2 [kg] 0.05
knl1 [N/m3] 0.5 knl2 [N/m3] 1
k1 [N/m] 1

TABLE 1: Parameters values.

As mentioned in the introduction, nonlinear dynamical systems present a frequency-amplitude dependence. Therefore, the
dynamics is highly influenced by the amplitude of the excitation imposed as well as by the order of magnitude of the nonlinear
character of the system. Moreover, another key feature of nonlinear systems lies in the possibility to get several solutions,
namely, periodic orbits, for a given level of energy injected in the system.

In order to get a good picture of the dynamics of the system, these two main properties of nonlinear systems have to be
considered. A very interesting tool, called Frequency-Energy Plot (FEP) (introduced for the first time in [9]), gathers all this
information on a single plot. In this section, only a basic description of the FEP concept is given and for further information, the
interested reader may refer to [5, 9, 10, 15].



2.1 The Frequency-Energy Plot (FEP)

The FEP gathers all the periodic orbits of the considered system computed using analytical or numerical methods. The horizontal
and vertical axis of this plot correspond to the amount of energy injected in the system and to the pulsation of the motion,
respectively. The plot itself is composed of several branches, each of them being a collection of periodic solutions with the same
characteristics. Without going into too many details, several key features of the FEP have to be described :

1. All the periodic orbits that characterize the system can be classified into two distinct families of solutions, the symmetric
and the unsymmetric ones, denoted by S and U , respectively. The symmetric solutions are defined as periodic orbits that
satisfy the condition x(t) = - x(t+ T

2
) with x corresponding to the state vector and T to the period of the motion, whereas

periodic orbits that do not satisfy this condition are classified as unsymmetric solutions. Moreover, a periodic orbit belongs
to a specific family of Nonlinear Normal Mode (NNM).

2. Two subscripts are added to the family category (S or U ). They indicate the two main frequency contribution in the motion
considered. More physically, in our 2DOF system (1), it describes how fast the DOFs are vibrating with respect to each
other. Moreover, if we have Smn or Umn, it can be shown that m and n correspond to the primary system and the NES,
respectively.

The FEP can be computed using analytical or numerical techniques. Both approaches have been addressed and the related
results are displayed in the coming sections.

2.2 Analytical Computation Methods

To analytically compute the FEP, the Harmonic Balance method [16] and the Complexification Averaging Technique [17] are
considered herein. Both methods are based on the assumption that the system motion can be approximated by means of
a finite Fourier series. However, the harmonic balance method is limited to the study of the steady-state behavior whereas
the complexification/averaging technique can also assess the transient dynamics of the motion. As the FEP determination only
requires the analysis of the steady-state behavior, both methods can be applied. In this paper, only the main results are described
(Figure 2) and the interested reader may refer to [18] for more details about the calculation process.
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Figure 2: FEP computed using analytical methods.

The computation process as well as the result depicted in Figure 2 lead to some major comments :

1. Because analytical solutions are available in a limited number of cases, numerical methods are often used to solve the
resulting system equations. The harmonic balance and complexification/averaging methods can therefore be viewed as



semi-analytical techniques.

2. The number of harmonics required in the approximation of the motion, to get a particular periodic orbit may vary according
to their importance in the considered motion. As an example, Figure 2 shows that the third harmonic is required to get the
S15 tongue (1:5 internal resonance).

3. Finally, seemingly to the methods based on series theories, the more components (namely, the harmonics) in the approx-
imation the closer to the exact solution.

2.3 Numerical Computation Methods

The accuracy of the results obtained using analytical methods depends on the quality of the approximation of motion. This limi-
tation can be avoided by considering specific numerical methods for the NNM computation such as the shooting or continuation
methods. Indeed, these methods are dealing with the state space equations of the system that correspond to the exact formula-
tion of the problem. The aim of this paper does not consist in going into the details of these methods and for further information
on the subject, the interested reader may refer to [18−20]. However, it is worth being mentioned that the FEP computation has
been achieved using the well known pseudo-arclength continuation method, based on a predictor and corrector step.

The continuation method is carried out in the continuation space (i.e. the ICs that lead to periodic motions) whereas the compu-
tation of the FEP is related to the frequency-energy space. Therefore, a post-processing of the continuation results is required
to compute the energy. Knowing that the phase condition (in the continuation process) is such that velocities are zero for t = 0,
this means that amplitudes at both DOF are maximum. Moreover, as the system is conservative, the total energy in the system
consists in the potential energy stored in the stiffnesses at t = 0 :

Energy =
(x1(0))

2

2
+ 0.5

(x1(0))
4

4
+

(x1(0) − x2(0))
4

4
(2)

and the Frequency-Energy Plot (FEP) corresponding to this system is depicted in Figure 3. It is composed of two backbones
(S11+ and S11

−
) corresponding to in phase and out-of-phase 1 : 1 fundamental resonance motion, respectively. Moreover, the-

oretically, an infinite countable number of tongues, corresponding to internal resonances, are emanating from these backbones.
Herein, only some subharmonic (S13,S15,S17,S19) and superharmonic (U21,S31) tongues are illustrated.
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Figure 3: FEP of the 2DOF strongly nonlinear system.



2.4 Characterization of the FEP

Some of the branches can be analyzed to give a basic idea on how the NNMs evolve along a backbone or a tongue. To this end,
the representation of the motion at both DOFs is illustrated in the configuration space, over one period (insets in the Figures).
The vertical and horizontal axis correspond to the motion at the linear and nonlinear oscillators respectively. Moreover, the scale
at both axis is the same so that it can be directly deduced where the motion is localized.
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Figure 4: Families of NNM motions.



Figures 4 (a to e) give a better understanding on the different type of NNM motions that take place in different frequency-energy
domains and some major comments can be formulated :

• On S11
−

(Figure 4 a), stable solutions become localized to the linear or nonlinear oscillator as ω → 1+ or ω >>>,
respectively.

• On S11+ (Figure 4 b), at low energy level, the motion is localized in the nonlinear oscillator until we reach an unstable
region whereas at higher energy level, the motion tends toward infinity in a stable fashion.

• For S13 and S31 branch , (Figure 4 c and d) the third harmonic plays a major part in the nonlinear oscillator or in the linear
one, respectively. Moreover, unlike the S13 tongue, branch S31 is characterized by a asymptotical behavior for an energy
level that tends toward infinity.

• Figure 4(e) represents a family of unsymmetrical NNM motion. In this case, the shape in the configuration phase consists
in a closed loop. Moreover, the impulsive orbit (defined in the next paragraph) is characterized, as expected, by a vertical
slope at the origin of the configuration plane.

Locus of Impulsive Orbits

Some periodic orbits of the families of NNMs are of particular importance in the experimental study of the energy transfer
occuring in nonlinear systems. These orbits satisfy the initial condition : x1 = x2 = ẋ2 = 0 and ẋ1 6= 0 that correspond to the
state of the undamped system (being initially at rest) after the application of an impulse on the first DOF. It has been highlighted
in [21] that the impulsive excitation of one of the stable impulsive orbits is one of the triggering mechanisms initiating (direct)
passive energy pumping. Finally, it can be mentioned that in the configuration space, these orbits always pass through the origin
with a vertical slope (an example is given in Figure 4(e)). Figure 5 represents the position of some impulsive orbits (red circles)
as well as an estimate of the locus of all the existing impulsive orbits (black dotted line).
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Figure 5: Locus of special orbits.

3 MECHANISMS OF ENERGY DISSIPATION IN THE FREE DISSIPATIVE SYSTEM

This section aims to study the mechanisms of energy dissipation occurring in the system depicted in Figure 1 and submitted to
impulsive excitation condition at the first DOF. To this end, 3D plots of energy dissipated by the NES versus the nonlinear stiffness
of the primary system (knl1 ) and the impulse (ẋ1) are computed. These plots can be seen as pictures of the performance and
robustness of the NES with respect to mistuning in the primary system or varying excitation conditions. The energy dissipated



by the absorber can be worked out as follows :

Edissip(t) =
Eabs

dissip(t)

Einjected(t)
≡

c2

t
∫

0

(ẋ1 − ẋ2)
2dτ

tmax
∫

0

p(τ )ẏ(τ )dτ

=

c2

t
∫

0

(ẋ1 − ẋ2)
2dτ

1
2
m1ẋ2

1(0)
(3)

The corresponding 3D plot is depicted in Figure 6(a). It can be noticed the presence of some ridges of high energy dissipation
levels. To get a better insight into the borders of these ridges, the projection (of the energy dissipated) in the plane (knl1 ,ẋ1) is
carried out and five distinct regions are identified (Figure 6(b)). Moreover, if some points in this plane were considered and the
corresponding FEP computed, it could be highlighted that only the positions of the superharmonic tongues are fluctuating a lot
whereas the subharmonic tongues and the backbone S11

−
keep similar. This feature seems to explain that the regions of high

energy dissipation are characterized by superharmonic motions. For further details on the subject, the interested reader may
refer to [18]. In this paper, the focus is set on the time and frequency analyzes of the motions taking place in the aforementioned
regions.
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Figure 6: (a)3D plot of the energy dissipated by the NES / (b) Projection of the 3D plot.

3.1 Analysis of Numerical Simulations

This paragraph is concerned with the time and frequency analyzes of the motions occurring in the different areas identified in
Figure 6(a).

3.1.1 ANALYSIS OF THE FIRST AREA

This area of high interest corresponds to the region where the best level of energy dissipated by the NES is observed (±95%).
To this end, the analyzes are performed for a particular system configuration (knl1 = 9N/m3 and ẋ1(0) = 0.13m/s). However,
it can be shown that the behavior is the same for the remaining configurations of the area. The related results are depicted in
Figure 7.

The time evolution of the motion (Figure (a)) shows a relatively fast damping process. Indeed, after 300 seconds both amplitudes
are drastically reduced. Moreover, the total amount of energy dissipated by the absorber (Figure (d)) is a very good 93% of the
energy injected in the system. The reason for such a good energy dissipation lies in the excitation of a particular special orbit
that belongs to families of unsymmetrical NNMs such as Uk,k+1 with k = 1, 2, ... as explained is [5, 9, 10, 15, 21]. Indeed, these
orbits create the nonlinear beating phenomenon that is the triggering mechanism for the occurrence of targeted energy transfer
from the primary structure to the NES. In the present application, the impulsive orbit belongs to branch U54 (Figure (f)) and the
nonlinear beating phenomenon is clearly highlighted in Figure c where strong energy exchanges between both DOFs take place
during the first 50 seconds. Then the NES engages in a 1 : 1 fundamental resonance (between 75 and 160 seconds) with the



primary system (on S11+ in Figure (f)). During this phase, the amplitude of the NES is larger than the one of the primary system;
this indicates that energy pumping takes place from the primary mass to the NES. As energy decreases, the motion transits for
very short periods from S11+ to S13, S15,... (Figures e-f).
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Figure 7: Dynamical analysis of a given configuration for the 2-DOF system corresponding to the first area (Figure 6(a)).



3.1.2 ANALYSIS OF THE OTHER AREAS

Note that in [18] a complete analysis has been carried out for all the ridges. Herein, as all these analyzes are very similar, only
the final results are put forward. Because the characterization of ridges 4 and 5 is very difficult due to their high sensitivity
to small pertubations, they are not analyzed into details. However, it can be proved that for ridges 2 and 3, 3 : 1 and 2 : 1
superharmonic motions (S31 and U21 respectively) are taking place during the beginning of the motion. Then, both are followed
by 1 : 1 fundamental resonance capture (S11+). Figures 8 (a) and (b) clearly highlight this feature using the superposition of the
wavelet transform results and the FEP of the considered system.
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Figure 8: [(a)/(b)] frequency analyzes for the second and third area (Figure 6), respectively.

These results put forward the importance of the superharmonic motions in the mechanisms of energy dissipation whereas the
subharmonic motions are not so involved. This feature consists in a major difference with the mechanisms of energy dissipation
taking place in a system composed of a LO coupled to an NES (in [9]) where subharmonic motions frequently occur.

3.2 Effects created by the Variation of the NES Components

The previous section has shown the presence of regions with high energy dissipation levels. It is worth being known how these
regions evolve with changing values of the NES components. To this end, 3D plots of energy dissipation are computed with the
initial set of parameters (Table 2) and only one varying NES parameter.

3.2.1 INFLUENCE OF THE NONLINEAR STIFFNESS KNL2

The projections illustrated in Figure 9 highlight that a lower nonlinear stiffness value leads to the spreading of the first region
(NL beating) over the expertise plane whereas an increase leads to the extension of the second region (S31 motion) and the
narrowing of the first area. It can be concluded that an increase (decrease) of the nonlinear character of the NES induces
the presence of nonlinear effects at lower (upper) excitation levels (consequently, a transfer of the areas toward lower (upper)
excitation levels). It can be noted that this observation may be confirmed by the study of the localization of the related FEPs. For
further details, the interested reader may refer to [18].
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Figure 9: Influence of a varying value of the NES nonlinear stiffness on the energy dissipated in the absorber.

3.2.2 INFLUENCE OF THE DAMPING COEFFICIENT C2

The projections illustrated in Figure 10 highlight that taking into account a higher value of damping create the same dynamical
phenomena as for the initial system but for higher excitation levels. This can be understood as the damping kills the nonlinear
effects that will only appear later for stronger excitations. Moreover, in addition to this statement, it can be noted a smoothening
of the 3D surface of energy dissipation. It can be concluded that an increase (decrease) of the damping coefficient induces the
transfer of the areas toward higher (lower) excitation levels.
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Figure 10: Influence of a varying value of the NES damping coefficient on the energy dissipated in the absorber.

4 TOWARD AN EXPERIMENTAL COMPUTATION OF THE FEP

In section 2, it has been shown how to compute the FEP using analytical or numerical approaches. However, it would be relevant
to establish whether it is possible to retrieve it experimentally. To this end, the system under the scope is depicted in Figure 1
with a harmonic forcing applied on the first DOF and assuming a low damping level. The corresponding equations of motion are
established in expressions 4 and the set of parameters considered in the study is referred in Table 2.

{

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + knl1x3
1 + knl2(x1 − x2)

3 = F cos ωt,
m2ẍ2 + c2ẋ2 + knl2(x2 − x1)

3 = 0.
(4)

Parameter Units Value Parameter Units Value
m1 [kg] 1 m2 [kg] 0.05
knl1 [N/m3] 0.5 knl2 [N/m3] 1
c1 [Ns/m] 0.002 c2 [Ns/m] 0.002
k1 [N/m] 1

TABLE 2: Parameters numerical value.

The objective lies in the determination of the nonlinear frequency response functions (NL-FRFs) of the system over a particular
frequency range for a given external force level. The idea consists in showing the existing link between the branches of the FEP
computed for the free conservative system and the peaks of the NL-FRFs of the nonconservative periodically forced system.
Indeed, in this case, it will be proved that, first, the resonance occurs in the neighborhood of the corresponding NNM and second,
the FEP can be experimentally retrieved. To this end, the continuation method developed for the free response case is adapted
to the forced response case as the phase is not trivial anymore (for further details cf [18, 22−24]).

4.1 NL-FRF Computation

As the forced continuation process takes place in the continuation space (x0p, T ), a post-processing step (time integration over
one period) of the results is required to extract all the couples (ω,|x1(t)|max) and (ω,|x2(t)|max) that compose the NL-FRFs at the
first and second DOF, respectively. The frequency-energy dependence property is highlighted by holding on a series of NL-FRFs
corresponding to different external force levels F (Figure 11 depicts the NL-FRFs at the first DOF). For further details about the
computation as well as a complete characterization of this kind of plot, the interested reader may refer to [18].
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Figure 11: NL-FRFs at the first DOF.

4.2 FEP Computation using the NL-FRFs

The path-following technique applied to the free conservative system is characterized by a particular phase condition that im-
poses the initial velocities at both oscillators to be zero. Consequently, the initial displacements computed are maximum. More-
over, in the present chapter, several NL-FRFs have been worked out for given force (energy) levels. Each one of these NL-FRFs
possesses several peaks corresponding to relative maximum displacements at one oscillator. Therefore, for a given oscillator,
it is meaningful to compare, on one hand, the continuation branch of its displacements in the free conservative case and on
the other hand, the locus formed by all the maximum points (the peaks) of the NL-FRFs in the forced dissipative case. In this
chapter, only the 1 : 1 fundamental resonance (S11

−
and S11+) is studied. The pulsation corresponding to the peak of the

NL-FRFs is easily determined whereas the related energy contained in the system (potential and kinetic) has to be worked out
using the following relation :

Energy(t) = k1
x2

1(t)

2
+ knl1

x4
1(t)

4
+ knl2

(x1(t) − x2(t))
4

4
+ m1

ẋ2
1(t)

2
+ m2

ẋ2
2(t)

2
(5)

Then, considering a given force level F, the link between the related NL-FRFs and the FEP can be established (Figure 12).
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Figure 12: Link between the NL-FRFs and the FEP for a given force level F.



Now, extending this process to the whole range of NL-FRFs computed in Figure 11, both backbones (S11
−

and S11+) can be
retrieved (Figure 13).
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Figure 13: FEP experimentally retrieved.

Finally, it can be concluded that the FEP numerically computed for the free conservative system can also be experimentally
computed. This also confirms that, seemingly to the linear case, the resonance occurs in the neighborhood of the related NNM.

5 CONCLUSION

The objective of this work was to study the dynamics created by the association of an NES to a nonlinear primary structure.
To this end, the complicated dynamics related to the strongly nonlinear conservative 2DOF system has been analyzed and
compiled in a single plot, numerically computed and called the Frequency-Energy Plot (FEP). Then, the families of NNM motions
constituting the tongues of the FEP and representing the fundamental and internal resonances, have been fully characterized.
Indeed seemingly to linear systems, the resonance occurs in the neighborhood of the corresponding NNM. Once the FEP of
the system had been determined, parametric studies put forward the presence of different areas of high energy dissipation.
The mechanisms responsible for this good energy dissipation have been identified as (i) the nonlinear beating phenomena that
triggers energy pumping, (ii - iii) the superharmonic motions S31 and U21. The results related to the last performed parametric
studies have shown that provided the primary system is well defined (in terms of stiffness and excitation conditions) an NES can
be designed to ensure a given level of energy dissipation. Finally, it has also been shown that the FEP can be experimentally
retrieved.

The next objectives are mainly focused on three different subjects :

1. Parametric studies are interesting as they give reliable results, however, they require a high computational cost. Therefore,
currently, the development of a better suited methodology based on analytical concepts is investigated. The first results
are very promising and more efforts have to be dedicated to this research path.

2. So far, mechanical constraints are imposed to the NES only because of practical considerations. As an example, the mass
of the NES is always supposed to be lower than 5% of the primary mass. As it is well known that higher masses create
better dynamical behaviors, the purpose would be to suppress this structural constraint. An interesting alternative lies in
the use of the duality property existing between the motion equations of a mechanical system and those of an electrical
circuit, also called electromechanical transduction. This property has already been broadly studied for the realization of an
electrical Tuned Mass Damper. The concept consists in dissipating mechanical energy with piezoelectric material shunted
with passive electrical circuits [25−29]. In practice, these electrical devices consist in small patches and the drawbacks
linked to the practical realization of TMD have no more importance. Therefore, according to the aforementioned discussion,



it seems that the development of an electrical NES through the use of piezoelectric material shunted to passive electrical
circuits is meaningful and of great interest. Finally, it is worth being mentioned that the use of electrical component may
be a very helpful solution to create any kind of nonlinear stiffness law.

Acknowledgments

The authors R. Viguié and G. Kerschen would like to acknowledge the Belgian National Fund for Scientific Research (FRIA &
FNRS fellowships) for its financial support.

REFERENCES

[1] Gendelman, O. V. , Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators,
Nonlinear dynamics, Vol. 25, pp. 237–253, 2001.

[2] Gendelman, O. V., Manevitch, L. I., Vakakis, A. F. and McCloskey, R. , Energy pumping in nonlinear mechanical oscilla-
tors: Part I - Dynamics of the underlying Hamiltonian systems, Journal of Applied Machanics, Vol. 68, pp. 34–41, January
2001.

[3] Vakakis, A. F. and Gendelman, O. V. , Energy pumping in nonlinear mechanical oscillators: Part II - Resonance capture,
Journal of Sound and Vibration, Vol. 68, pp. 42–48, January 2001.

[4] Vakakis, A. F. , Inducing passive nonlinear energy sinks in vibrating systems, Journal of Vibration and Acoustics, Vol. 123,
pp. 324–332, 2001.

[5] Kerschen, G., Vakakis, A. F., Lee, Y. S., McFarland, D. M., Ko wtko, J. J. and Bergman, L. A. , Energy transfers in a
system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits, Nonlinear
Dynamics, Vol. 42, pp. 289–303, 2005.

[6] McFarland, D. M., Bergman, L. A. and Vakakis, A. F. , Experimental study of nonlinear energy pumping occurring at a
single fast frequency, International Journal of Non-Linear Mechanics, Vol. 40, pp. 891–899, 2005.

[7] Kerschen, G., McFarland, D. M., Kowtko, J. J., Lee, Y. S., Ber gman, L. A. and Vakakis, A. F. , Experimental demonstra-
tion of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity, Journal of
Sound and Vibration, Vol. 299, No. 4-5, pp. 822–838, February 2007.

[8] Gendelman, O. V., Gorlov, D. V., Manevitch, L. I. and Musienko, A. I. , Dynamics of coupled linear and essentially
nonlinear oscillators with substantially different masses, Journal of Sound an Vibration, Vol. 286, pp. 1–19, 2005.

[9] Lee, Y. S., Kerschen, G., Vakakis, A. F., Panagopoulos, P. N. , Bergman, L. A. and McFarland, D. M. , Complicated
dynamics of a linear oscillator with a light, essentially nonlinear attachment, Physica D, Vol. 204, pp. 41–69, 2005.

[10] Kerschen, G., Lee, Y. S., Vakakis, A. F., McFarland, D. M. and Bergman, L. A. , Irreversible passive energy transfer in
coupled oscillators with essential nonlinearity, SIAM Journal of Applied Mathematics, Vol. 66, No. 2, pp. 648–679, January
2006.

[11] Frahm, H. , A Device for Damping Vibrations of Bodies, US Patent 989958, 1911.

[12] Den Hartog, J. P. , Mechanical Vibrations, Dover Books on Engineering, 4th edn., 1985.

[13] Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M. and Kerschen, G. , Suppression of Aeroelastic Instability by
Means of Broadband Passive Targeted Energy Transfers, Part I : Theory, AIAA Journal, Vol. 45, No. 3, pp. 693–711, March
2007.

[14] Viguié, R., Kerschen, G., Golinval, J.-C., McFarland, D. M. , Bergman, L. A. and van de Wouw, N. , Using passive
nonlinear targeted energy transfer to stabilize drill-string system, Mechanical Systems and Signal Processing (in press),
2007.

[15] McFarland, D. M., Kerschen, G., Kowtko, J. J., Lee, Y. S., Ber gman, L. A. and Vakakis, A. F. , Experimental investigation
of targeted energy transfers in strongly and nonlinearly coupled oscillators, Journal Acoustical Society of America, Vol. 118,
No. 2, pp. 791–799, August 2005.



[16] Nayfeh, A. H. and Mook, D. T. , Nonlinear Oscillations, Wiley-Interscience, New-York, 1995.

[17] Manevitch, L. I. , Complex representation of dynamics of coupled oscillators, Mathematical Models of Nonlinear Excitations,
Transfer Dynamics and Control in condensed Systems, Kluwer Academic/Plenum Publishers, pp. 269–300, 1999.

[18] Viguié, R. , Passive Virbation Mitigation in Mechanical Systems using Nonlinear Energy Sinks, Master’s thesis, University
of Liege, September 2007.

[19] Seydel, R. , Practical Bifurcation and Stbility Analysis From Equilibrium to Chaos., Springer-Verlag, 2nd edn., 1994.

[20] Peeters, M., Viguié, R., Sérandour, G., Kerschen, G. and Golinval, J.-C. , Nonlinear Normal Modes, Part 2 : Practical
Computation using Numerical Continuation Techniques, MSSP (in review), 2007.

[21] Kerschen, G., McFarland, D. M., Kowtko, J. J., Lee, Y. S., Ber gman, L. A. and Vakakis, A. F. , Impulsive periodic and
quasi-periodic orbits of coupled oscillators with essential stiffness nonlinearity, Communication in Nonlinear Science and
Numerical Simulation (in press).

[22] Padmanabhan, C. and Singh, R. , Analysis of periodically excited non-linear systems by a parametric continuation tech-
nique, Journal of Sound and Vibration, Vol. 184, No. 1, pp. 35–58(24), 1995.

[23] Sundararajan, P. and Noah, S. T. , Dynamics of forced nonlinear systems using shooting/arc-length continuation method -
Application to rotor systems, Journal of Vibration and Acoustics, Vol. 119, No. 1, pp. 9–20(19), January 1997.

[24] Sundararajan, P. and Noah, S. T. , An algorithm for response and stability of large order non-linear systems - Application
to rotor systems, Journal of Sound and Vibration, Vol. 214, No. 4, pp. 695–723(29), July 1998.

[25] Hagood, N. W. and von Flotow, A. , Damping of structural vibrations with piezoelectric materials and passive electrical
networks, Journal of Sound and Vibration, Vol. 146, No. 2, pp. 243–268, April 1991.

[26] Preumont, A. , Vibration Control of Active Structures : An introduction, Kluwer Academic Publishers, 1997.

[27] J. Ducarne, J., Thomas and Deü, J. F. , Optimisation de dispositifs passifs dŠatténuation de vibration par shunt piézoélec-
trique, Colloque national en calcul de structure, Giens, 2007.

[28] Fleming, A. J. , Synthesis and implementation of sensor-less shunt controllers for piezoelectric and electromagnetic vibra-
tion control, Ph.D. thesis, School of Electrical Engineering and Computer Science, The University of Newcastle Callaghan,
Australia, February 2004.

[29] Livet, S., Berthillier, M., Collet, M. and Cote, J. , Numerical and experimental optimized shunted piezoelectric circuit for
turbomachinery blades, 12th IFToMM World Congress, Besançon, June 18-21 2007.


