Imaging in Disorders of Self-Consciousness

Charlotte MARTIAL – PhD student Coma Science Group GIGA Research & Neurology Dept University & University Hospital of Liège

coma@ulg.ac.be

Reducing consciousness to 2D

Laureys, *Trends in Cognitive Sciences*, 2005 Laureys et al, *Nature Clinical Medicine*, 2008

Consciousness ≠ global brain function

Laureys et al., Lancet Neurology, 2004

Consciousness \approx network functioning

Areas systematically dysfunctional in "vegetative" state & recovering activity after recovery of consciousness

Precuneus seems a critical hub

Laureys et al, *Neuroimage* 1999 Laureys et al, *J Neurol Neurosurg Psychiatry*, 1999 Laureys et al, *Lancet Neurology*, 2004

Two awareness networks

Laureys, *Scientific American* 2007 Vanhaudenhuyse, Demertzi et al, *J Cogn Neurosci* 2011

Diagnostic error after coma

103 post-comatose patients

- 45 clinical consensus diagnosis 'vegetative state'
- 18 showed signs of awareness

40% potential misdiagnosis

Solution: Coma Recovery Scale Revised (CRS-R)

Limitations of the CRS-R:

- Patients suffering from aphasia or lack of motivation on of the patient
- Motor abilities

JFK COMA RECOVERY SCALE - REVISED 82004 Record Form											
Patient:	Date:										
AUDITORY FUNCTIO	AUDITORY FUNCTION SCALE										
4 - Consistent Moveme	4 - Consistent Movement to Command *										
3 - Reproducible Movement to Command *											
2 - Localization to Soun	d										
1 - Auditory Startle											
0 - None											
VISUAL FUNCTION	SCALE										
5 - Object Recognition * 4 - Object Localization: Reaching *											
3 - Visual Pursuit *	3 - Visual Pursuit *										
2 - Fixation *											
1 - Visual Startle											
0 - None	0 - None										
MOTOR FUNCTION	SCALE										
6 - Functional Object Us	se [†]										
5 - Automatic Motor Re-	5 - Automatic Motor Response *										
4 - Object Manipulation	4 - Object Manipulation *										
3 - Localization to Noxid	3 - Localization to Noxious Stimulation *										
2 - Flexion Withdrawal											
1 - Abnormal Posturing	1 - Abnormal Posturing										
0 - None/Flaccid											
OROMOTOR/VERBA	AL FUNCTION SCALE										
3 - Intelligible Verbaliza	tion *										
2 - Vocalization/Oral Mo	2 - Vocalization/Oral Movement										
1 - Oral Reflexive Movement											
0 - None											
COMMUNICATION S	SCALE										
2 - Functional: Accurate	e										
1 - Non-Functional: Inte	entional *										
0 - None	0 - None										
AROUSAL SCALE	AROUSAL SCALE										
3 - Attention											
2 - Eye Opening w/o Stimulation											
1 - Eye Opening with St	1 - Eye Opening with Stimulation										
0 - Unarousable											
TOTAL SCORE	TOTAL SCORE										

Resting connectivity: fMRI

Precuneus connectivity was found to be significantly stronger in MCS as compared with VS/UWS

Vanhaudenhuyse et al, *Brain* 2010 Demertzi et al, *Brain*, in press

Resting state metabolism: FDG-PET

Thibaut et al, J Rehabil Med 2012

CRS-R vs FDG-PET vs fMRI

	Coma Recover	Coma Recovery Scale-Revised results			
	UWS	MCS	Total		
Clinical consen	sus diagnosis	35%	6 clinical m	isdiag	
VS/UWS	33 (37%)	18 20%)	51 (57%)		
MCS	2 (2%)	36 (40%)	38 (43%)		
Total	35 (39%)	54 (61 <u>%)</u>	89 (100%)		
¹⁸ F-FDG PET		329	% CRS-R m	isdia	
VS/UWS	24 (21%)	5 (4%)	29 (26%)		
MCS	1211%)	71 (63%)	83 (74%)		
Total	36 (32%)	76 (68%)	112 (100%)		
Mental imager	y fMRI				
VS/UWS	25 (36%)	23 (33%)	48 (69%)		
MCS	(3)4%)	19 (27%)	22 (31%)		
Total	28 (40%)	42 (60%)	70 (100%)		
UWS=unresponsiv	e wakefulness syndron	ne. MCS=minimally co	onscious state.		
Table 2: Diagnos	tic results by modal	ity			

www.comascience.org

Stender & Gosseries... Laureys, Lancet 2014

fMRI-based communication

Monti & Vanhaudenhuyse, Coleman, Boly, Pickard, Tshibanda, Owen, Laureys New England J Med 2010

EEG-based communication

also see Goldfine et al, Lancet 2013

Prognosis: MRI - DTI

Galanaud *et al, Anesthesiology*, 2012 Luyt *et al, Anesthesiology*, 2012

Pain in UWS and MCS

a Healthy control

MCS patients activate the same areas as healthy controls, meaning that the stimulus can be integrated and processed

Laureys et al, *Neuroimage*, 2002 Boly et al *Lancet Neurology*, 2008

Stimulation: Frontal cortex (tDCS)

VS/UWS - CRS-R

MCS - CRS-R

www.comascience.org

Thibaut et al, Neurology 2014

Conclusion

Human conscious awareness ≈ emergent property of collective critical neural network dynamics

Awareness can be subdivided into internal and external awareness supported by different networks

Diagnosis

CRS-R as gold standard Neuroimaging Neurophysiology

Laureys & Boly, *Nature Clinical Practice*, 2008 Laureys & Schiff, *NeuroImage*, 2012 Giacino, Fins, Laureys & Schiff, *Nature Rev Neurol* 2014

Cogration Neuroscience and Neuroportudings

Steven Laureys . Giulio Tononi 🏈

Coma and Disorders of Consciousness

Caroline Schnakers Steven Laureys *Editors*

2 Springer

fns

xact HR

COMA

SCIENCE GROUP