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Abstract—The paper introduces a new method to early identify
the critical machine cluster (CMC) after a transient disturbance.
For transient stability assessment with methods based on the
equal area criterion it is necessary to split the generators into
a group of critical and non-critical machines. The generators
in the CMC are those likely to lose synchronism. The early
and reliable identification of the CMC is crucial and one of the
major challenges. The proposed new approach is based on the
assessment of the rotor dynamics between two machines and the
evaluation of their coupling strength. A novel coupling coefficient
is derived and a cluster identification algorithm is developed. The
algorithm determines the CMC based on the impact of the fault
on the derived coupling coefficient of individual generator pairs.
The results from two cases are presented and discussed, where
the CMC is successfully determined just after fault clearance.

I. INTRODUCTION

STABLE and secure supply of electric energy is a funda-
mental requirement of modern society. In order to ensure

operation of the power system within stability and security
limits, the system operator is dependent on tools and methods,
which provide situational awareness. Analysis that determine
if a system can remain within the stability & security bound-
aries for a given set of credible contingencies are referred to as
dynamic security assessment (DSA) [1]. An efficient transient
stability assessment (TSA) method is an important part of a
DSA toolbox. In order to reach real-time performance in TSA,
approaches using so-called direct methods are appealing. A
large number of these methods are either using the transient
energy function, such as the BCU method [2], or the equal
area criterion (EAC), such as the EEAC method [3] and the
SIME method [4]. The mentioned methods employing the
EAC are requiring that the generators in the system are split
into a group of critical generators also called critical machine
cluster (CMC), which is the group likely to lose synchronism,
and a group of non-critical generators. This stems from the
assumption that no matter how complex a system is the
transient stability problem arises from the separation of two
generator groups [4]. An early and reliable identification of
the CMC is crucial to enable correct stability assessment.

In [4] it is proposed to extrapolate the individual rotor angle
trajectories using a set of measurements and e.g. Taylor series
expansion. The extrapolations are used to predict the individual
rotor angles some time ahead. The predicted rotor angles are
sorted descending and the gaps between entries are assessed.
The generators are split into the critical and the non-critical
group according to the maximum angular gap. [5] proposes
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Fig. 1. Thévenin and Norton equivalents of generator
an index for grouping the generators, which is called angle
increment. It is a measure of the relative rotor angle change of
an individual generator since fault clearance and with respect
to the average change of the rotor angles of all generators.

In this paper a new method is proposed to identify the
CMC, which utilizes efficient algorithms from graph theory.
For that purpose, a novel coupling coefficient is derived, which
represents the coupling strength between pairs of generators.
The rest of the paper is structured as follows. In Sec. II the
model used for the computation of the clustering coefficient as
well as the EAC are briefly described. This is followed by the
derivation of the one-machine equivalent (OME) of pairs of
machines and the coupling strength coefficient. In Sec. III the
cluster identification algorithm is introduced. Afterwards, in
Sec. IV the results from test cases are presented and discussed.
Finally, in Sec. V some concluding remarks are offered.

II. DERIVATION OF COUPLING COEFFICIENTS

A. Modelling for coupling analysis

In order to derive the coupling coefficients, the synchronous
generators are represented by the so-called “classical” transient
stability model [6]. Each generator is represented by its
Thévenin equivalent and correspondingly by an e.m.f. E′ of
constant magnitude behind the transient reactance X ′d (see
Fig. 1a). This simple generator model is only valid for a very
short time period, due to e.g. fast automatic voltage regulators.
Therefore, the model is fitted to the current operating point
using the latest measurements or simulation data. When the
complex voltage V̄ and the complex current injection Ī at the
machine terminal are known, the e.m.f. can be computed.

Ē′ = E′ 6 δ = V̄ + jX ′dĪ (1)

where δ corresponds to the rotor angle of the machine.
When each generator is represented by its Norton equivalent
(see Fig. 1b) and, hence, by a current source Ē′/jX ′d in
parallel with the admittance corresponding to X ′d, then the
algebraic network equations describe the relation between the
bus voltages, current injections and network admittances.

Ī = Y V̄ (2)

Here, Ī corresponds to the vector of the complex current
injections at the generator buses, V̄ to the vector of complex



bus voltages and Y to the “augmented” admittance matrix,
which is obtained by adding the admittances corresponding
to the transient reactances of the generators and loads to the
original admittance matrix.

In order to compute the power injection of a generator
as a function of the e.m.f.s of the remaining generators, the
augmented admittance matrix Y needs to be extended to the
internal nodes of the generators, which correspond to fictive
nodes behind the respective X ′d. Then the resulting extended
admittance matrix Yex will be reduced to the internal nodes.

Yex =

(
Y Ybg
Y T
bg Ygg

)
(3)

Ybg corresponds to the matrix representing the connection
of the machine internal nodes to the respective machine
terminal buses and Y T

bg is its transpose. Ygg corresponds to
the square admittance matrix of order m, where m is the
number of generators and which holds the admittances to
the corresponding X ′d on its diagonal. This extended and
augmented admittance matrix allows computing the current
injections Ītr into the internal nodes as follows.(

0
Ītr

)
=

(
Y Ybg
Y T
bg Ygg

)(
V̄
Ē′

)
(4)

where Ē′ corresponds to a vector of the e.m.f.s. Here, the
generators are again represented by their Thévenin equivalent.

In order to reduce the matrix to the internal nodes and
eliminate all nodes, where no current injection takes place, a
Kron reduction is carried out, which results in a reduced matrix
Yred and the algebraic equations of the reduced network.

Ītr = YredĒ
′ (5)

With (5) the apparent power injection S̄ into the internal node
of each machine can be computed as:

S̄ = Ē′Ī∗tr (6)

where Ī∗tr represents the vector of the complex conjugate of the
current injections into the internal nodes. Following, the active
power injection Pe,k of generator k can then be computed as
a function of the e.m.f.s of the remaining generators.

Pe,k =
∑m
l=1E

′
kE
′
lYk,l cos(δk − δl − θk,l) (7)

with θk,l and Yk,l being the angle and the magnitude of
the admittance [Yred]k,l = Yk,l 6 θk,l. Under consideration of
the “classical” model, the dynamics of the k-th machine are
governed by the swing equation [6].

δ̇k = ωk (8)

ω̇k = δ̈k = ω0

Mk
(Pm,k − Pe,k) (9)

where ω0 corresponds to the synchronous speed, Mk is the
inertia coefficient and Pm,k is the mechanical power.

B. Equal area criterion

The equal area criterion (EAC) allows determining transient
stability of a one-machine infinite bus system (OMIB) without
carrying out time-domain simulation. Therefore, a number
of simplifications and assumptions are considered. The syn-
chronous machine is represented by its Thévenin equivalent
and the mechanical power is assumed to be constant. Further-
more, the machine’s damping is neglected and the loads are
represented by constant impedances. Under these assumptions,
for a OMIB (9) can be rearranged as follows [6]:[

dδ
dt

]2
=
∫

2
M (Pm − Pe(δ)) dδ (10)

If a function for the active electric power Pe(δ) is known, a
stability margin can be computed as shown below.

η = −
∫ δu

δc

[Pm−Pe,P (δ)] dδ−
∫ δc

δ0

[Pm−Pe,D(δ)] dδ (11)

The subscripts D and P denote conditions during and after
fault clearance respectively. δc is the rotor angle at fault
clearance and δu the angle at the unstable equilibrium point. A
positive margin represents a stable case, a negative an unstable.

C. Formulation of a one-machine equivalent (OME)

The proposed aggregation is similar to the one used in
[7], where a OMIB equivalent of two aggregated groups of
machines is computed. However, here the aim was to assess
the dynamics of pairs of machines. For that purpose, a relative
rotor angle φij for each pair is determined as the difference
of the rotor angles of generator i and j.

φij = δi − δj (12)

Similarly, the relative speed ωij and acceleration φ̈ij can be
computed.

φ̇ij = ωij = ωi − ωj = δ̇i − δ̇j
φ̈ij = ω̇i − ω̇j = δ̈i − δ̈j

(13)

With (9) the relative acceleration may be rewritten as follows:

φ̈ij = ω0

Mi
(Pm,i − Pe,i) − ω0

Mj
(Pm,j − Pe,j) (14)

As in [7] the inertia coefficient of the OME is computed as:

Mij = MiMj/MT with MT = Mi +Mj (15)

Following, the dynamics of the OME of a pair of machines
can be described by a new swing equation.

φ̈ij = ω0

Mij
(Pm,ij − Pe,ij) (16)

where
Pm,ij = M−1T (MjPm,i −MiPm,j) (17)

Pe,ij = M−1T (MjPe,i −MiPe,j) (18)

Under the assumption that the mechanical power of both
generators remains constant, the relative acceleration of the
OME is dependent on the electric power of the individual
machines. It can be shown that (18) can be reformulated as:

Pe,ij(φij) = Pc,ij + Pmax,ij sin(φij − νij) (19)



where

Pc,ij = 1
MT

[
MjE

′
i
2
Yiicos(θii) −MiE

′
j
2
Yjjcos(θjj)

]
Pmax,ij =

√
D2
ij + C2

ij and νij = − tan−1
Cij

Dij

(20)

with

Cij = 1
MT

[Mj

∑m
k=1E

′
iE
′
kYik cos(δj − δk − θik)

−Mi

∑m
k=1E

′
jE
′
kYjk cos(δi − δk − θjk)

]
Dij = − 1

MT
[Mj

∑m
k=1E

′
iE
′
kYik sin(δj − δk − θik)

+Mi

∑m
k=1E

′
jE
′
kYjk sin(δi − δk − θjk)

] (21)

With (19) the swing equation of the OME can be expressed
as follows, which allows computation of the EAC.

φ̈ij =
ω0

Mij
[Pm,ij − (Pc,ij + Pmax,ij sin(φij − νij))] (22)

D. Coupling coefficients

In this analysis the coupling strength between two genera-
tors is defined as the available excess dissipation energy and,
hence, it can be computed as the difference between available
dissipation energy after fault clearance and kinetic energy
gained during the fault. In order to determine the coupling
coefficient, (10) can be reformulated as follows.

1
2
Mij

ω0
φ̇2ij =

∫
Pa,ijdφij (23)

where φ̇ij = ωij and Pa,ij with (17) & (19) is described as:

Pa,ij = Pm,ij − [Pc,ij + Pmax,ij sin(φij − νij)] (24)

Under consideration of the EAC, in (23) the left-side term
represents the kinetic energy Ekin,ij and the right-side the
dissipation energy Edis,ij , which corresponds to the maximum
kinetic energy that the OME can absorb. The OME is stable, if
the available Edis,ij is greater or equal to Ekin,ij induced by
the fault. Therefore, it is proposed that the coupling strength
is approximated by the coupling coefficient cij .

cij = Edis,ij − Ekin,ij (25)

where

Edis,ij = −
∫ φu,ij

φc,ij
Pm,ij − Pe,ij(φij)dφij

Ekin,ij = 1
2
Mij

ω0
ω2
ij

(26)

The proposed coupling strength cij is negative, when the
coupling is very weak and the two machines are likely to
lose synchronism, and it is positive, when there is strong
coupling, which makes it likely that the two machines remain
in synchronism. By computing the coupling strength between
each pair of machines a coupling matrix H can be constructed.

E. Impact of fault on coupling strength

The coupling matrix H can be computed for steady state
and dynamic system conditions. In steady state the relative
speed between the generators is equal to zero and, hence, the
coupling coefficients are solely determined by the available
dissipation energy. In order to determine the CMC after the
occurrence and the clearance of a fault, the change in coupling
strength due to the fault was found to be essential. Therefore,
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Fig. 2. Block diagram of the critical cluster identification algorithm.

it is proposed to use ∆H, which is the difference in coupling
strength between post- and pre-fault condition.

∆H = H(t+c ) − H◦ (27)

where H(t+c ) is the coupling matrix determined at the time
just after fault clearance t+c and H◦ is the coupling matrix
determined at steady state before the fault. By using the
difference in coupling strength, focus is set on changes,
structural as well as dynamic, due to the fault. If the coupling
between two generators is weakened in the post-fault condition
the corresponding entry in ∆H becomes negative, while a
strengthening of the coupling results in a positive value.

III. CRITICAL MACHINE CLUSTER IDENTIFICATION

In order to identify the CMC, an algorithm was developed.
A block diagram of the algorithm is shown in Fig. 2. In
this approach two snapshots, one of the pre- and one of
the post-fault system condition, are used to compute the
coupling matrices H◦ and H(t+c ). These matrices are then
used to compute the change in coupling strength between
individual generators due to the fault, which results in the
matrix ∆H. The entries of ∆H are copied into the vector
∆h, where the entries are sorted ascending. Moreover, an
adjacency matrix Adj is initialized with the same dimension
as ∆H and corresponding to a complete graph G, where each
node of G corresponds to a generator. In order to identify the
CMC, individual edges are removed one by one from G until
the graph is split. The edges are removed beginning with the
lowest change in coupling strength and according to the list
of increasing changes in ∆h. After each removal a depth-first
search (DFS) is carried out to check if G is still connected. If a
splitting of the graph occurred, a second DFS based algorithm
is executed to identify the created clusters. Since each node
of G corresponds to a generator in the system, a splitting of
the graph corresponds to a separation of the generators into
clusters and the proposed approach is designed to identify the
weakest coupled clusters.

IV. RESULTS FOR CMC IDENTIFICATION

A. Test system and scenario

The power system model, employed to test the presented
method, is the New England & New York system described
in [8]. It consists of 68 buses and 16 generators. The loads are
modelled as constant impedances and the generators are repre-
sented by a sixth order model in the time-domain simulation.
All generators have a simple excitation and voltage regulation
system as well as a thermal turbine/governor model. Moreover,
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Fig. 3. Coupling matrix computed by (25) in steady state initial conditions.

all generators, but GEN 7 and GEN 14, are equipped with
a power system stabilizer. The initial state of the system
was as well adopted from [8]. To test the proposed method
three-phase short circuits on individual transmission lines were
considered, which last for 250 ms and are cleared by opening
of the breakers at both ends of the respective transmission line.

B. Coupling strength at initial conditions

In the following the coupling strength matrix is computed
for the pre-fault steady state conditions with the equations
derived in Sec. II-D, the results are used to show the apparent
correlation of the proposed coupling coefficients and the
structure of the power system. The coupling matrix in the
initial conditions is shown in Fig. 3. The obtained coupling
coefficients of the generators are compared to each other rela-
tively, where greater values, e.g. above 25, indicate a stronger
coupling, while lower values, e.g. below 20, correspond to
a weaker coupling. Visual inspection of the graph allows
identifying patterns, which may indicate a stronger coupling
between certain generators. The coupling coefficients between
the generators GEN 1 & 13−16 may suggest a tight coupling.
In the one-line diagram, which can be found in e.g. [9], it can
be seen that the generators GEN 14 − 16 are close and well
connected. Moreover, generator GEN 1 is strongly connected
with two transmission lines to the area, which may explain
the strong coupling to this generator group. The generators
GEN 4−8 & 10−11 seem to be tightly coupled as well. The
coupling strength of generator GEN 12 appears to be relatively
high with respect to all generators but generator GEN 9. This
could indicate that generator GEN 12 has a large impact on all
generators, which may also be explained by its central location
in the system. GEN 9 appears to have weaker coupling to the
other generators. This may be explained by its remote location
and the few lines connecting it to the rest of the system.

C. Case 1: Transient stable

In this section an example case is shown, where a transient
disturbance occurs but does not lead to a loss of synchronism
of generators. The considered contingency is a three-phase
short circuit on the transmission line connecting bus 1 and 30.

1) Rotor angle response: The rotor angle response of a
selection of generators is shown in Fig. 4. The selection
contains the two generators GEN 10 & 11, which are strongest
effected by the fault, six generators (GEN 1, 4 & 6 − 9),
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Fig. 5. Case 1: ∆H computed by (27) at t+c .

which experience a less significant deviation in rotor angle,
and generator GEN 12, which is in the vicinity of the fault
but barely effected. Although the fault causes significant
oscillation of the rotor angles of generator GEN 10 & 11,
the system remains stable and returns to a new steady state.

2) Critical cluster identification: The matrix ∆H can be
displayed as a two-dimensional grid, where the matrix en-
tries and, consequently, the changes in coupling strength are
displayed by different colors. Figure 5 shows the changes in
coupling strength computed at t+c . The graph suggests that the
coupling strength between most generators was barely affected
by the fault. However, the coupling of GEN 10 & 11 to the
remaining generators appears to be weakened by the fault,
which is well aligned with the observations from Fig. 4.

When the proposed algorithm is employed, individual con-
nections of the graph corresponding to the values in ∆H are
removed beginning with the largest negative change. The re-
moving of the connections is done by setting the corresponding
entries in the adjacency matrix to zero. Figure 6 shows the
adjacency matrix at the instance when the proposed clustering
algorithm splits the graph into two. The proposed method
identifies by employing the DFS based algorithm presented in
Fig. 2 that GEN 10 & 11 are the generators with the weakest
coupling to the remaining system. This is well aligned with
the observations described in Sec. IV-C1.
D. Case 2: Transient unstable

In this section the performance of the method is presented
on a transient unstable case. The contingency is a three-phase
short circuit on the transmission line connecting bus 4 and 5.

1) Rotor angle response: The rotor angle responses of a
selection of generators are shown in Fig. 7. The selection
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Fig. 8. Case 2: ∆H computed by (27) at t+c .

contains the two generators GEN 2 & 3, which are losing
synchronism, the generators GEN 4, 6, 7 & 9, which are also
significantly impacted by the fault, and GEN 10 − 12, which
are initially less affected by the fault. The loss of generator
GEN 2 & 3 is leading to a considerable lag of power, which
leads to a system collapse. The rotor angles at t+c may suggest
that the generators initially splits into two clusters, where the
first consists of GEN 2 − 4, 6, 7 & 9 and the second of
GEN 10 − 12. Later the generators split into three groups
namely, GEN 2 & 3, GEN 4, 6, 7 & 9 and GEN 10 − 12.

2) Critical cluster identification: Figure 8 shows the change
in coupling strength. The visual inspection of the graph
allows identifying three machine clusters. The first cluster is
GEN 1 & 4 − 9, the second cluster is GEN 10 − 16 and the
third cluster is GEN 2 & 3. This is in good agreement with the
observations extracted from the rotor angles shown in Fig. 7.

The ∆H matrix is again forwarded to the cluster identifi-
cation algorithm, where the matrix is converted into a graph.
Figure 9 shows the adjacency matrix of the corresponding
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Fig. 9. Case 2: Adjacency matrix after graph split into two disjoint subsets.

graph, when the first decoupled set of generators is identified
with the proposed algorithm. It can be seen that all connections
from generators GEN 2 & 3 are removed and, hence, already
at t+c the algorithm identifies those generators as the CMC.

V. CONCLUSION

In this paper a new approach was proposed for identifying
the CMC after a transient disturbance. For that purpose, a
novel coupling coefficient was derived, which is determining
the coupling strength of each pair of generators. This coeffi-
cient can be used to set up a coupling matrix, which describes
the coupling strength between all generators in the system. In
order to determine the CMC after a fault, the coupling strength
matrix is determined for the initial condition and just after fault
clearance. The difference of the two matrices is a new matrix,
which describes the change of the coupling strength due to the
fault and can be utilized to identify the CMC. A method, which
uses efficient algorithms from graph theory, was proposed to
identify the CMC. In two test cases it was demonstrated that
although the coupling coefficients do not encompass all the
existing controls, the clustering algorithm allows early and
correct determination of the CMC. Another application of the
developed cluster coefficients may be the early identification
of stable cases, which will be further investigated.
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