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Abstract

Using deep neural nets as function approximator for reinforcement learning tasks
have recently been shown to be very powerful for solving problems approaching
real-world complexity such as [1]. Using these results as a benchmark, we discuss
the role that the discount factor may play in the quality of the learning process of
a deep Q-network (DQN). When the discount factor progressively increases up to
its final value, we empirically show that it is possible to significantly reduce the
number of learning steps. When used in conjunction with a varying learning rate,
we empirically show that it outperforms original DQN on several experiments.
We relate this phenomenon with the instabilities of neural networks when they are
used in an approximate Dynamic Programming setting. We also describe the pos-
sibility to fall within a local optimum during the learning process, thus connecting
our discussion with the exploration/exploitation dilemma.

1 Introduction

Reinforcement learning is a learning paradigm aiming at learning optimal behaviors while interact-
ing within an environment [2]. One of the main challenge met when designing reinforcement learn-
ing algorithms is the fact that the state space may be very large or continuous, potentially leading
to the fact that state(-action) value functions may not be represented comprehensively (for instance,
using lookup tables) [3]. Recently, it has been empirically demonstrated that using deep neural
networks as a function approximator may be very powerful in situations with high-dimensional sen-
sory inputs [1]. However, one of the main drawback of using (deep) neural networks as function
approximator is that they may potentially become unstable when combined with a Q-Learning-type
recursion [4].

In this paper, we propose to discuss the role that the discount factor may play in the stability and
convergence of deep reinforcement learning algorithms. We empirically show that an increasing
discount factor has the potential to improve the quality of the learning process. We also discuss the
link between the discount factor influence, the instabilities of (deep) neural networks and the vanilla
exploration/exploitation dilemma.

A motivation for this work comes from empirical studies about the attentional and cognitive mech-
anisms in delay of gratification. One well known experiment in the domain was a series of studies
in which a child was offered a choice between one small reward provided immediately or two small
rewards if they waited for a short period ("marshmallow experiment" [5]). The capacity to wait
longer for the preferred rewards seems to develop markedly only at about ages 3-4. By 5 years old,
most children are able to demonstrate better self-control by gaining control over their immediate
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desires. According to this theory, it seems plausible that following immediate desires at a young age
is a better way to develop its abilities and that delaying strategies is only advantageous afterwards
when pursuing longer term goals. Similarly, reinforcement learning may also have an advantage
of starting to learn by maximizing rewards on a short-term horizon and progressively giving more
weights to delayed rewards.

The remaining of the paper is organized the following: we first recall the main equations used in the
deep reinforcement learning problem formulation originally introduced in [1]. We then discuss the
factors that influence the stability of (deep) neural networks. In light of this analysis, we suggest the
possibility to modify the discount factor along the way to convergence up to its final value in order
to speed up the learning process. To illustrate our approach, we use the benchmark proposed in [1].
In this context, we then discuss the role of the learning rate as well as the level of exploration.

2 Problem Formulation

We consider tasks in which an agent interacts with an environment so as to maximize expected future
rewards

Q∗(s, a) = max
π

E[rt, γrt+1, γ
2rt+2 + . . . |st = s, at = a, π] (1)

which is the maximum sum of rewards r discounted by γ at each time-step t, achievable by a
behaviour stochastic policy π : S × A → [0, 1] where π(s, a) denotes the probability that action
a may be chosen by policy π in state s. In this paper, the task is described by a time-invariant
stochastic discrete-time system whose dynamics can be described by the following equation:

st+1 = f(st, at, wt) (2)

where for all t, st is an element of the state space S, the action at is an element of the action space
A and the random disturbance wt is an element of the disturbance space W generated by a time-
invariant conditional probability distribution wt ∼ P (.|s, a). In our experiments, the dynamics will
be given by the Atari emulator, the state space will be based on observed pixels of the screen and
the action space is the set of legal game actions A = {1, ...,K}.
The (unique) solution of the Bellman equation for the Q-value function [6] is given by:

Q∗(s, a) = (HQ∗)(s, a) (3)

where H is an operator mapping any function K : S ×A→ R and defined as follows:

(HK)(s, a) = E[r(s, a, w) + γmax
a′∈A

K(f(s, a′, w), a′)] (4)

For most problems approaching real-world complexity, we need to learn a parameterized value func-
tion Q(s, a; θk). General function-approximation system such as neural networks are well suited to
deal with high-dimensional sensory inputs. In addition, they work readily online, i.e. they can make
use of additional samples obtained as learning happens by using only one supervised learning prob-
lem. In the case where a neural network Q(s, a; θk) is used to aim at convergence towards Q∗(s, a),
the parameters θk may be updated by stochastic gradient descent (or a variant), updating the current
value Q(s, a; θk) towards a target value Y Qk = r(s, a, w) + γ argmaxa′∈AQ(f(s, a′, w), a′; θ−k )

where θ−k refers to parameters from some previous Q-network. The Q-learning update when using
the squared-loss amounts in updating the weights :

θk+1 = θk + α(Y Qk −Q(s, a; θk))∇θkQ(s, a; θk) (5)

where α is a scalar step size called the learning rate. A sketch of the algorithm is given in Figure 1.

3 Instabilities of the online neural fitted Q-learning

The Q-learning rule from Equation 5 can be directly implemented online using a neural network (as
is the case for the Deep Q-Network). However, due to the generalization and extrapolation abilities
of neural nets, they can build unpredictable changes at different places in the state-action space. It is
known that errors may be propagated and that this may even become unstable. Additional care must
therefore be taken since it can not be guaranteed that the current estimation for the accumulated
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Update
Q(s, a; θ)

Every C:
θ− := θ

r1, . . . , rNreplay

s1, . . . , sNreplay
, a1, . . . , aNreplay

s1+1, . . . , sNreplay+1

rt + γmax
a′∈A

(Q(st+1, a
′; θ−))

Policy

il

ol

Figure 1: Sketch of the algorithm. Q(s, a; θ) is initialized to close to 0 everywhere on its domain;
Nreplay is the size of the replay memory; the target Q-network parameters θ− are only updated
every C iterations with the Q-network parameters θ and are held fixed between updates; the variable
il corresponds to a mini-batch of tuples (s, a) taken randomly in the replay memory and the variable
ol is the corresponding target value for each tuple.

costs always underestimates the optimal cost, and therefore convergence is not assured [7, 8]. These
convergence problems are verified experimentally and it has been reported that convergence may be
slow or even unreliable with this online update rule [9].

We offer an analysis based on the complexity of the policy class [10] via a parallel with machine
learning. High complexity machine learning techniques have the ability to represent their training set
well, but at risk of overfitting. In contrast, models with lower complexity do not tend to overfit, but
may fail to capture important features. In the reinforcement learning setting, an equivalence with the
model complexity of the learning method may be seen in the policy class complexity. Specifically,
in the context of online neural fitted reinforcement learning, the discount factor as well as the neural
network architecture control the number of possible policies. Similarly to the bias-variance tradeoff
observed in supervised learning, reinforcement learning also faces a trade-off between large policy
class complexity and low policy class complexity.

It is already known that the optimal solution may actually be found in the set of policy with a
planning horizon γ smaller than the evaluation horizon γeval specified by the problem formulation
in case of only inaccurate information on the actual dynamics is available a priori (e.g. in the case
where a small number of tuples is available) [10]. It is also well known that the longer the planning
horizon, the greater the computational expense of computing an optimal policy [11].

In the case of neural fitted value learning, the difficulty to target a high policy class complexity
is severe because targeting a high discount factor leads to propagation of errors and instabilities.
Some practical ways to prevent instabilities make use of a replay memory, clipping the error term,
a separate target Q-network in Equation 5 and a convolutional network architecture [1]. Using the
double Q-learning algorithm also help reducing overestimations of Q-value function caused by the
generalization exageration of the regression method [12].

In this paper, we investigate the tradeoff between performance of the targeted policy versus stabil-
ity and speed of the learning process. We investigate the possibility to reduce instabilities during
learning by working on an adaptive discount factor so as to soften the errors through learning. The
goal is to target a high policy class complexity while reducing error propagations during the Deep Q
learning iterations.
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4 Experiments

The deep Q-learning algorithm described in [1] is used as a benchmark. All hyperparameters are
kept identical if not stated differently. The main modification comes from the discount factor which
is increased at every epoch (250 000 steps) with the following formula:

γk+1 = 1− 0.98(1− γk) (6)

The learned policies are then evaluated for 125000 steps with an ε-greedy policy identical to the
original benchmark with εtest = 0.05. The reported scores are the highest average episode score
of each simulation where these evaluation episodes were not truncated at 5 min. Each game is
simulated 5 times for each configuration with varying seeds and results are reported in Figure 2. It
can be observed that by simply using an increasing discount factor, learning is faster for four out of
the five tested games and similar for the remaining game. We conclude that by starting with a low
discount factor, we obtain faster policy improvement thanks to less instability. In addition, this also
provides more robustness with respect to neural network weights initialisation.

Figure 2: Summary of the results for an increasing discount factor. Reported scores are the relative
improvements after 20M steps between an increasing discount factor and a constant discount factor
set to its final value γ = 0.99. Details are given in Appendix - Table 1.

4.1 Convergence of the neural network

We now discuss the stability of DQN. We use the experimental rule from Equation 6 and either let
γ increase or keep it constant when it attains 0.99 (at 20M steps). This is illustrated on Figure 3.
It is shown that increasing γ without additional care degrades severely the score obtained beyond
γ ≈ 0.99. By looking at the average V value, it can be seen that overestimation is particularly severe
which causes the poor policies.

4.2 Further improvement with an adaptive learning rate

Since instabilities are only severe when the discount factor is high, we now study the possibility to
use a more aggressive learning rate in the neural network when working at a low discount factor
because potential errors would have less impact at this stage. The learning rate is then reduced along
with the increasing discount factor so as to end up with a stable neural Q-learning function.

We start with a learning rate of 0.005, i.e. twice as big as the one considered in the original bench-
mark and we use the following simple rule at every epoch:

αk+1 = 0.98αk

With γ that follows Equation 6 and is kept constant when it attains 0.99, we manage to improve
further the score obtained on all of the games tested. Results are reported in Figure 4 and an il-
lustration is given for two different games in Figure 5. It can be noted that the value function V
decreases when γ is hold fixed and when the learning rate is lowered which is a sign of a decrease
of the overestimations of the Q-value function.
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Figure 3: Illustration for the game q-bert (top) and seaquest (bottom) for a discount factor γ kept
at 0.99 after 20M learning steps (on the left) as well as a discount factor that keeps increasing to a
value close to 1.

Figure 4: Summary of the results for a decreasing learning rate. Reported scores are the relative
improvement after 50M steps between a dynamic discount factor with a dynamic learning rate versus
a dynamic discount factor only. Details are given in Appendix - Table 2.

4.3 Exploration / Exploitation Dilemma

Errors in the policy may also have positive impacts since it increases exploration [13]. When using
a lower discount factor, it actually decreases exploration and opens up the risk of falling in a local
optimum in the value iteration learning. This is observed as the agent gets repeatedly a score lower
than the optimal while being unable to discover some parts of the state space.

In this case, an actor-critic-type algorithm that increases the level of exploration may allow to over-
come this problem. We believe that an actor critic agent that also manages adaptively the level of
exploration is important to further improve deep reinforcement learning algorithms. In order to il-
lustrate this, a simple rule has been applied in the case of the game seaquest as can be seen on Figure
6. This rule adapts the exploration during the training process in the ε-greedy action selection until
the agent was able to get out of the local optimum.
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Figure 5: Illustration for the game seaquest (top) and space invaders (bottom). On the left, the deep
Q-network with original parameters (α = 0.00025) and on the right with a decreasing learning rate.

Figure 6: Illustration for the game seaquest for a case where the flat exploration rate fails to get
out of a local optimum on the left. And on the right illustration where a simple rule that increases
exploration allows to get out of the local optimum.

4.4 Towards an actor-critic algorithm

Following the ideas discussed above, Figure 7 represents the general update scheme that we propose
to further improve the performance of deep reinforcement learning algorithms.

5 Conclusion

This paper introduced an approach to speed-up the convergence and improve the quality of the
learned Q-function in deep reinforcement learning algorithms. It works by adapting the discount
factor and the learning rate along the way to convergence. We used the deep Q-learning algorithms
for Atari 2600 computer games as a benchmark and our approach showed improved performances
for the 6 tested games. These results motivate further experiments, in particular it would be inter-
esting to develop an automatic way to adapt online the discount factor along with the learning rate
and possibly the level of exploration. It would also be of interest to combine this approach with the
recent advances in deep reinforcement learning : the massively parallel architecture "Gorilla" [14],
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Figure 7: Sketch of the actor-critic-type algorithm for deep reinforcement learning that manages
adaptively the discount rate γ, the learning rate α as well as the level of exploration ε.

the double Q-learning algorithm [12], the prioritized experience replay [15], the dueling network
architecture [16] or a recurrent architecture such as [17].
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A Appendix

Seaquest Q-bert Breakout Enduro Beam rider
γ = 0.99, 20M steps 4766 7930 346 817 8379

4774 8262 359 950 9013
2941 7527 372 821 9201
3597 8214 374 863 8496
4280 7867 365 777 8408

Average 4072 7960 363 846 8699
Increasing γ, 20M steps 2570 13073 351 929 9011

2575 12873 361 1031 10160
11717 13351 362 1099 9880
11030 12828 354 978 9263
2583 13063 351 945 10389

Average 6095 13031 356 996 9741

Table 1: Summary of the results for an increasing discount factor.

Seaquest Q-bert Breakout Enduro Beam rider Space invaders
Varying γ, fixed α, 50M steps 6016 13997 389 929 10677 1954
Variable γ and α, 50M steps 16124 14996 423 1129 12473 2750

Table 2: Summary of the results for an increasing discount factor associated with a decreasing
learning rate.
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