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Thesis summary 

In the last decade, numerous single-species biofilm reactors of various configurations have 

been implemented at lab and pilot scale for the production of chemicals and biological products. 

Compared to their counterparts in submerged cultures, these processes benefit from the specific 

physiology of biofilms, i.e. high robustness of the microbial system, long-term activity, continuous 

implementation and low ratio size / productivity. However, the risks of biofouling and the lack of 

analytical tools for the control and the monitoring of biofilms are obstacles for scale-up strategies. Up 

to now, single-species biofilm reactors have been mainly confined to the production of metabolites 

ranging from low (bulk chemicals) to medium (fine chemicals) added values. In this way, there is a 

need to design efficient single-species biofilm reactors exhibiting good scalability potentials and 

intended for the production of high added value compounds. 

In this work, an experimental single-species biofilm reactor has been designed for the 

production of target molecules derived from metabolic pathways involved in biofilm physiology. On 

the basis of these criteria, three biological models having good abilities of biofilm formation and 

secretion performances were selected :  

- the gram positive bacterium Bacillus subtilis for the production of surfactin, a surface active 

metabolite involved in biofilm formation. 

- the filamentous fungus Trichoderma reesei for the production of hydrophobin (HFBII), a 

surface active protein (7kDa) involved in adhesion process of spores and mycelium on solid 

surface. 

- the filamentous fungus Aspergillus oryaze (engineered strain) for the production of a 

recombinant protein (Gla::GFP) under the control of the glaB promoter specifically activated in 

solid-state fermentation. 

The proposed experimental biofilm reactor has the configuration of a trickle-bed bioreactor. 

The agitation axis of a stirred tank reactor has been removed and replaced by a stainless steel 

structured packing filling the top of the vessel. The liquid medium, located in the bottom of the vessel 

is continuously recirculated on the packing element thanks to a peristaltic pump. An ascending air 

flow is performed above the liquid phase just under the packing element. 



This thesis reports the screening of the three biological models in the experimental biofilm 

reactor. The results include the characterization of process performances in terms of biofilm formation 

and secretion of the target molecule under different operating conditions. 

An original methodology based on high energy X-ray tomography has been developed to non-

invasively visualize and quantify the biofilm colonization inside the packing element. This technique 

has highlighted that biofilm colonization and liquid phase distribution across the packing are strongly 

interrelated phenomena. The biofilm of B. subtilis occurring by cell aggregation preferentially 

developed on solid areas wetted by the liquid. Accordingly, optimal operating conditions improving 

liquid phase distribution have been defined for biofilm colonization. The fungal biofilm of A. oryzae 

and T. reesei occuring by cell filamentation equally colonize submerged and aerial surfaces of the 

packing element. Consequently, another configuration of biofilm reactor comprising a packing 

element totally immersed in the liquid medium has been investigated. The production yields of 

surfactin and hydrophobin in the experimental biofilm reactor are respectively 1.25 and 2.64 times 

greater than those of a submerged culture in a stirred tank reactor. This suggests that surface-active 

molecules involved in biofilm formation have a real interest for the design of single-species biofilm 

reactors. Although the Gla::GFP fusion protein is greater produced in the stirred tank culture, its 

integrity was preserved in the biofilm reactor despite the presence of proteases. This suggests that the 

quality and the stability of heterologous proteins produced in a fungal biofilm reactor are improved 

compared with a submerged culture. Finally, the implementation of the biofilm reactor has led to 

technological progresses including low energy consumption, no foam formation, continuous 

processing and simplification of downstream process operations. 

Further experiments should deepen the understanding of structured phenotypic heterogeneity 

impact on secretion performances in the biofilm reactor. These experiments should consider 

development of operating conditions allowing for the growth of a thin biofilm homogeneously 

distributed on the whole surface provided by the packing element in order to optimize nutrients and 

metabolites mass transfers. The scale-up and the continuous implementation of the process should be 

also investigated. 
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1 Introduction 

1.1 Use of single-species biofilm for sustained 

bioprocesses : global context 

Fermentation processes can be classified in two categories according to the morphological 

state of the microbial biomass. The first category is composed of fermentation processes promoting 

the growth of the microbial biomass in a planktonic state, i.e. on the form of suspended cells in a 

liquid phase. These processes are mainly related to submerged cultures operated in stirred tank 

reactors (STRs) and are actually widely used at the industrial scale for the production of biomass and 

metabolites [1]. The second category of fermentation processes involves the growth of the microbial 

biomass in a sessile state or more exactly on the form of a biofilm, i.e. a microbial community 

composed of aggregated cells attached to a solid surface. The design of biofilm-based processes has 

led to a great diversity of reactors exhibiting similar configurations to heterogeneous catalytic reactors 

employed in the chemical industry [2]. Up to now, biofilm reactors (BfRs) have been rather intended 

for environmental applications such as gas and wastewater treatments. 

The pure cultures of planktonic cells are usually performed in STRs. Their scale-up involve 

irreversible modifications of ideal lab-scale conditions because of an efficiency loss of the mixing 

operation [3]. At larger scale, the apparition of heterogeneity gradients of substrate within the liquid 

phase affects thoroughly the physiology of the microbial system and the productivity [4]. 

Consequently, scale-up strategies require a time-consuming and expensive development in order to 

optimize the production in lab-scale devices reproducing hydrodynamics of industrial reactors. Thus, 

the industrial processes involving planktonic cells cultures are either related to robust microbial 

processes generating a low added value such as bulk chemicals production or fine microbial processes 

generating a high added value such as vaccine production in the pharmaceutical industry [5]. 

Since a few years, biofilms arouse interest of fundamental and applied research. Although the 

clinical sector and the food industry try to eradicate biofilms, the field of environmental applications 

promotes their production. The natural mechanism of biofilm formation is very interesting for the 

development of microbial processes because the inherent properties of the biofilm related to its self-

immobilization, robustness and long-term activity facilitate continuous processing. At an industrial 

scale, their utilization is confined to low added value operations such as wastewater / gas treatments 

with multi-species biofilm or microbial catalysis with single-species biofilm such as acetic acid 

production [6-8]. 
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Recently, several authors have reported the single-species biofilms potential that could benefit 

several industrial sectors such as synthetic chemistry (bulk and fine chemicals), bioenergy, biologics 

and food industry [9, 2]. The characteristic features of the biofilm allow for the design of sustained 

bioprocesses with robust microbial systems. Until now, numerous studies have demonstrated that the 

production of metabolites in single-species BfR exhibit high productivities, long-term operations, a 

low energy consumption and simplifications of downstream processing operations compared with 

those of planktonic cells cultures [7, 8, 10]. In these examples, BfR benefits advantages related to cell 

immobilization, high cell densities and enhanced tolerance of the biofilm against toxicity of substrates 

and products. However, these metabolites are bulk chemicals already produced at the industrial scale 

in conventional processes and their production in single-species BfRs have only been performed in lab 

and pilot scale bioreactors exhibiting low scalability potentials. The risks of biofouling, the lack of 

analytical tools for the control and the monitoring of such processes are obstacles for the scale-up of 

single-species BfRs. Yet, attractive features related to the particular physiology of biofilms could open 

new opportunities of value added applications, e.g. the biosynthesis of added value compounds 

specifically associated with biofilm physiology or the development of synthetic microbial populations 

in synergic processes regulated by specific mechanisms of biofilm such as quorum-sensing [11, 12]. 

Furthermore, the concept of process intensification is more appropriate for biofilm-based processes 

than planktonic cells cultures [13, 2]. This concept, developed in chemical engineering sector, aims to 

design sustained processes that decrease the size of reactors without a loss of productivity, that reduce 

their environmental impact and enhance the quality of the final product [14]. 

1.2 Objectives 

The objective of the thesis is the design of a single-species BfR intended to produce 

biomolecules with medium-high added values. The experimental BfR has the configuration of a trickle 

bed bioreactor, i.e. the liquid phase trickles by gravity on the surface of a solid carrier supporting the 

growth of the biofilm and encounters an ascending air flow (Figure 1A). The biofilm is expected to 

secrete the target product in the liquid phase. The solid carrier is a stainless steel structured packing 

(Sulzer Chemtech, Switzerland) initially designed for distillation column that has been used in 

chemical industry for forty years (Figure 1B). This solid carrier exhibits a high surface specific area 

(500 - 750 m²/m³), a structural configuration allowing for efficient gas-liquid mass transfers, a good 

sustainability and a scalability potential. 
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Figure 1 : (A) Scheme of the experimental setup designed for biofilm cultivation (B) Stainless steel 

structured packing and scheme of air and liquid flows in a packing colonized by a biofilm, adapted from 

[13] 

Three biological models having good potentialities of biofilm formation and secretion 

performances were selected : 

- the gram positive bacterium Bacillus subtilis for the production of surfactin, a surface 

active metabolite involved in biofilm formation. 

- the filamentous fungus Trichoderma reesei for the production of hydrophobin (HFBII), 

a surface active protein (7kDa) involved in adhesion process of spores and mycelium on 

solid surface. 

- the filamentous fungus Aspergillus oryaze (engineered strain) for the production of a 

recombinant protein (Gla::GFP) under the control of the glaB promoter specifically 

activated in solid-state fermentation. 

In a first time, the project consists to screen the growth abilities of the biofilm on the metal 

structured packing at flask-scale. Then, the operating conditions are investigated and the performances 

of the process are characterized at the bioreactor scale. Especially, an original methodology based on 

high-energy X-ray tomography allows for the non-invasive analysis of the biofilm distribution within 

the metal structured packing. Finally, the secretion performances of the microbial system in the 

proposed BfR are characterized and compared with those of planktonic cells cultivated in a STR. 
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2 State of the art 

2.1 Biofilm in natural systems : fundamental aspects 

The term biofilm describes a microbial community living at interfaces in the ecosystem. 

Microbial biofilms are widespread in the environment, some colonize root systems of plants, develop 

on boat hull, others cause nosocomial infections in medical sector or biofouling in piping of water 

distribution [1]. In biofilms, cells are embedded in a self secreted matrix composed of polysaccharides, 

proteins, DNA, etc. usually called extracellular polymeric substances (EPSs). This EPSs matrix has 

numerous functions for the biofilm. It is a glue for cellular cohesion and substratum adhesion, a 

protective envelop against external environment, a feed stock for food shortage periods, a channel 

network for nutrients/metabolites diffusion and cellular communications. In short, EPSs matrix is the 

house and cells are the residents [2]. In natural environment, most biofilms are composed of several 

species of microorganisms living and interacting together for their survival, e.g. bacteria, yeasts and 

fungi commonly cohabit in multispecies biofilm [3]. However, growth of single-species biofilms 

occurs in specific and confined environments e.g. biofilms of Staphylococcus aureus and 

Staphylococcus epidermidis causing infections on medical devices [4]. The study of biofilm-associated 

behaviours has been evaluated by addressing concepts of sociobiology and has highlighted that 

cellular behaviour inside a biofilm typically results from a balance between competition and 

cooperation [5]. 

Yet, biofilms can also be considered as one step of the life cycle of a microorganism. During 

their life cycle, microorganisms alternate between two distinct lifestyles in order to ensure survival of 

their own species. Microbial cells displaying no physical interactions and swimming in aqueous 

environment are in planktonic state. Microbial cells aggregating at solid / liquid / gas interfaces are in 

sessile state, this is the biofilm. The transition from planktonic state to sessile state involves the 

biofilm formation. The inverse phenomenon involves the dispersion of the biofilm [6]. 

Transition towards multicellularity via biofilms enables to improve survival of a 

microorganism species in its natural environment. Although a single-species biofilm is composed of 

an isogenic cell population, i.e. with the same genotype, this cell population is phenotypically 

stratified through the biofilm. This phenotypic heterogeneity results from environmental factors such 

as microchemical gradients occurring inside the biofilm and physiological mechanisms specific to 

biofilm including quorum-sensing, cross-feeding, horizontal gene transfer, etc. [7]. The phenotypic 

heterogeneity can be seen as a cellular differentiation leading to a division of labour of the microbial 

community in order to enhance the survival of its own species [8]. Thus, cell population of a biofilm 

can include matrix producers, enzymes producers, spore formers, growing cells, etc. Thanks to the 
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spatial structure of the biofilm promoting cellular interactions, biofilm displays a coordinated and 

altruistic behaviour because cell differentiation requires an energy cost that decreases their own fitness 

to the detriment of other cells and benefit the biofilm community as a whole [5]. This characteristic 

feature of biofilms makes them more competitive in harsh conditions than their planktonic 

counterparts. 

2.1.1 Formation of a bacterial biofilm 

The model of biofilm formation illustrated in Figure 1 (step a, b, c & d) stands mainly for 

bacteria. The first step, corresponding to the adhesion of a planktonic cell on a surface, combines a 

physicochemical and a biological phenomenon. The latter has been well reviewed by Hori and 

Matsumoto et al. (2010) [9]. Physicochemical properties of the surface and the cellular membrane 

(hydrophobicity, hydrophilicity, presence of charge) as well as ionic strength of the liquid 

environment define reversible adhesion of the cell. According to DLVO theory applied for bacterial 

adhesion [10], there is an energy barrier (primary energy minimum reached by the sum of Coulomb 

and van der Waals interactions) that a cell cannot surmount by swimming or Brownian motion. In 

order to be irreversibly attached, the bacterial cell uses nanofibers, such as pili and flagella, or produce 

EPSs. The latter can overcome the energy barrier and bridge the cell and the surface via electrostatic 

interactions and hydrogen bonds. The contact with the surface induces changes in gene expression. For 

example, cells in transition towards sessile lifestyle loose their flagella and increase EPSs production. 

Physicochemical characterization of surface properties is a relevant step for the understanding of 

biofilm formation dynamics. Nevertheless, this techniques are cantoned to the lab-scale and cannot be 

accurately scaled-up in industrial conditions. The adhesion process also depends on the hydrodynamic 

conditions of the fluid near the surface. The Reynolds number describing liquid flow regime is 

decisive to assess shear forces affecting cell adhesion on a surface [11, 12]. 

The second step involves the horizontal colonization of the surface initiated by cell division 

and production of EPSs leading to the formation of micro-colonies. Thus, a fraction of the nutrients is 

deviated towards synthesis of EPSs matrix through tightly regulated mechanisms, whereas another 

fraction is reserved for cell division. Both processes are linked since some EPSs allow substrate 

assimilation for growing cells (extracellular enzymes) and some other improve cells spreading over 

the surface with different techniques. Type I and IV pili, anchored to the poles of bacterial cell, 

mediate movement over the surface by twitching motility for gram negative Escherichia coli and 

Pseudomonas sp. [13, 14]. On other hand, the secreted surface active lipopeptide surfactin allows cells 

to surf over the surface in Bacillus sp. (swarming) [15]. The amount and the nature of secreted EPSs 

depend on multiple factors among which bacterial species, environmental conditions and nutrient 

source. 
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In the third step, micro-colonies structurally grow in thickness into a mature biofilm 

displaying multiple shapes such as mushroom-like structure, water channels, etc. At this stage, 

division of labour occurs in the cell population of the biofilm in order to increase its fitness against 

unexpected environmental fluctuations. Only a fraction of cells continues to divide whereas the others 

"differentiate" into several phenotypes such as matrix producer, dormant cell / spore former or 

competent cell through complex regulatory pathways such as feedback regulation systems [7, 16]. The 

phenotypic heterogeneity distributes energy cost and produces beneficial features among the cell 

population of the biofilm. 

In the fourth step, some cells are removed from the biofilm in response to changes in 

environmental conditions (e.g. nutrition level and oxygen depletion) and return in planktonic state in 

order to find a new substratum. Thus, biofilm dispersal is important for the survival of the species 

because it allows the bacterial population to expand. Active dispersal is initiated by the bacteria via 

tightly regulated processes whereas passive dispersal is induced by external forces such as fluid shear 

[17]. 

 

 

Figure 1 : Scheme of the life cycle of a bacteria (a) Surface adhesion of a planktonic cell (b) Horizontal 

colonization of the growth substratum and formation of microcolonies (c) Growth of microcolonies in a 

mature biofilm involving cell division and differentiation (d) Dispersion of the biofilm into planktonic cells 

(e) in order to find a new growth substratum, adapted from [18] 
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Biofilm : the Bacillus subtilis way 

B. subtilis is a spore-forming bacterium of soil that uses biofilms in order to colonize the root 

system of plants. They find a nutrient source in exudates secreted by the root system and in return they 

protect plants against pathogenic bacteria and fungi by antagonistic mechanisms, elicitor synthesis 

stimulating host defence system and antibiotic production [19]. 

When colonizing the plant root system, B. subtilis forms a solid-associated biofilm exposed to 

air [20]. This behaviour is also observed during its cultivation in a micro-well plate because it grows 

as a pellicle-associated biofilm at the air/liquid and air/solid interface . This characteristic of B. subtilis 

biofilm does not exactly match biofilm formation in other bacteria such as Escherichia coli or 

Pseudomonas sp. which rather form submerged biofilm adhering to a surface. 

On the other hand, B. subtilis biofilms secrete large amounts of EPSs accounting for more than 

60 % of the biofilm dry matter and as a result contributing to increase the biofilm thickness. Compared 

to good biofilm producers such as Pseudomonas aeruginosa or Staphylococcus aureus (thickness 

<100 µm), the biofilm of Bacillus species cultivated in similar growth conditions is greatly thicker 

(thickness >1 mm) and can be considered as a macro biofilm [21]. 

Among the diversity of EPSs secreted by B. subtilis during biofilm formation, four categories 

of polymers show distinct functions [15]. (i) The structural EPSs composed of neutral polysaccharides 

serve as scaffold components of the matrix facilitating water retention and cell protection. Recently, an 

amyloid protein, TasA, has been identified as an accessory protein required for anchoring and 

assembling amyloid fibres that held in place cells of B. subtilis biofilm [22]. (ii) The sorptive EPSs, 

such as poly-γ-glutamate (γ-PGA), are charged polymers whose function is sorption to other charged 

molecules involved in cell-surface interactions. (iii) The active EPSs mainly deal with extracellular 

enzymes, allowing substrate assimilation. (iv) The surface active EPSs include small polymeric 

compounds classified in three families of lipopeptides (surfactin, iturin and fengycin) playing a crucial 

role in biofilm formation. Their surfactant properties help cells to access substrate. Especially, 

numerous functions are attributed to surfactin : it improves cell swarming on solid surface during 

micro-colonies formation; it triggers matrix production in combination with ComX (a quorum-sensing 

peptide pheromone); it possesses antimicrobial activities and it is also involved in the formation of 

aerial structures for spores dispersal [23]. 

It is interesting to note that the surface of B. subtilis biofilm pellicles displays hydrophobic 

properties and resistance to gas penetration despite surfactin presence [24]. This observation correlates 

with EPSs matrix composition (epsA-O operon and yqxM-sipW-tasA operon) and the surface 

topography of the biofilm. Although spatiotemporal localization of surfactin has not been 

characterized in biofilms, this recent observation suggests a concentration gradient of surfactin would 
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exist along the biofilm, reaching a fairly small concentration near the surface. These properties would 

enhance their tolerance towards toxic compounds leakage from soil waters in natural environment. 

The physiological features of B. subtilis biofilm confer survival strategies that increase their 

fitness in the environment. The different cell fates met in a B. subtilis biofilm involve sporulation, 

competence, matrix production, motility, cannibalism and exoprotease production. Each cell fate is 

intimately linked with another one and thus is regulated by closed / common regulatory pathways [25]. 

Especially, feed-back regulation mechanism controls the expression of master regulators and generate 

multistability, e.g. the existence of two (or more) distinct phenotypes within an isogenic population 

owing to multistationarity [26]. 

Upon starvation or under harsh conditions, many vegetative cells differentiate to form a spore 

containing protected DNA and essential proteins needed for germination, when conditions become 

favourable again. The matrix synthesis during biofilm formation and the sporulation process are both 

triggered by the phosphorylation of the master regulator Spo0A. It regulates different genes clusters 

depending on its activation level. A high threshold level of Spo0A-P is required for sporulation 

whereas a lower threshold level induces matrix synthesis. The phosphorylation of Spo0A is mediated 

by several kinases resulting in different cell fates. KinA, required for sporulation, has a high activity 

whereas KinC and KinD, required for biofilm formation, have low activity. On the other hand, in order 

to reach the high threshold level of Spo0A-P required for sporulation, cells must first go through a 

lower threshold state, resulting in a sequential activation of matrix and sporulation genes in the same 

cells [23]. 

Following similar mechanisms, the expression of the master regulator ComK, required for 

expression of genes involved in competence, is controlled through quorum-sensing and feed-back 

regulation systems. The competent cells are able to take up and assimilate exogenous DNA such as 

resistance gene to an antibiotic. The activation of the expression of ComK is induced by a quorum-

sensing mechanism involving a signal molecule, the pheromone peptide ComX, which triggers a 

cascade of reactions when its concentration is higher than a threshold value. The activation of ComK 

inhibits the expression of the gene Spo0A and thus prevents competent cells to initiate sporulation as 

long as the level of ComK is high within the cell. Additionally, recent studies highlight the function of 

surfactin as an autoinducer or quorum-sensing signal involved in these regulatory pathways 

controlling cells fates in B. subtilis biofilms [27]. 
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2.1.2 Formation of filamentous fungal biofilms 

Filamentous fungi such as Aspergillus sp. and Trichoderma sp. are multicellular eukaryotes 

characterized by a lifecycle including surface-associated growth assimilated to biofilms. These fungal 

communities are found in aerial and submerged environments. Many reports on eukaryote biofilm 

models such as Candida sp. describe them as rather similar to those formed by bacteria. However, 

their growth dynamic occurs by binary fission or budding whereas filamentous fungi perform hyphal 

tip growth. In this growth mode, spore germination forms tubular structure (hyphae) that elongates at 

the tips and at the same time forms new branches in order to penetrate / colonize the surface in search 

of nutrients. Although filamentous growth, i.e. hyphal tip growth, also occurs in the planktonic state, 

surface attachment and subsequent formation of a fungal biofilm involves modifications of 

morphological and physiological features [28-30]. The model of filamentous fungal biofilm formation 

proposed by Harding et al. (2009) [31] has nearly the same chronology than those of yeasts and 

bacteria (Figure 2). 

The first step (i and ii in Figure 2) consists of a deposition of a planktonic form (a spore, 

sporangia or a hyphal fragment) on the surface. Then, active attachment occurs with secretion of 

adhesive substances by germinating spore or other planktonic form individuals. Especially, small 

secreted proteins called hydrophobins can assemble at hydrophilic-hydrophobic interfaces and alter 

the surface properties of spores or hyphae in order to optimize their irreversible attachment [32]. 

In the second step (iii and iv in Figure 2), efficient horizontal colonization of the substratum 

occurs in all directions thanks to apical elongation and branching ramification of hyphae on the form 

of a monolayer that permits an interlacing with hyphae of another growing colony. At this time, 

secretion of EPSs matrix allows the hyphae to tenaciously adhere to the substrate. The hyphae 

simultaneously secrete a large amount of extracellular enzymes that can decompose complex 

substrates such as ligno-cellulosic polymers. 

The third step (v and vi in Figure 2) is characterized by vertical growth (hyphal layering) to 

form a structured mycelium with interstitial voids. The latter are supposedly to be water channels 

facilitating nutrients diffusion inside the biofilm [28]. The interlaced hyphae are glued together with 

EPSs matrix and form hyphal bundles differentiating in reproductive elements such as fruiting bodies, 

sporogenous cells or other survival structures.  

Finally, the last step (vi in Figure 2) involves return to the planktonic form for dissemination 

of the species through active or passive dispersal of spores, and biofilm fragments which can re-

initiate the cycle. 
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Figure 2 : Model of fungal biofilm formation. (i) adsorption (ii) active attachment and colonization (iii) 

microcolony I (germling and/or monolayer) (iv) microcolony II (mycelial development, hyphal layering, 

hyphal bundling) (v) development of the mature biofilm (vi) dispersal or planktonic phase, adapted from 

[31] 

 

Functionalities of fungal biofilms 

In natural environment, growth of filamentous fungi mainly takes place in terrestrial 

ecosystems in the form of a fungal biofilm looking like a wool carpet laid on the surface of a solid 

substratum. These properties to easily develop on solid substrate have been widely used in oriental 

countries to produce traditional fermented foods and beverages. They are also employed in 

commercial enzyme production from rice, barley, wheat bran or soybean in a cultivation mode called 

solid-state fermentation [33]. 

Several environmental factors such as physical barrier to hyphal extension, low water activity, 

direct contact with air and complex carbon source induce a metabolism specific to fungal biofilms 

compared to their planktonic form. It has been recently described by Barrios-González et al. (2012) 

[29] as the physiology of solid medium. The physical structure of a fungal biofilm growing on the 

surface of a solid substrate partially exposed to air and aqueous medium displays several micro-

environments that build the biofilm in different mycelial layers (Figure 3). In such systems, the sites of 

carbon and oxygen uptake are distinct and involve micro-chemical gradients inside the fungal biofilm 

leading to 4 mycelial layers : (i) aerial hyphae (ii) aerobic and (iii) anaerobic wet hyphae and (iv) 

penetrative hyphae. Especially, a great secretion of enzymes allowing for substrate assimilation occurs 

at apical and sub-apical regions of penetrative hyphae. Different classes of enzymes including 

hydrolases, proteases, lipases, glycosyl-hydrolases etc. hydrolyze polymeric substrates (starch, protein, 

lignocellulosic materials) in simple monomers (oligo-saccharides, peptides, etc.). This high metabolic 

activity requires a great oxygen supply provided by the growth of aerial hyphae. The hyphal growth at 

opposite poles involves phenomenon of transport through the different layers of the biofilm, either by 

passive diffusion, active transport or carbon storage in polyols (glycerol, mannitol, erythritol, arabitol, 
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etc.) [34]. Moreover, the trajectory of diffusion gradients (substrate and oxygen) create micro-

environmental conditions that enhance the resistance of the fungus to catabolite repression [35]. The 

physiology of solid medium has also highlighted a great activity of the secondary metabolism when 

growth is limited by the exhaustion of one of the key nutrients (carbon, nitrogen, phosphate sources, 

etc.). The secondary metabolism produces a multitude of low-molecular-mass compounds which have 

roles in cellular processes such as transcription, intercellular communication, cellular differentiation, 

etc. [36]. Most of the secondary metabolites are derived from either non-ribosomal peptides (NRPs) or 

polyketides (PKs) and include antibiotic (penicillin, cephalosporin, etc.), volatiles compounds (pyrone, 

limonene, etc.) whereas alternative pathways can synthesize hormones such as gibberelins derived 

from terpenes. 

 

 

Figure 3 : Scheme of fungal biofilm growth on a solid medium, adapted from [29] 

 

Several experimentations have demonstrated that this specific physiology of fungal biofilm 

depending on aforementioned environmental stimuli is mainly regulated at the transcriptional level. 

These stimuli trigger cascades of reaction at the molecular level that up- or downregulate expression 

of certain transcription factors that control gene clusters. For example, synthesis of the LovE 

transcription factor for lovastatin biosynthesis (a secondary metabolite) in Aspergillus terreus is 5-fold 

higher when it is cultivated on solid medium. As a result, specific productivity of lovastatin (mg / g of 

dry mycelium) is 14 times higher than those of the planktonic form [37]. The gene encoding 

glucoamylase B (glaB) specifically activated in solid-state fermentation is regulated at the 

transcriptional level in Aspergillus oryzae [38]. An extensive study of its promoter sequence has 

detected a region of 27 bp containing heat shock element motifs (HSE) and a GC-box. Double 

substitution of HSE and GC-box resulted in 99.1 % decrease of GlaB expression indicating the 

importance of this region for full expression in solid-state culture conditions [39]. 
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It has also been observed that osmotic, oxidative, nutritional stresses related to solid-state 

culture conditions involve an efficient regulation at the post-transcriptional level [40]. This study 

reveals that protein-folding and protein-glycosylation related genes were upregulated in solid-state 

fermentation and strengthen the assumption of the secretion pathways efficiency in fungal biofilms. 

During its formation, the fungal biofilm also secretes an exopolymeric matrix that glues 

together hyphae and allows strong adhesion to the solid surface. Up-to-now, only a few publications 

are related to the composition of the EPSs matrix of fungal biofilm. Beauvais et al. (2007) [41] reports 

the composition the EPSs matrix of the infectious species Aspergillus fumigatus which contains 

galactomannan, α 1-3 glucan, monosaccharides and polyols, melanin and proteins including major 

antigens and hydrophobins. 

2.2 Single-species BfR for the production of target 

compounds 

Initially, BfRs have been developed for continuous processes wherein the productivity of the 

bioreactor obtained by the use of planktonic cells is limited by the biomass concentration and the 

liquid residence time. These situations are observed for applications with diluted feed streams and 

slow-growing microorganisms, such as treatment of liquid and gas effluents from industrial and 

domestic activities. Accordingly, microbial biomass is retained in the bioreactor on the form of a 

biofilm growing on organic or inert solid carriers [42]. The residence time of cell is independent of the 

liquid phase flow rate and biomass is not subjected to washout. In these applications, the biofilm is 

generally composed of a consortium of several species interacting together. The latter naturally takes 

place and is very robust against process conditions. Most of these biofilm-based processes consider the 

biofilm as a "black box" (Figure 4A), i.e. growth and activity of the whole microbial system are 

controlled by a few abiotic factors (Figure 4B) such as feeding rate, aerobic/anaerobic conditions and 

shear forces which are maintained at a constant optimal value during all the process [43, 44]. The 

process conditions are optimized on the basis of chemical engineering parameters such as liquid 

residence time, surface specific area of the substratum and overall mass transfer of nutrients and 

products. 
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Figure 4 : (A) Principle of " black box" biofilm for wastewater or gas treatments (B) Evolution of abiotic 

factors in biofilm-based processes and natural systems 

 

In the last decade, there has been a growing interest for the design of single-species BfRs. 

They display high potentialities for biocatalytic processes in various fields including synthetic 

chemistry, biological products, bioenergy, etc. The design of single-species BfRs benefits from 

biofilm inherent properties of self-immobilization, high resistance to reactants and long-term activity 

which all facilitate continuous processing. Moreover, the engineering of single-species biofilm allows 

for a fine regulation of physiological parameters involved in the process performances. The single-

species BfRs have been elucidated at lab or pilot scale for low added value compounds and only a few 

are operated at industrial scale such as production of acetic acid from biofilm of Acetobacter sp. 

immobilized on beechwood shavings [45]. 

Compared with conventional processes in STRs, the design of BfRs takes advantages of 

process intensification and specific physiology of multi-cellular communities [46-48]. Firstly, this new 

application field has to focus on bottlenecks encountered in these processes : oxygen, substrate and 

product mass transfers, substrate and product toxicity and efficient product recovery. Furthermore, it is 

required to deepen the understanding of physiological regulation mechanisms related to biofilm 

formation and physiological parameters involved in secretion performances. Finally, there is a need to 

develop analytical tools directly integrated into the process in order to get relevant data for control and 

monitoring of single-species biofilms. 

2.2.1 Lab scale equipments for single-species biofilm cultivation 

and characterization 

Biofilms are a focus of interest in numerous fields of applications because they are either 

considered as a source of trouble for food industry, clinical sector, etc. or beneficial for 

bioremediation, wastewater treatment, microbial biocatalysis etc. Whether it is its eradication or its 

cultivation, it is important to exactly determine relevant parameters involved in the process of biofilm 

formation in order to control and manage its development. In their review, Halan et al. (2012) [47] 
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have reported different lab-scale equipments designed for biofilm cultivation as well as analytical 

tools and methodologies developed for biofilm characterization. These equipments exhibit different 

configurations, controlling liquid hydrodynamics and surface properties, modulating nutrients 

composition and feeding rate of the biofilm. Moreover, some systems allow for on-line or off-line 

investigations. For example, the flow-cell developed by Sternberg and Tolker-Nielsen et al. (2006) 

[49] allows for a tightly control of the flow regime and can be easily coupled to confocal laser 

scanning microscopy in order to visualize biofilm (by one-line measurement with fluorescent reporter 

strain or by off-line measurement with specific fluorescent staining). In their work, Zhang et al. (2011) 

[50] studied biofilm growth in a similar device, the planar flow-cell, able to create flow and chemical 

gradients within the flow chamber in order to highlight structural heterogeneity of the biofilm. Micro-

sensors can be directly integrated for pH or dissolved oxygen in-situ measurements at different depths 

of the biofilm [51, 52]. However, these invasive techniques involve a destructuration of the biofilm 

which affects measurements accuracy. Another equipment, the rotating disk bioreactor, contains 

coupons supporting biofilm growth that can be sterilely removed from the vessel at any moment of the 

culture [53]. Compared with the flow-cell device, this set-up permits to sample different stages of 

biofilm formation and is particularly useful for analysis of biofilm matrix composition (invasive 

characterization). Microfluidic technology has been integrated in a microwell plate in order to perform 

high-throughput screening of biofilm formation and activity. Recently, Bruchmann et al. (2015) [54] 

developed a multi-channel microfluidic biosensor platform that enables one-line monitoring of biofilm 

formation based on electrical impedance spectroscopy and amperometric current measurements. The 

coupling of complementary techniques associated with each system of biofilm cultivation provides 

relevant data to understand the physiology of biofilms. 

2.2.2 BfR for the production of value-added compounds 

This section details the main BfR configurations developed for the production of value-added 

compounds and specifies their process and performances parameters. The information is summarized 

in Table 1 and Figure 5 for comparison. 

2.2.2.1 Fixed-bed BfRs 

In this category of BfRs, biomass naturally adheres and grows on carrier materials randomly 

or structurally packed in the vessel and immobilized compared to the flows of liquid and gas phases. 

The vessel is either fed with the nutrient solution by the bottom (packed-bed bioreactor, PBR) or by 

the top (trickle-bed bioreactor, TBR), while air is supplied from the bottom of the reactor. 

In the PBRs, biofilm is submerged by the liquid filling the vessel. PBRs are mainly used for 

treatment of liquid effluents at the industrial scale involving anaerobic processes such as biogas 

production [55]. PBRs are also applied at lab and pilot scale for bulk chemical synthesis such as 
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continuous ethanol production by Zymomonas mobilis [56]. Although they are operated for long-time 

periods, clogging due to excessive biofilm growth rapidly occurs and slows productivity. Moreover, 

plug-flow effect can affect feeding rate of cells located at the top of the vessel, i.e. they can feel 

starvation, if the liquid residence time is too long. 

TBRs work like gas-liquid contactors and are particularly useful for treatment of industrial 

waste gas, tuning H2S, NH3, organic gas, etc., into non-hazardous compounds or for aerobic processes 

requiring intense oxygen demand such as oxidative degradation of toxic chemicals or production of 

acetic acid [43, 45]. The performances of TBRs depend on the quality of the liquid distribution. The 

latter must maximize the wetting efficiency of the solid carrier materials in order to homogeneously 

feed the biofilm. In TBRs and PBRs, specific surface area and bed void fraction of the solid carrier 

material must be as high as possible in order to maximize the mass transfer and avoid biofouling, 

respectively [57]. 

The rotating disk BfR (RDBR) can be considered as a dynamic fixed-bed BfR. The biofilm 

grows on disks fixed on an agitation axis disposed horizontally or vertically in the vessel. The shear 

forces are regulated by rotation frequency of disks and hydrodynamics can be adjusted independently 

of the liquid residence time. In the RDBR with horizontal axis, disks are partially immersed in the 

liquid and promote oxygen transfer at the level of the non-immersed area. Especially, this kind of BfR 

has been used to mimic the natural phenomenon of tides in marine ecosystems in order to enhance the 

production of antimicrobial compounds from marine strains [58]. 

2.2.2.2 Expanded-bed BfRs 

The carriers supporting biofilm growth are suspended in the liquid phase of the vessel and 

form a moving-bed thanks to a mixing operation caused by air supply and liquid circulation. The 

vessel is continuously fed from the bottom and liquid can be recirculated in an external loop in order 

to enhance mixing operation such in fluidized-bed bioreactors (FBR). Modulation of shear forces 

through air flow rate and reactor configuration allows to control thickness of the biofilm, and so 

prevents from the system's clogging, and intensifies overall mass transfer. Moreover, chemical wastes 

of fluctuating concentrations injected in the vessel are immediately diluted thanks to the mixing 

operation. This phenomenon reduces the plug-flow effect and increases tolerance of the biofilm 

against toxic compounds [43]. 

In the same vein, air lift bioreactor (ALR) is a vessel containing two concentric cylinders. The 

air and feed supply at the bottom of the inner tube creates a lift of the biofilm moving-bed. At the top 

of the inner tube, liquid overflows in the outer tube and moves downwards, creating a liquid mixing 

improving overall mass transfer. FBRs and ALRs are employed in the treatment of liquid effluents at 

industrial scale. FBRs have been successfully used to produce butanol from Costridium 

acetobutylicum with productivities of 4.5-15.8 g / L h [43]. 
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2.2.2.3 Membrane-based BfRs 

In these reactors, a membrane separates biofilm growth in an aqueous phase from an organic 

phase supplying substrate and extracting product. In these biphasic systems, the organic substrates are 

delivered through the membrane by diffusion and are metabolized by the biofilm into products, which 

are continuously extracted from the aqueous phase through the membrane into the organic phase. 

These equipments have been developed for complex biotransformations involving volatile, toxic and 

poorly water soluble substrates and products. 

For example, Gross et al. (2007) [59], [60] cultivate a biofilm of a Pseudomonas sp. strain 

VLB120∆C in a tubular reactor to catalyze epoxidation of styrene to styrene oxide. The biofilm grows 

on the inner surface of a silicone tubing partially immersed in a styrene phase (organic phase). The 

biofilm is continuously fed by a liquid medium (aqueous phase) and oxygen is supplied by diffusion 

through the silicone tubing. In this way, the organic substrate (styrene) is delivered through the 

membrane by diffusion and is metabolized by the biofilm into styrene oxide, which is continuously 

extracted from the aqueous phase through the membrane into the organic phase. This membrane-

aerated biofilm reactor (MABR) avoids accumulation of toxic substrate and product within the biofilm 

but requires solvent exchanges. 

In order to overcome the oxygen limitation of the MABR, the authors supply oxygen through 

a micro porous ceramic membrane supporting biofilm growth whereas substrate and product are 

respectively delivered and extracted by a silicone tubing immersed in the aqueous phase. This solid 

support membrane-aerated biofilm reactor (SMABR) offers a scalable configuration and a high 

oxygen transfer rate [61, 62]. 

In the segmented-flow biofilm reactor (SFBR) designed by the same research team, the 

aqueous and air phase circulate the silicone tubing as a segmented-flow of air and liquid. This system 

complemented both MABR and SMABR for the same reaction, enabling direct oxygen transfer and 

controlling excessive biofilm growth by shear forces [63]. 

2.2.2.4 Solid-state fermentation bioreactors 

This category of reactors is reserved for fermentation processes involving growth of microbial 

biomass on moist solid organic substrates that are products of agricultural wastes such as soy bean, 

wheat bran or rice bran. In solid-state fermentation (SSF) bioreactors, free-flowing water is nearly 

absent, sugars and other nutrients are supplied by the moist substrate matrix and oxygen is available in 

a continuous gas phase. In SSF bioreactors, the filamentous morphology of the microorganism is 

exploited for an efficient colonization of the solid substrate as well as solid medium physiology is 

expected to enhance secretion of products such as proteins and secondary metabolites [29]. Especially 

filamentous fungi are widely used in SSF culture thanks to their relatively high tolerance to low water 
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activities and their morphology. The model of solid medium physiology, involving growth of a fungal 

biofilm on a solid moist substrate was previously described in the section 2.1.2 (Figure 3). 

In SSF bioreactors, the absence of free water decreases downstream processing costs since 

filtration is avoided (but requires selective solid-liquid extraction) and improves volumetric 

productivity (thanks to fungal biomass concentration). However, the lack of water induces a serious 

issue in heat removal that makes process control and scaling-up of SSF difficult [64, 65]. 

SSF processes are operated in three main bioreactor configurations including tray, packed-bed 

and mixed fermentations [64]. In tray reactors, substrate particles are laid on trays disposed in a multi 

stage vessel allowing for a particles bed height per trays of a few centimetres. The cooling of the 

system depends on heat conduction capacity of the substrate which is relatively poor and makes tray 

fermentation for industrial process disadvantageous. In packed-bed reactors, fungal biomass grows on 

substrate particles filling the vessel and heat is removed thanks to air circulation. This kind of process 

allows for an increase of the bed height (> 50 cm) but the aeration involves bed drying out which 

modifies water activity of the substrate and disturbs fungal metabolism. The interest in this process for 

industrial SSF arises mainly from the simple processing, the low energy requirement and the low 

investment costs. In mixed-fermentations, the bed of organic substrate is mixed by intermittent or 

continuous rotation of the vessel or blades in order to control homogenization of added water and limit 

temperature gradients. In this case, the mechanical mixing damages the bed structure and provokes 

unexpected adverse effects. 

The design of an optimal SSF process is a complex task because it must control both 

production and removal of metabolic heat and maximize target molecule productivity. Moreover, the 

dynamic of a SSF process involves a decrease of water activity increasing temperature gradients (heat 

transfer modification) and causing particle shrinkage (modification of structural properties of the 

particle bed due to fungal growth, evaporation, drying out, etc.) that both impact fungal metabolism 

during the culture. Thus, the development of SSF model is relevant to simulate the evolution of these 

parameters at different space and time scales. The microscopic SSF model of Rahardjo et al. (2005) 

[66] characterizes parameters affecting both production and removal of metabolic heat and enzymes 

production at the particle level. The metabolic heat is proportional to the oxygen uptake which 

depends on efficiency of oxygen mass transfer. Rahardjo et al. (2005) [66] observe that growth of 

aerial mycelia formed at the surface of the substrate particle mainly contributes to the oxygen uptake 

(75%) and is positively correlated with biomass growth and enzymes production. At the surface of a 

substrate particle, aerial mycelia develop in air-filled pores where no limitation in oxygen diffusion 

occurs. The porosity and surface to volume ratio of the substrate particle positively influence the 

oxygen mass transfer and heat removal. Nevertheless, they modify the initial substrate amount and 

thus limit biomass and enzyme yields. In their macroscopic SSF model, Hoogschagen et al. (2007) 

[67] complete those of Weber et al. (2002) [68] by taking into account decrease of water activity and 
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particles shrinkage during SSF. The decrease of water activity resulting from particle substrate drying 

out alters heat transfer. Hoogschagen's model combines temperature gradients and water activities 

inside packed bed reactors in order to define optimal control of aeration flow rate. The evaporation of 

water contributes to the cooling of the system but involves a decrease of water activity disturbing 

fungal metabolism. In this case, a forced aeration of saturated air can maintain the water activity of the 

substrate at an optimal value. In large-scale SSF process, decrease of water activity also modifies 

structural properties of particles bed leading to a shrinkage effect, i.e. a height loss of the particles bed. 

The overall effect of bed shrinkage can result in channels formation and inefficient cooling [67]. 
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Figure 5 : BfR configurations. TBR = trickle-bed reactor, RDBR = rotating disk biofilm reactor, PBR = packed-bed reactor, FBR = fluidized-bed reactor, ALR = 

airlift reactor, CSTR = continuously STR, MABR = membrane-aerated biofilm reactor, SMABR = support solid membrane aerated biofilm reactor, SFBR = 

segmented-flow biofilm reactor. Adapted from [47] 
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Tableau 1 : BfR configurations and their projected process and performances parameters,.Adapted from [46]. Abbreviations same as Figure 5. 

 

Process parameters STR TBR PBR RDBR ALR FBR MABR SMABR SFBR SSF 

           

Mixing High Low Low Low High High Low Low Low Low 

Aeration Yes Yes Possible Possible Yes Possible Diffusion Yes Yes Yes 

Surface shear force High Low Low Medium-high Medium-high Medium-high Low Low Medium-high Low-medium 

Biofilm establishment time / Weeks Weeks Weeks Weeks-months Weeks-months Weeks-months Weeks-months Weeks-months Weeks 

Surface area per reactor 

volume 
/ Low Low Low Medium-high Medium-high High High High Low-medium 

Energy requirement High Low Low Medium-high Medium-high High Low Low Low Low 

           

Performance 

parameters 
                    

Oxygen mass transfer High High Low Medium-high Medium-high Medium-high Low High High High 

Control of biofouling / Low Low Medium-high Medium-high Medium-high Low Low Medium-high Low 

Substrate / Product 

toxicity 
High Medium-high Medium-high Medium-high Low-medium Low-medium Low Low Low Medium-High 

Product recovery Common Common Common Common Common Common Efficient Efficient Efficient Common 

Productivity per reactor 

volume 
Low Low-medium Low-medium Low Medium-high Medium-high High High High High 
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2.2.3 Classification of target compounds produced in single-

species BfRs 

During the last decade, the production of a great diversity of molecules, classically produced 

in planktonic cultures, has been investigated in various configurations of single-species BfRs. 

Example of chemicals and biological products synthesized in such processes are given in the Table 2 

and their added value has been listed in an ascending order. 

The production of bulk chemicals in single-species BfRs include products of fermentative and 

respiratory pathways of various carbon sources. Indeed, most small chemicals such as ethanol, acetic 

acid, lactic acid, propionic acid, succinic acid, citric acid, butanediol, etc. are end products of the 

fermentative metabolism in numerous bacteria, yeasts or fungi [69-71, 56, 72-77, 45]. Their formation 

releases electrons required for ATP synthesis which maintains the energy balance of the cell during 

growth and stationary phase. These end products of fermentation are largely released in the 

extracellular environment when their intracellular concentration becomes toxic for cell. The 

production potential of such chemicals in single-species BfRs mostly takes advantages of cell 

immobilization and high cell densities achieved in simple packed-bed, trickle-bed or fluidized-bed 

BfRs. These kind of bioreactors facilitate continuous processing, enhance reaction rate and 

consequently decrease production costs of these low added value compounds compared with cultures 

in STR. 

For a few years, researchers have been interested in the design of single-species BfRs for the 

production of fine chemicals derived from more complex biochemical reactions and more specific 

substrates [78-82]. Fine chemicals include compounds with medium added values. Their synthesis 

mainly arises from the catabolism of a specific substrate such as aromatic amino acids, aromatic acids, 

polyols, etc. The strains used for these complex biochemical reactions are either selected from an 

environment containing the specific substrate or engineered with recombinant enzymes enabling 

substrate bioconversion [83-85]. Biofilms are more attractive than planktonic cells for the synthesis of 

fine chemicals because their structure and physiology make them more tolerant against toxicity of 

substrates and products. On the other hand, compared with purified enzymes, the use of biofilm 

catalysts includes natural immobilization, no lengthy protein purification, multi-step syntheses 

performed with an enzymatic complex contained inside single cells and enzyme protection from harsh 

external reaction conditions [86]. Consequently, the design of such processes has led to the 

development of custom-made BfR for specific applications such as SMABR and SFBR [62, 63]. 

More recently, single-species BfRs have been investigated for the production of other classes 

of molecules including proteins and secondary metabolites. Compared with bulk and fine chemicals, 

these compounds are not products arising from catabolic pathways but result of anabolic pathways 

such as proteins, non-ribosomal peptides (NRPs) or polyketides (PKs) synthesis [87-94]. The 
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biosynthesis precursors such as amino acids, intermediates of glycolysis or tri carboxylic acid cycle 

(TCA) etc. are building blocks of proteins, polysaccharides, lipids, NRPs, PKs etc., which are 

assembled through specific biosynthetic pathways requiring energy in the form of ATP and are often 

coupled with specific secretion pathways in the extracellular environment. Unlike bulk and fine 

chemicals arising from classical metabolic pathways in planktonic cells and biofilms, certain 

compounds can be specifically associated with biofilm physiology. Research on such molecules 

requires omic studies in order to compare transcriptome, proteome and metabolome between 

planktonic cells and biofilms [40, 95]. Fundamental studies have highlighted up and down regulated 

genes clusters encoding biosynthetic pathways related to cells growing in planktonic and sessile state 

[38, 96]. Certain compounds that are over-produced in biofilms display functional properties for 

various applications. For example, surfactin of Bacillus subtilis [97] and hydrophobin of filamentous 

fungi [98] are respectively surface active metabolite and protein involved in cell adhesion; self-

assembling properties of curli amyloid, the main component of the EPSs matrix of Escherichia coli, 

can be used to produce biofilm materials with programmed non-natural functions [99]; the glaB 

promoter of Aspergillus oryzae, specifically activated in solid-state fermentation, is expected to be a 

candidate for expression of heterologous proteins [100]. 

To conclude, single-species biofilm exhibit good secretion performances for various classes of 

compounds ranging from low (bulk chemicals) to medium (fine chemicals) and high (proteins, 

secondary metabolites, etc.) added values. The production of bulk and fine chemicals in BfRs, mainly 

investigated at lab and pilot scale, benefits from the advantages related to self-immobilization, long-

term activities and robustness properties of single-species biofilms. Whereas high-added value 

compounds are related to characteristic features of single-species biofilms such as components of 

EPSs matrix or molecules involved in biofilm formation. 
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Tableau 2 : Example of value-added products manufactured by applications of single-species BfR. Adapted from [48]. Abbreviation same as Figure 5. 

  Application Product Organism BfR configuration References 

acetic acid Acetic acid Bacteria TBR [45] 

lactic acid Lactobacillus casei rotating fibrous bed, plastic composite support [73] 

citric acid Aspergillus niger Bubble column [70] 

fumaric acid Rhizopus oryzae RDBR [72] 

succinic acid Actinobacillus succinogenes PBR [77] 

propionic acid Propionibacterium acidipropioni PBR [71] 

ethanol Zymomonas mobilis PBR [56] 

butanol Clostridium acetobutyliticum PBR, FBR [43, 74] 

acetone-butanol-ethanol C. acetobutyliticum / C. beijerinckii PBR [76] 

propanediol Pantoea agglomerans PBR [75] 

Bulk chemicals 

butanediol Klebsiella sp. PBR [69]  

dihydroxyacetone Gluconobacter oxydans PBR, CSTR [78, 80, 81]  

styrene oxide Pseudomonas sp. strain VLB120∆C MABR, SMABR, SFBR [59-63] 

octanol Pseudomonas putida PpS81 pBT10 MABR [61] 

ethylhydroxybutyrate Escherichia coli BL21 star (DE3) pBtac-LbADH microchannel reactor [83] 

benzaldehyde Zymomonas mobilis PBR [79] 

halotryptophan E. coli K12 pSTB7 / [84, 85] 

C
at

ab
o
li

c 
p
at

h
w

ay
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Fine chemicals 

glycolic acid Pseudomonas diminuta TBR [82] 

pigment melanin Shewanella colwelliana RDBR [91] 

vitamin riboflavin Candida famata RDBR [92] 

nisin Lactococcus lactis PBR [88] 
bacteriocin 

pediocin Pediococcus acidilactici PO2 PBR [90] 

Health 

enzyme human lysosyme Kluyveromyces lactis PCS BR [93]  

Γ-decalactone Yarrowia lipolytica ALR [94] 
flavour 

α-pyrone Trichoderma harzanium TBR, PBR / Food 

enzyme cellulase Trichoderma viride bubble column [87] 

hydrophobin Trichoderma reseei TBR This work, [98] 
surfactant 

surfactin Bacillus subtilis, B. amyloliquefaciens TBR This work, [97]  

nanomaterial amyloid nanofibre E. coli K12 (csgA variants) / [99] 
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n
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c 
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Others 

biosensor GLA::GFP fusion protein Aspergillus oryzae TBR, PBR This work, [100] 
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2.3 Technological levers for designing biofilm-based 

reactors 

2.3.1 Process intensification 

Traditionally, the scale-up strategy of planktonic cells cultures aims to increase size of the 

equipments and keep some parameters that are critical for the process constant. However, processing 

in larger volume involves irreversible physicochemical modifications compared to optimized lab-scale 

conditions, which leads to loss of yield and product quality [101]. Consequently, scale-up strategies 

require rigorous simulations of industrial conditions that increase cost and time length of the process 

development. In this context, chemical engineers have proposed a new approach to develop a 

production process called process intensification. The concept aims to design reactors suited for 

process scale rather than to adapt a process to the size of the reactor. In order to do this, the goal of 

process intensification is to minimize the ratio size / productivity, minimize waste production and 

energy consumption and simplify downstream process operations. Accordingly, it involves 

development of innovative methodologies that promotes compactness of equipments, use of 

concentrated streams, continuous processing and integration of unit operations [102]. The industrial 

production is achieved by parallelization of equipments developed at the lab-scale, i.e. numbering-up 

or scale-out, in order to avoid irreversible modifications of scale-up strategies. The process 

intensification has given proof of its suitability in several applications [103]. It generally improves 

product quality, increases productivity, decreases size of equipments, reduces access time to market 

and decreases energy and reactants consumption compared to conventional process equipments. 

Recently, this concept has been transferred towards biocatalytic and microbial processes [104]. 

Bolivar et al. (2011) [105] propose microstructured flow reactors as a process intensification 

strategy to improve enzymatic reactions (Figure 6). These equipments involve reversible and selective 

immobilization of the catalyst on the walls of a microchannel structure. The internal dimensions of the 

microchannel are between tens of micrometers to several hundred micrometers allowing for a high 

available specific surface area (10000 to 50000 m²/m³) for heat and mass transfer. The structure of the 

microfluidic device is also designed to minimize the pressure drop associated with continuous 

operation and to control multiphase flow. For example, bubbles or droplets, once formed, no longer 

coalesce and no additional energy is required for their break up. The integration of microfluidic 

handling (flow distribution, mixing, etc.) and physicochemical sensors should accurately monitor and 

control operating conditions. These equipments are already commercialized for biocatalytic process 

optimization because they allow high-throughput experimentations during enzyme selection. On the 

other hand, microstructured reactors are ideal for biotransformations involving a cascade of several 

enzymatic reactions because they can be implemented in-line and thus integrate downstream 
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processing. However, although benefits of process intensification in microstructured reactors are well 

established, their implementation at the production scale must be assessed case-specifically through a 

rigorous comparison with the conventional options. 

 

 

Figure 6 : Schematic representation of a microstructured flow reactor. Opportunities for enzymatic 

transformations are shown as output. Challenges representing current bottlenecks to be addressed in 

focused research are shown as valves. Adapted from [105] 

 

In the same vein, development of biofilm-based applications can benefit from the rules of 

process intensification. Whereas planktonic cell cultures are limited by several factors including cell 

washout during continuous processing and the use of diluted feed streams leading to an important 

effluent volume. 

The use of biofilms as immobilized and living biocatalysts in structured devices has 

demonstrated its usefulness for fine chemical and enzyme production, biofuels and other applications 

[86]. First, the natural immobilization of biofilm and their ability of self-regeneration facilitate 

continuous processing. Second, the secretion of the selected compound in the flow stream simplifies 

downstream process operations. In the future, advances in synthetic biology should allow to target 

metabolic pathways in order to maximise conversion rate of the substrate into the product of interest 

and should reduce waste production in the same time. Third, thanks to its enhanced resistance against 

toxic or inhibitory compounds, biofilm can tolerate more concentrated feed streams. Finally, the 

overall activity of the biocatalyst depends on its specific surface area (unit of surface per unit of 

volume), i.e. available surface for exchanges between biofilm and flow stream, and its thickness. The 

higher the specific surface area is and the thinner the biofilm is, the higher the global mass transfer of 

the substrate towards biofilm and product towards the fluid flow are [105]. This characteristic allows 
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for a decrease of equipments size, i.e. an increase of the compactness, compared to conventional 

equipments designed for planktonic cultures [61]. The specific area can be increased by the use of 

structured materials developed for intensification of chemical engineering processes such as structured 

packing and microfluidic technology [46, 82]. 

Several parameters specific to the design of biofilm-based process agree with certain rules of 

process intensification and have been highlighted in MABR, SMABR and SFBR developed by the 

team of Buehler and Schmid (TU Dortmund University). Nevertheless, these convincing examples 

have been performed at lab scale for the specific bioconversion of styrene into styrene oxide and need 

to be extended to other biotransformations with different reaction rates involving other strains than 

Pseudomonas sp. and other substrates. 

2.3.2 Spatial control of phenotypic heterogeneity through the 

design of a single-species BfR 

(This section is based on a chapter of the publication : Frank Delvigne, Quentin Zune, Alvaro 

R. Lara, Waleed Al-Soud, and Søren J. Sørensen (2014). Metabolic variability in bioprocessing: 

implications of microbial phenotypic heterogeneity. Trends in Biotechnology, 12 (32) 608-616. 

In natural environment, diversification of fitness strategies through phenotypic heterogeneity 

is a common strategy used by microbial populations to thrive even in adverse conditions. In this way, 

diversity of fitness strategies allows a heterogeneous population to have a higher probability of 

survival in the face of environmental fluctuations [106, 107]. Bacterial populations in the environment 

are far more efficient when they operate according to the division of labour strategy [108, 109]. In 

their natural environment, microorganisms exploit genetic and phenotypic heterogeneity to survive. 

This picture is very different from the bioreactor where all the microorganisms are expected to behave 

in a similar way to achieve the production of the targeted compound. Given the different mechanisms 

involved, single cell studies in the field of microbial ecology have therefore not been applied directly 

to bioreactor optimization. Notably, genetic heterogeneity would be expected to play a greater role in 

microbial ecology where the timescales are large in comparison to those of typical bioprocessing 

operations. Nevertheless, significant work has been carried out in the design of single-species biofilms 

that can be used for biocatalysis or for the production of secondary metabolites [47]. Indeed, microbial 

cells cultivated in BfRs exhibit improved robustness and productivity. These improvements can be 

attributed to the fact that a 3D biofilm structure creates gradients of temperature and pH, as well as of 

minerals and nutrients, oxygen, metabolites, and quorum-sensing signals. This creates specific 

conditions in every point of space, to which a bacterial cell reacts by changing its physiological state 

[7]. As the bacterial cells adapt to grow in these hydrated surface-associated communities, they 

express phenotypic traits that are often distinct from those expressed in the planktonic state. Owing to 

the spatial structure of biofilms, both the nutrients that bacteria consume and the metabolic waste 
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products they release are only transported slowly by diffusion, creating a range of microenvironments 

within the same biofilm. Therefore, bacteria residing in different regions of the same biofilm structure 

can experience distinct extracellular redox conditions, leading to functional stratification, as reported 

for mono-species biofilms. A biofilm can thus be considered as a structuring environment in which 

phenotypic and metabolic heterogeneity can be stratified. The robustness of such biofilms has been 

proposed for the design of BfRs for the synthesis of secondary metabolites [60, 46, 97]. However, 

studies on microbial phenotypic and metabolic heterogeneity in a biofilm are limited to microscale 

investigations, involving fluorescent reporter systems and microfluidic devices, in view of the 

technical challenges of studying biofilms at the single cell level under real process conditions (meso- 

and macroscale) [110, 47]. Accordingly, understanding biofilm formation and the stratification that 

can be obtained with such devices will be invaluable in the design of efficient BfRs on the basis of the 

spatial control of metabolic heterogeneity. 

2.3.3 Engineered biofilms for specific applications 

Microbial communities living as biofilms display several characteristic features specific to this 

lifestyle. The cells of biofilm take part in the survival of their own species by exhibiting a coordinated 

and altruistic behaviour [5]. These attractive features open new opportunities of biotechnological 

applications. 

The cellular closeness promoting cell interactions has led to the development of a 

communication mechanism depending on cell density called quorum-sensing. The latter characterizes 

the ability of cells to regulate gene expression according to their population density via small 

extracellular diffusible signal molecules. The outcome of quorum-sensing is the up or down regulation 

of gene clusters related to biofilm-associated behaviours when concentration of the autoinducer sensed 

by cell population has passed a threshold value. The signal molecules have been identified as acyl 

homoserine lactone (AHL) in gram-negative bacteria and oligopeptides for gram-positive bacteria. 

Their mode of expression and their target receptors have also been characterized in several bacterial 

systems. The signal molecules are synthesized by all cells and easily diffuse through cell membrane in 

the extracellular environment. They act as autoinducers because they activate their own expression. 

When threshold concentration is reached, association with its receptor can activate transcription of a 

gene cluster involved in up and down regulation of other genes [111]. 

In a few species such as Pseudomonas sp., E. coli or B. subtilis, quorum-sensing induces cell 

dispersal. By controlling expression of the autoinducer in engineered strains, it is easy to manage 

dispersal of a biofilm [17]. In their work, Hong SH et al. (2012) [112] have constructed a synthetic 

quorum-sensing circuit able to control biofilm formation of a consortium and its dispersal in a 

microfluidic device. This technological progress could allow to manage and perform complex multi-

step biochemical reactions requiring several microbial species. For example, a first strain forming a 
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biofilm can be dispersed from another one in order to replace it to complete a two-step 

biotransformation. 

Along the same lines, Jagmann and Philipp [113] propose the design of synthetic microbial 

communities for biotechnological processes. The development of such applications could be achieved 

by inherent properties of biofilm including interspecific metabolic interactions (cross-feeding), 

signalling processes (quorum-sensing) and spatial structuring of biofilms as discussed in the previous 

section [114]. Inside an isogenic population of cells, the division of labours occurring in biofilms has 

led to cross-feeding interactions when a phenotype (converter) consumes metabolites released by 

another one (producer). The distance between both phenotypes must be short enough to improve 

diffusion of the metabolites meaning that spatial structuring is required for this kind of interaction. 

Cross-feeding and species stratification has already been highlighted in sludge granules performing 

simultaneous nitrification / denitrification. The aerobic bacteria in the outer layer of the granule 

convert ammonium in nitrite then in nitrate and anaerobic bacteria in the centre of the granule (anoxic 

zone due to oxygen diffusion limitation) convert nitrite to nitrogen [115]. By combining and 

controlling all these elements with bioengineering tools, synthetic microbial communities can be 

considered as a viable extension of biotechnological applications performed by metabolically 

engineered single strains and enlarge the scope of microbial production processes. 

2.4 Concluding remarks 

The use of multi-species biofilm has been mainly intended for wastewater and gas treatments 

of industrial and domestic activities. Yet, intrinsic properties of biofilm demonstrate a great potential 

for other kind of applications such as production of a added value molecule from a single-species 

biofilm. On this topic, most of the investigations about single-species BfRs focus on the production of 

low-medium added value metabolites such as organic acids, solvents or fine chemicals arising from 

catabolism of ordinary or specific substrates. Accordingly, the synthesis of high added value products 

arising from anabolic pathways specific to biofilm physiology such as proteins, NRPs, PKs, etc. is an 

opportunity for the design of new single-species BfRs. Compared to its planktonic counterparts, 

biofilm can support fluctuant process conditions without loss of productivity and benefits from rules of 

process intensification, i.e. continuous processing, compact equipments and concentrated feed streams. 

However, it is crucial to have a good understanding of the biofilm physiology to design a reactor 

configuration suited for the biofilm formation and to dispose of analytical tools enabling non-

invasively characterization of the process at a local scale. Finally, metabolic engineering and synthetic 

microbial population allow for the investigation of complex multi-step biochemical reactions. 
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3 Scientific strategy and thesis structure 

3.1 Scientific strategy 

Up to now, applications requiring the growth of the microbial system on the form of a biofilm 

have been mainly intended for continuous operations involving diluted feed streams and slow-growing 

microorganism species such as those encountered in treatment of industrial and domestic effluents [1]. 

As described in the previous section, design of equipments for biofilm cultivation has led to a great 

diversity of reactor configurations ranging from fixed-bed to expanded-bed BfRs and showing long-

term activity, good productivity and stability despite of fluctuant operating conditions [2]. This 

success of multi-species BfRs in environmental applications mainly arises from self-immobilization, 

self-regeneration and robustness of biofilms. In this way, design of single-species BfRs has been 

investigated for the production of various metabolites and has been compared to conventional 

planktonic cultures in STRs used at industrial scale. In these studies, single-species biofilms have 

demonstrated their usefulness for long-term activity and productivity [3, 4]. However, compared to 

planktonic pure cultures, single-species BfRs are still considered as black-boxes because the 

physiological mechanisms defining biofilm formation are not fully understood and controlled. 

Notably, excessive biofilm growth causing clogging of the reactor (biofouling) is a great challenge for 

the applicability of these processes at an industrial scale [5]. Thus, choice of an appropriate solid 

carrier allowing for the biofilm growth and use of analytical tools monitoring the biofilm formation 

are required for scale-up strategies [6]. 

To date, the potential of single-species BfRs has been widely studied for the production of low 

and medium added value metabolites derived from catabolic pathways common to planktonic cells. 

Yet, it is reported in the literature that specific gene clusters are up or down regulated in biofilms. 

Thus, certain pathways of biosynthesis are differently activated between biofilm and their planktonic 

counterparts [7-9]. 

In this context, the scope of this study focuses on the design of a single-species BfR intended 

to produce a high added value metabolite involving biosynthesis and secretion pathways related to 

biofilms physiology. The solid carrier allowing for the biofilm growth is a stainless steel structured 

packing (BX gauze packing from Sulzer Chemtech, Switzerland), that has been already employed in 

chemical industry for forty years. The experimental BfR tested in this work has the configuration of a 

trickle-bed reactor. The liquid medium containing nutrients required for the biofilm growth is 

recirculated on a structured packing element filling the top of the reactor. 
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In this work, the experimental single-species BfR has been screened with three biological 

models exhibiting different modes of biofilm formation and secreting target compounds related to 

biofilm physiology (Table 1). 

The scientific strategy described in the Table 2 was applied for each biological model 

according to three steps :  

i. The growth and excretion abilities of each strain were screened in shake flask cultures 

equipped with or without pieces of structured packing. 

ii. The production of the target compound was implemented in a BfR of 2 or 20 litres. The effect 

of the operating conditions are investigated and the process performances are characterized at 

different scale levels (Figure 1), i.e. the mass balance and the microbial growth at macro-scale, 

biofilm distribution within the packing element by X-ray tomography analysis at meso-scale 

and biofilm composition at micro-scale. 

iii. Finally, the kinetic of production and the quality of the target compound produced in the BfR 

were compared with those of a planktonic cells culture carried out in a stirred tank bioreactor. 

 

Figure 1 : Multi-scale analysis for the characterization of the BfR 
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Table 1 : Characteristic features of biological models and target molecules selected for the design of the single-species BfR. 

Biological model 
Mode of biofilm 

formation 

Target 

molecule 

Biosynthetic 

pathway 
Physiological function 

Chemical 

properties 

Bacillus subtilis aggregation surfactin NRPs 
inducer of matrix production, cell 

swarming, nutrients assimilation 

antibiotic, 

surface-active 

Trichoderma reesei filamentation 
hydrophobin 

(HFBII) 
native protein 

adhesion process and nutrients 

assimilation 
surface-active 

Aspergillus oryzae filamentation Gla::GFP 
recombinant 

protein 

Gla::GFP is under the control of the 

glaB promoter specifically induced 

in solid-state conditions 

fluorescence, 

biosensor 

 

Table 2 : Scientific strategy implemented for the design of a single-species BfR. 

  Objectives Experimentation Studied parameters Techniques and analytical tools 

1st step 

Preliminary screening of the growth 

and excretion abilities of biofilm 

attached to a metal structured 

packing 

Shake-flask culture equipped with / 

without pieces of structured packing 

Quantitative/Qualitative analysis 

of the biofilm, fermentation 

kinetics and quantitative analysis 

of the target metabolite 

Standard methodologies of 

microbiology, chromatography and gel 

electrophoresis 

2nd 

step 

Investigation of operating 

conditions and multi-scale 

characterization of process 

performances 

Culture in BfR under different operating 

conditions (liquid distributor, 

recirculation flow rate, immersion of 

the packing, etc.) 

Quantitative/Qualitative analysis 

of biofilm distribution and 

hydrodynamics of the liquid 

phase 

Standard methodologies of chemical 

engineering, X-ray tomography and 

image processing 

3rd 

step 

Characterization of the secretion 

performances in 2 - 20 L BfR based 

on a metal structured packing 

Culture in BfR and comparison with 

conventional culture in stirred tank 

bioreactor 

Fementation kinetics, 

quantitative/qualitative analysis of 

the target metabolite 

Standard methodologies of 

microbiology, chromatography, mass 

spectrometry and gel electrophoresis 
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3.2 Thesis structure 

The body of the thesis presenting results of the experimentations is divided into 4 chapters 

reporting more relevant observations for each biological model. The two first chapters are related to B. 

subtilis and the two others focus on T. reesei and A. oryzae. Each chapter has been written in the 

format of a scientific publication. 

In the first chapter, we describe the production of lipopeptides by B. subtilis in the proposed 

BfR and we compare its performances with a classical submerged culture carried out in a STR. The 

original multi-scale analysis identifies several parameters that influence the process performances. 

Thus, the impact of liquid hydrodynamics and biofilm formation are investigated on the production of 

surfactin in the second chapter. 

In the third chapter, we optimize the production of hydrophobin HFBII from the filamentous 

fungi T. reesei in the proposed BfR and we compare its performances with those of a STR. Then, we 

implement a semi-continuous production of the hydrophobin HFBII by a repeated sequence of batch 

cycles. 

In the fourth chapter, we quantify and assess the quality of a Gla::GFP fusion protein 

produced by an engineered strain of A. oryzae cultivated in the proposed BfR. On the basis of the 

flask-scale screening, we also consider another BfR configuration in which the packing element is 

totally immersed in the liquid phase during all the culture. Finally, an analysis of the extracellular 

proteom allows for a comparison of the secretion performances. 

In the last section, the general discussion focuses on the similarities and differences between 

each biological model. The impact of the operating conditions on the process performances and the 

secretion performances are discussed and some perspectives are proposed at the end of this work, e.g. 

a continuous implementation and a scale-up of the BfR. 
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MULTI-SCALE ANALYSIS OF A METAL 

STRUCTURED PACKING BIOFILM REACTOR 

PRODUCING SURFACTIN FROM BACILLUS 

SUBTILIS GA1 

 

 

 

 

 

 

 

 

 

 

This chapter corresponds to the article entitled "High-energy X-ray tomography analysis of a 

metal packing biofilm reactor for the production of lipopeptides by Bacillus subtilis" (Quentin Zune, 

Delphine Soyeurt, Dominique Toye, Marc Ongena, Philippe Thonart, Frank Delvigne) published in 

Journal of Chemical Technology and Biotechnology, Volume 89, Issue 3, pp 382-390 (June 2013). 
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In this first chapter, the experimental BfR is characterized through a multi-scale analysis for 

the production of surfactin from a bacterial biofilm of Bacillus subtilis GA1. The process 

performances are compared with those of a submerged culture carried out in a stirred tank reactor. The 

macro-scale level describes kinetics of the global process (cell growth, substrate consumption, foam 

formation) and calculates process mass balance after a fermentation run. The meso-scale level 

characterizes biofilm distribution within the packing element by high energy X-ray tomography. The 

micro-scale level assesses the composition of the biofilm in terms of water, cells and EPSs matrix. The 

lipopeptides production is characterized and compared with those of a submerged culture. 



Chapter I 

 - 47 - 

Abstract 

BACKGROUND : Whereas multi-species biofilm reactors are commonly used for the 

treatment of liquid and solid wastes, new strategies are progressing for the development of single 

species biofilm for the production of high-value metabolites. Technically, this new concept relies on 

the design of bioreactors able to promote biofilm formation and on the identification of the key 

physico-chemical parameters involved in biofilm formation. 

RESULTS : An experimental setting comprising a liquid continuously recirculated on a metal 

structured packing has been used in order to promote Bacillus subtilis GA1 biofilm formation. The 

colonization of the packing has been visualized non-invasively by X-ray tomography. This analysis 

revealed an uneven, conical, distribution of the biofilm inside the packing. Compared with a 

submerged culture carried out in a stirred tank reactor, significant modification of the lipopeptide 

profile has been observed in the biofilm reactor with the disappearance of fengycin and iturin fractions 

and an increase of the surfactin fraction. In addition, considering the biofilm reactor design, no foam 

formation has been observed during the culture. 

CONCLUSIONS : The configuration of the biofilm reactor set-up allows for a higher surfactin 

production by comparison with a submerged culture while avoiding foam formation. Additionally, 

scale-up could be easily performed by increasing the number of packing elements. 

Keywords : biofilm reactor, surfactin, tomography, foam formation, scale-up 
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STR : stirred tank reactor 

EPS : extracellular polymeric substance 

CLSM : Confocal laser scanning microscopy 
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I.1 Introduction 

Biofilm reactors have been widely used in the field of environmental biotechnology and more 

specifically for the treatment of wastewater and for biogas production. The concept of BfR is being 

expanded more generally in the broad field of microbial bioprocesses for the production of various 

metabolites, ranging from low to medium value metabolites, i.e.  organic acids, alcohols and 

polysaccharides 
[1, 2]

, to high value metabolites involving recombinant systems 
[3, 4]

. Some applications 

involving the use of a BfR in the field of microbial catalysis have demonstrated the usefulness of this 

concept for the synthesis of fine chemicals 
[5-7]

. However, these studies have been conducted at small-

scale, in cultivation systems exhibiting a relatively low specific area. The formation of biofilm relying 

mainly on this parameter, the specific area must be increased in order to reach the requirements in 

terms of process intensification and scale-up capabilities. 

There is thus a need for experimental tools dedicated to the monitoring of biofilm 

development inside process equipment. To date, most of the studies dedicated to the analysis of 

biofilms involve the use of confocal laser scanning microscopy (CLSM). This technique allows the 

determination of several structural parameters 
[8]

, such as biofilm coverage and porosity, as well as the 

physiological state of the cells trapped in the extracellular matrix (e.g., follow-up of gene activity by 

the use of fluorescent reporter strains and/or viability by the use of a combination of vital staining). 

However, CLSM is limited to the microscopic scale and requires the use of transparent surface. Until 

now, the use of CLSM has been limited to the study of biofilm in dedicated cultivation tools, such as a 

flow cell 
[9, 10]

. Methods based on tomography have been applied to the study of biofilm formation in 

more complex systems. In this context, X-ray microtomography has been used for imaging the three 

dimensional structure of biofilms in porous media 
[11]

, and optical coherence tomography has been 

used to for the on-line monitoring of biofilm formation in flow-channel 
[12]

. However, these techniques 

can only be applied on a mesoscale, i.e. for apparatus with a characteristic size of about 1 mm 
[13]

. 

There is no technique allowing the characterization of biofilms directly at the macroscale in process 

equipment 
[14]

. In this work, we propose to use high energy X-ray tomography in order to estimate 

non-invasively the distribution of biofilm inside stainless steel structured packing. This kind of 

packing is specifically designed in order to exhibit a very high specific area (with characteristic values 

around 500 m²/m³) and is thus very attractive for the use in BfRs 
[2]

. This BfR will be designed for the 

production of lipopeptides by B. subtilis GA1, high-value metabolites exhibiting surface-active and 

antibiotic properties. The process engineering approach to lipopeptides or spores production from B. 

subtilis relies mainly on submerged culture in stirred tank reactor under intense agitation and aeration 

[15]
, leading to the formation of foam. Foam can be avoided to some extent by reducing the mixing and 

aeration flow rate, but the subsequent decrease of oxygen transfer efficiency impairs cells growth rate 
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and surfactin production. Strategies adopted to circumvent this technical issue rely on the installation 

of a mechanical foam breaker or the addition of chemical antifoam 
[15]

. This latter alternative has a 

negative effect on B. subtilis physiology and introduces difficulties in biosurfactants recovery during 

downstream processing operations. The BfR offers ,in this context, a very promising alternative since 

no direct gas-liquid mixing is involved. The aim of this work is to assess the effectiveness of the 

proposed BfR by comparison with conventional submerged culture carried out in a stirred tank 

bioreactor configuration. 

I.2 Material and Methods 

I.2.1 Microbial strain and culture conditions 

Bacillus subtilis GA1 strain was used for all cultures carried out in this work. Working seeds 

were prepared by picking a single colony of B. subtilis GA1 grown on 868 solid medium (glucose 20 g 

L
-1

, yeast extract 10 g L
-1

, casein peptone 10 g L
-1

, agar 16 g L
-1

) in order to seed a flask containing 

100 mL of 863 liquid medium (glucose 20 g L
-1

, yeast extract 10 g L
-1

, casein peptone 10 g L
-1

). After 

16 hours of incubation (160 rpm, 37°C), 30 mL of medium culture were mixed to 20 mL of glycerol. 

This mix was used in order to prepared the working seeds vials that were further stored at -80°C 

before use. Each preculture was prepared by incubating a working seed in optimized medium 

(saccharose 20 g L
-1

, casein peptone 30 g L
-1

, yeast extract 7 g L
-1

, KH2PO4 1,9 g L
-1

, MgSO4 0,45 g L
-

1
, citric acid 10 mg L

-1
, solution 1 100 µL, solution 2 100 µL) for 16 hours (160 rpm, 37°C). Solution 

1 (pH 7) was composed of H3BO3 100 mg L
-1

, NaMoO4 40 mg L
-1

, FeCl3.6H2O 50 mg L
-1

, KI 20 mg 

L
-1

 and CuSO4 10 mg L
-1

. Solution 2 (pH 7) was composed of MnSO4.H2O 36 g L
-1

 and ZnSO4.7H2O 

140 mg L
-1

. 

I.2.2 Bioreactor operating conditions : biofilm reactor 

The fermentation run was carried out for a period of 72 hours in an experimental setting 

(Figure 1A) designed to promote biofilm formation. The experimental setting comprised a 20 L 

bioreactor with 6 L working volume (see previous section for the composition of the optimized 

medium). The headspace of the reactor was filled with a stainless steel structured packing made of 

several corrugated sheets (Figure 1B, Sulzer, Chemtech). A peristaltic pump ensured the continuous 

recirculation of the medium at a flow rate of 26 L h
-1

 (connections made with silicone tubing with an 

internal diameter of 5 mm). The recirculated medium is distributed at the top of the packing by a 

distributor plate (stainless steel circular plate with 20 holes of diameter 2 mm). Air was supplied under 

the packing at a flow rate of 1 vvm. The air injection system was located above the liquid surface to 

avoid foam formation during lipopeptides production. Inoculation was made with 2% (v/v) of an 
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overnight preculture. Since the bottom part of the reactor is filled with liquid medium, all the standard 

probes can be used as well as the corresponding regulation loops (temperature, pH and dissolved 

oxygen). Temperature and pH were maintained respectively at 37°C and 6.95 during the cultivation 

run. After 72 hours of culture, medium recirculation was stopped and the packing was kept 2 hours in 

the bioreactor to remove the excess of liquid medium before further analysis. Then, the packing and 

residual volume of the liquid phase were removed from the reactor and were measured to establish 

mass balance of the process. 

I.2.3 Bioreactor operating conditions : stirred tank reactor 

The performance of the BfR were compared with that of a standard stirred tank reactor 

equipped with a foam breaker. Despite the presence of a foam breaker, a quantity of 200 µL / L of 

antifoam (Silicone, Dow Corning) were added to the culture medium of the stirred tank reactor at the 

beginning of the fermentation. The bioreactor dimensions were exactly the same as for the BfR except 

that the packing and the medium recirculation were removed and replaced by a standard air injection 

system (ring sparger, 1 vvm) and mechanical mixing (Rushton turbine with six blades, D = 0.1 m). 

Other culture parameters are given in the Table 1. The abbreviation "STR" will refer to this operating 

conditions. 
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Figure 1 Diagram of the experimental setting and its components. (A) Bioreactor comprising a liquid 

phase overhung by a metal structured packing. Recirculation of the culture medium is performed with a 

peristaltic pump and air supply is provided under the packing above the liquid phase. (B) View of the 

metal structured packing (Sulzer, Chemtech) used for experimentation. (C) X-ray tomography picture of 

a cross sectional area of the packing. Packing is a cylinder composed of several stainless steel corrugated 

sheets independent from each other. 

 

I.2.4 Samples collection and processing 

Dynamics of biomass and substrate concentration were followed by collecting samples of 

culture medium, which were stored at 4°C before further analysis. Optical density was measured with 

a spectrophotometer (Genesys 10S UV-Vis) at a wavelength of 600 nm. An YSI analyzer (Model 2700 

select) was used for the determination of the residual sucrose and glucose concentrations in the culture 

supernatant. Fermentation runs involving the Bacillus subtilis GA1 strain were carried out in duplicate 

for the BfR and for corresponding stirred tank configuration. 
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Tableau 1 : Culture parameters for fermentation in experimental setting and stirred tank reactor 

  
Culture 

volume (L) 

Inoculum 

volume % 

(v/v) 

Temperature 

(°C) 
pH 

Agitation 

(rpm) 

Air flow 

rate (vvm) 

Recirculation 

flow rate 

(L*h-1) 

Experimental 

setting 
6 / 26,16 

Stirred tank 

reactor 
14 

2 37 6,95 

300 

1 

/ 

 

I.2.5 X-ray tomography analysis of the metal structured packing 

At the end of each fermentation run, the stainless steel structured packing was analyzed by X-

ray tomography in order to quantify and visualize biofilm colonization. X-ray tomography is a non-

invasive imaging technique and the collected data can be converted to a two-dimensional image 

corresponding to a given cross-sectional area of the metal structured packing. Tomographic 

measurements were performed on 16 different cross-sectional areas located at different heights 

(analyses were performed each centimeter). The experimental method for tomographic measurements 

and subsequent treatment for absorption coefficient processing and image analysis were previously 

described 
[16, 17]

. 

I.2.6 Data processing from X-ray tomography (Figure 2) 

Raw data from different packing cross-sections were stored in a (703,703) matrix where each 

element (i,j) is proportional to the attenuation coefficient of the X-ray. Images were visualized and 

processed using the Matlab software and the associated image processing toolbox. The contrast 

between the biofilm and the corrugated sheets of the packing was optimized by using the erode.m 

function. 
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Figure 2 : Illustration of the different steps involved in the image processing procedures from X-ray 

tomography. (A) Raw image; (B) Binarization of the raw image; (C) Erosion of the raw image 

highlighting the biofilm structure; (D) Binarization of the eroded image. 

 

I.2.7 Biomass quantification 

Dry matter of liquid phase and biofilm were calculated separately by a gravimetric method 

after 72 hours of fermentation. Determination of the dry matter in the liquid phase was performed in 

triplicate on 5 mL of culture medium by 0,45 µm filtration followed by oven-drying at 110°C during 

48 hours. Dry matter of biofilm was measured in triplicate by oven-drying at 110°C during 48 hours a 

known mass of biofilm sampled directly from the packing. The method applied for biomass 

quantification of submerged culture was the same as for the liquid phase of the biofilm reactor. 
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In order to differentiate cellular biomass from EPS matrix secreted by cells of the biofilm, an 

assay of dry matter was also carried out with a biofilm sample mildly sonicated. For this 1 g of 

scrapped biofilm was sonicated in 10 ml of phosphate buffer solution for 3 x 40 seconds at 30 % 

maximum power in an ice bath. Mild sonication enables solubilization of the EPS in the liquid phase 

while avoiding any cellular damage (as assessed by propidium iodide staining for membrane 

integrity). Sonicated sample was then used for a dry matter quantification of the cellular biomass. 

Mass percentage of matrix (EPS) was deducted by subtraction. In order to assess biovolume, i.e. 

number of cells per cm³ of biofilm, counting on agar plate was performed with a mildly sonicated 

biofilm sample. 

I.2.8 Lipopeptides quantification 

The supernatant of samples collected at different time of fermentation were loaded on C18 

solid-phase extraction cartridges (900 mg, Alltech) and lipopeptides were desorbed with 100% ACN. 

The resulting samples were analyzed by reverse phase HPLC coupled with single quad mass 

spectrometer (HPLC Waters Alliance 2695/diode array detector, coupled with Waters SQD mass 

analyzer) on a X-terra MS (Waters) 150*2.1 mm, 3.5 µm column as previously described by 
[18]

. A 

single elution gradient allowing the simultaneous measurement of all three lipopeptide families was 

used. Surfactins were eluted in the isocratic mode (45% ACN in water acidified with 0.1% formic 

acid) at 0.65 mL min
-1

 and 40°C. Iturins and fengycins were both selectively desorbed by using ACN 

gradients from 45% to 95% in the first 10 min. 

Compounds were first identified on the basis of their retention times compared to purified 

standards and the amounts were calculated on the basis of the corresponding peak area (maximum 

plot). The identity of each homologue was confirmed on the basis of the masses detected in the SQD 

by setting electrospray ionization conditions in the MS as source temperature, 130°C; desolvatation 

temperature, 280°C; nitrogen flow, 600 l/h; cone voltage, 70 V. The positive ion mode was used for 

analysis of all three families because a higher signal/background ration was obtained compared to 

negative ion recording. 
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I.3 Results 

I.3.1 Mass balance over the liquid phase and the biofilm phase of the BfR 

(macro-scale characterization) 

After 72 hours of recirculation, the residual liquid volume (Vf) and the weight of the biofilm 

attached to the packing (Wb) have been measured. The initial volume (Vi) of culture medium is fixed at 

6000 mL. On this basis, the dry matter fraction of the biofilm (dmB(%)) has been computed from the 

reactor volume balance (equation 1). 

lbfi VWdmBVV +−+= *)100( (%)                  (1) 

With (Vf) being the final volume, (Vi) the initial volume, (Wb) the weight of biofilm (g) 

adhering to the packing and (dmB(%)) the percentage of dry matter in the biofilm. However, volume 

losses by evaporation (Vl) occurred during the fermentation run despite the presence of a cooling 

system located at the level of the exhaust gas outlet. The average volume losses have been quantified 

to 2 ± 4,6 % of the initial volume (Table 2). Bioconversion yield (equation 2) expressing the amount 

of biomass formed per gram of carbon and nitrogen consumed is also given in table 2. 

Nc

fb
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SS

dmLVdmBW
Y

+

+

=
(%)(%)

/

..

             (2) 

With sxY /  the bioconversion yield (g/g), (%)dmL the percentage of dry matter in the liquid 

phase (g/L), SC and SN the amount of carbon and nitrogen source (g), respectively, in the culture 

medium. On this basis, the average bioconversion yield has been estimated at 0,313 ± 0,018 g of 

biomass / g of C and N consumed. 

 

Tableau 2  : Volume loss (mL and %) during fermentation and reactor bioconversion yield after 72 hours 

of fermentation 

 Vl (mL) % Vl 
Yx/s (g biomass / g C&N 

input) 

Average 99 ± 283 2 ± 4,6 0,31 ± 0,018 

 



Chapter I 

 - 56 - 

It is also interesting to calculate the repartition of biomass between the liquid phase and the 

metal structured packing. Biomass adhering onto the metal packing has been estimated at 91,3 ± 4,5 % 

of the total dry biomass (Figure 3C). The liquid phase was sampled during the fermentation and 

optical density, sucrose and glucose concentrations were analyzed. In the first twelve hours of 

fermentation, an increase of the optical density followed by a slight decrease wa s observed (Figure 

3A). This second phase corresponds to the self-adhesion of microbial cells onto the metal structured 

packing. Indeed, liquid flowing at the surface of the stainless steel corrugated sheets leads to 

hydrodynamics conditions promoting the formation of biofilm. In a first step, cells adhering onto the 

packing consume the carbon source and dissolved oxygen for growth, leading to an increase of the 

surface covered by the biofilm. In a second step, biofilm grows in thickness. The kinetic of carbon 

source uptake indicates that almost all the available carbon source is consumed during the first 24 

hours of culture (Figure 3B). 

 

Figure 3 : Evolution of the optical density (A), carbon source uptake (B) and repartition of the dry 

biomass between the metal packing and the liquid phase (C) after 72 hours of fermentation in the BfR. 
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I.3.2 Use of large-scale X-ray tomography for imaging biofilm repartition inside 

metal structured packing (meso-scale characterization) 

Large-scale, high-energy X-ray tomography was used in order to monitor non-invasively the 

development of biofilm inside the metal structured packing. X-ray tomography analysis was 

performed for different cross-sectional areas of the packing in order to visualize the repartition of the 

biofilm as a function of the height. Our first analyses showed that the X-ray attenuation coefficient of 

biofilm is different from that of the stainless steel, allowing visualization of the biofilm after a simple 

image processing step (Figure 2). Image processing was carried out to remove pixels corresponding to 

the metal corrugated sheets. This procedure allows quantification of the surface effectively occupied 

by biofilm over different packing cross-sectional areas (Figure 4A). The three-dimensional biofilm 

structure exhibits a conical shape, suggesting that liquid repartition over the whole cross-sectional area 

of the packing is not effective. Indeed, it seems that the liquid distributor located at the top of the 

packing does not disperse the recirculated liquid medium evenly over the whole cross-sectional area. 

The percentage of cross-sectional area effectively occupied by biofilm AB was estimated by 

dividing the number of pixels corresponding to biofilm (PB) by the number of pixels corresponding to 

metal packing or void (rp is the radius of the packing expressed in pixels) according to the following 

equation : 

2
*

(%)
p

B

B
r

P
A

π

=

                       (3) 

According to equation 3, colonization efficiency increases for the lower sections of the 

packing. Surface covered by biofilm reaches about 25 % for the lower sections of the packing 

compared with 5 % for the upper sections. If a conical three-dimensional structure is considered, a 

possible solution that can be considered for the improvement of biofilm repartition would be to stack 

several structured packings, i.e. increase the height of the reactor, so that the first packing is used as a 

liquid distributor. 
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Figure 4 : (A) X-ray tomography analysis of seven cross-sectional areas of the metal packing (B) 

Percentage of the packing cross-sectional area effectively colonized by biofilm 

 

I.3.3 Determination of biovolume (micro-scale approach) 

Biovolume, i.e. the volume effectively occupied by microbial cells in a biofilm, is usually 

measured by confocal laser scanning microscopy. This technique allows for the determination of 

several parameters such as biofilm coverage, porosity, as well as the physiological state of cells 

trapped in the extracellular matrix. In our study, a known volume of biofilm collected directly on the 

packing was sonicated to release microbial cells by solubilization of the extracellular polymeric 
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substances (EPS) in the liquid phase. A gravimetric method allowed us to quantify the fraction of 

microbial cells and extracellular matrix of the biofilm. 

 

Tableau 3 : Biofilm composition 

Dry matter (%) 8,35 ± 0,54 % 

Cell number / cm³ of biofilm 1,98 ± 0,84 x 10
10

 

Cell weight (g) / g of dry biofilm 0,42 ± 0,04 

 

The respective fractions of the three main elements of biofilm (water, cells and EPSs) are 

summarized in Table 3. The nature, as well as the proportions of these components, depends on the 

environmental conditions for a given microbial strain. In our case, the dry matter of B. subtilis GA1 

biofilm attached to the corrugated sheet accounts for 8.35 ± 0.54 % of the total mass of the biofilm. 

This observation is not surprising since it is known that a large amount of water is required for EPSs 

hydration (neutral polysaccharides like levan I,II and Tas A protein) ensuring the structural integrity of 

biofilm. Water is also required for cell osmosis and the transport of nutrient, ions and charged 

molecules in the biofilm
[19]

. 

The composition of the dry fraction of the biofilm reveals that cells account for 42 ± 4 % of 

the total dry matter. Biovolume was expressed in our case in number of cells per cm³ of biofilm, and a 

value of 1.98 ± 0.84 . 10
10 cells per cm³ of biofilm was determined, corresponding to 7.77 ± 

0.21 . 10
8
 cells per cm² of available area for a packing fully recovered by biofilm. This observation 

means that a large part of the nutrients are metabolized for matrix synthesis to the detriment of cellular 

growth. The EPSs secreted during the development of biofilm exhibit several functions, i.e. network 

enhancing biofilm cohesion, cells protection, cells communication and surface adhesion (sorptive 

EPSs like poly-γ-glutamate, structural EPSs like levan and Tas A protein, surface-active compounds 

like lipopeptides), constitution of a carbon storage for starvation periods and have enzymatic function 

for substrate degradation (active EPSs like hydrolase and protease)
[19]

. Among these EPSs, 

lipopeptides have been more closely analysed and will be further investigated. 
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I.3.4 Comparison of lipopeptides production in BfR and in STR 

In this section, results acquired from fermentation runs carried out either in stirred tank (STR) 

or biofilm reactor (BfR) are compared both from qualitative and the quantitative viewpoints. LC-MS 

analysis was carried out in order to characterize lipopeptides profiles for the two bioreactor operating 

conditions. Biosurfactants secreted by B. subtilis GA1 belong to the three common families of 

lipopeptides, i.e. surfactins, fengycins and iturins. Since the response factor of each family has not 

been calculated, the results are based on the relative abundance of each family. The resulting ratios 

were calculated by taking into account the dilution factor and the relative concentration (equation 4). 

STRiflipo

BfRifLipo

VVdfA

VVdfA
r

]/[

]/[

∗∗

∗∗

=             (4) 

With Alipo the peak area of the lipopeptide familiy (arbitrary unit), df the dilution factor of the 

injected sample, Vi (mL) the inital volume of culture medium and Vf (mL) the residual volume of 

culture medium after 72 hours of fermentation (BfR index denotes biofilm reactor and STR the stirred 

tank reactor). 

 

 

Figure 5 : Area ratio of peaks for surfactin, fengycin and iturin families between BfR and STR after 72 

hours of fermentation (A), ratios are calculated with equation 4. Relative abundances (%) between 

homologues of surfactin recovered in the culture medium of BfR and STR after 72 hours of fermentation 

(B). Five homologues can be distinguished on the basis of the length of the hydrocarbon side chain (from 

C12 to C16). 
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On the basis of the computed ratio between the different classes of lipopeptides, it can be 

shown that surfactin content is 1.25 times greater in the liquid phase of the BfR reactor than in the 

STR (Figure 5A). On the other hand, both fengycin and iturin contents are lower in the case of the 

BfR. Profiles from surfactin and fengycin families were also analyzed to make the distinction between 

the different homologues and variants (Figure 5B). Homologues belonging to the same family can be 

distinguished on the basis of the length of the hydrocarbon side chain, whereas variants are discernible 

on the basis of the amino acids sequence of the peptidic group. The GA1 strain produces 5 

homologues of surfactin (C12, C13, C14, C15 and C16) with a majority of C13, C14 and C15, greater 

than 20 % in terms of relative abundance between homologues. Analyses of the respective standard 

deviations show that the differences between the two reactor set ups are not significant. Fengycins 

produced by GA1 strain comprise three homologues (peak 1, 2 and 3 on Figure 6). However, a new 

peak appears systematically at a retention time of 4.7 minutes for the BfR. However, the mass 

spectrum corresponding to this peak (Figure 6A) cannot be linked to a known fengycin structure 

(Figure 6D). 
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Figure 6 : Comparison of fengycin chromatograms with their corresponding mass spectra. (A) Mass 

spectrum of the unknown peak appearing in the sample of the BfR. (B) Fengycin chromatographic profile 

sampled from the BfR. (C) Fengycin chromatographic profile sampled from the STR. (D) Mass spectrum 

relative to peak 1 and 2. Peak 1 corresponds to C14 valine or C16 alanine; peak 2 to C15 valine or C17 

alanine and peak 3 to C16 valine or C18 alanine. 

 

Our attention has been focused mainly on the dynamics of surfactin production since it 

represents the main class of lipopeptides found at the end of the cultures (Figure 6E). Production rates 

observed in the BfR are more regular than those observed for the STR operating conditions. In this last 

configuration, the highest production rates were observed at the end of the exponential phase, i.e. 

between 24 and 30 hours of culture. Final concentration obtained in the fermentation broth after 72 

hours of culture were, respectively, 345,4 ± 32,8 mg / L and 277,3 ± 34.4 mg / L for the BfR and STR. 
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Figure 7 : Comparison of the surfactin production during fermentation in culture medium of the BfR and 

STR. Relative concentration of surfactin is expressed in mg / L of culture medium. 

 

This difference is then increased if the total amount of surfactin produced in each reactor is 

divided by total biomass dry cellular weight (Table 4). Indeed, it can be observed that the conversion 

of substrate to microbial biomass is strongly affected by extracellular matrix formation in the BfR, 

suggesting that the specific surfactin production rate is higher in the BfR than in the STR. This latter 

value is still increased if the amount of surfactin trapped in the matrix of the biofilm is taken into 

account. Indeed, about 20% of the total amount of surfactin is contained in the extracellular matrix of 

the biofilm at the end of the culture. 

 

Tableau 4 : Surfactin production in the BfR and the STR after 72 hours of culture 

  Submerged culture Biofilm reactor 

[Surf]final in liquid phase (mg / L) 277,3 ± 34,4 354,4 ± 32,8 

[Surf]final in biofilm (µg / g of biofilm) /  425 

Ysurf/X (mg surfactin / g of dry biomass) 22,8 ± 2,8 37,9 ± 2,2 
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I.4 Discussion 

Lipopeptides synthesized by B. subtilis include several classes of high-valued molecules with 

surface-active and antibiotic properties. A previous report pointed out the fact that lipopeptides are 

also involved in biofilm formation
[20]

. Until now, submerged culture in STR has been the most 

widespread system used for the production of lipopeptides from B. subtilis. Some studies have already 

been carried out for the optimization of the process, e.g. Jacques and co-workers (1999) developed an 

optimized medium for biosurfactant production 
[21]

. However, productivity in stirred and aerated 

bioreactors is impaired by foam formation which leads to a decrease of the oxygen transfer rate and an 

increase of contamination frequency. The addition of chemical antifoam limits foam formation to 

some extent but leads to operational issues during downstream processing operations. 

Recently, Gancel (2009) and Chtioui (2010) used coated carriers designed for a three phases 

inverse fluidized bed reactor as support for cells immobilization and growth in a STR
[22, 23]

. These 

studies pointed out the fact that lipopeptides are overproduced when cells are immobilized in biofilm 

by comparison to a classical mode of culture when cells are in suspension in the liquid medium. 

Nevertheless, these works were performed at a small-scale (1 liter flask) and the cultivation system is 

quite difficult to scale-up. In our work, the experimental setting is simple and can be easily up-scaled 

by increasing the amount of packing units. Despite the small differences noticed at the level of 

surfactin production between these two set-ups (the amount of surfactin is 1.25 - 1.55 times more 

elevated in the BfR), the general design of this reactor allows the problems associated with foam 

formation to be overcome. The energy consumption is also greatly reduced because the system is not 

based on mechanical mixing. Moreover, the high specific area provided by the metal structured 

packing (450 - 500 m² / m³) could ensure intensification of the process. 

One of the future challenges will be the improvement of the biofilm colonization with a 

controlled thickness in order to avoid clogging and to increase the mass transfer rate of metabolites 

and substrates. Indeed, a major fraction of surfactin remains trapped in the matrix, and is related to the 

thickness of the EPS layer. This latter secreted during the expansion of the biofilm mainly ensures its 

structural integrity and contributes to the persistence of the microbial system in the bioreactor. 

However, dependent on its thickness, the EPS layer can generate local clogging at the level of the 

stainless steel structured packing and thus impair fluid flow and nutrient mass transfer inside the 

matrix. The thickness of the layer should be controlled by hydrodynamics (shear forces) and biological 

factors (mutant strain and medium composition). In this context, monitoring by the non-invasive 

technique X-ray tomography is of great interest in order to model and quantify biofilm distribution in 

process-related conditions. From a fundamental point of view, development of biofilm involves 

different physiological phenomena highlighting new perspectives for the application of this kind of 
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bioreactor. For industrial applications, the physiological state of biofilm could enhance surfactin 

secretion at the expense of fengycins and iturins by the use of specific strains, and consequently would 

lead to simplification of the downstream processing scheme. 

I.5 Conclusion 

In this study, an experimental setting comprising a liquid phase continuously recirculated on a 

metal structured packing was used to promote the formation of biofilm by B. subtilis GA1 and the 

production of lipopeptides. X-ray tomography was successfully used for the non-invasive monitoring 

of biofilm colonization inside the metal packing and showed an uneven distribution of the biofilm in 

the metal packing, leading to local clogging and to a reduction in the biocatalytic efficiency of the 

BfR. However, the BfR configuration has to higher surfactin production than in submerged culture, 

this process being performed without any foam formation. 
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In the previous chapter, the implementation of an experimental BfR was investigated for the 

production of surfactin, a surface-active metabolite involved in physiological pathways particular to 

biofilm of Bacillus subtilis GA1. The multi-scale analysis described the process in its whole and 

compared its performances with a submerged culture. In the following chapter, we consider our 

experimental BfR as a trickle bed bioreactor and we investigate the effect of operating conditions on 

hydrodynamics of the liquid phase and the biofilm distribution within the packing element. Especially, 

we expect that the liquid flow rate and the mode of liquid distribution define the efficiency of the 

biofilm distribution but we cannot predict the corresponding surfactin production. An experimental 

methodology combining high energy X-ray tomography and standard chemical engineering 

methodologies was applied to a packing element before and after a fermentation run. The observations 

were correlated with biological parameters such as substrate consumption, cell growth and surfactin 

production. 
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Abstract 

A trickle bed biofilm reactor was previously designed on the basis of a stainless steel 

structured packing. However, the relationship between biofilm formation and liquid hydrodynamics 

was not investigated in this kind of packing. Since this type of biofilm reactor will be dedicated to the 

production of high-value metabolites, the understanding of this mutual effect is required for an 

optimization of the operational parameters. The impact of three liquid flow rates and two kinds of 

liquid distributor (a simple and a multiple point source) have been studied in a metal structured 

packing biofilm reactor designed to produce surfactin, a biomolecule with surface active and antibiotic 

properties, from Bacillus subtilis GA1. High energy X-ray tomography analysis of the packing 

allowed to correlate initial liquid wetting efficiency and biofilm distribution within the packing 

element. The multiple point source distribution of liquid improved biofilm colonization and surfactin 

production, but was sensitive to clogging. The high liquid shear rate associated with higher liquid flow 

rates involved intense foam formation and biofilm detachment at the end of the fermentation. The 

biofilm decreased the bed void fraction of the packing element and increased the liquid hold-up by 

comparison with a non-colonized packing, suggesting that biofilm formation exhibits a significant 

effect on long-term process performances. 

Keywords : structured packing, hydrodynamics, biofilm reactor, X-ray tomography, 

surfactin 
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II.1 Introduction 

In the field of biotechnological applications, trickle-bed bioreactors have been mainly 

designed for biological operations requiring efficient and cost-effective gas-liquid mass transfer such 

as waste gas treatments or bulk chemicals production [1-5]. These continuous bioprocesses are 

performed by multiple-species biofilms displaying high robustness [6, 7]. In the context of pure 

cultures, single-species biofilm cultivation has only been investigated for the production of 

metabolites in lab and pilot scale bioreactors exhibiting low scalability potential [6]. In the past few 

years, several authors proposed to design more efficient single-species biofilm reactor improving 

scalability and productivity compared with conventional processes [8, 9]. Accordingly, classical solid 

carriers such as randomly packed elements usually used in trickle bed bioreactors have been replaced 

by stainless steel structured packing in recent studies for the design of single-species biofilm reactor 

producing value-added products [10-13]. A metal structured packing is an assemblage of stainless 

steel corrugated sheets in a staggered arrangement. It has been largely used in separation processes 

involving unit operations such as distillation, absorption and liquid-liquid extraction in chemical 

industry since sixties [14]. Compared to conventional trays or randomly packed elements, structured 

packings significantly increase capacity and separation efficiency of distillation column, provide high 

specific surface area, decrease gas pressure drop, enhance gas-liquid transfer rate and display good 

mechanical resistance. Moreover, their well-defined geometrical properties ease their modelling and 

the optimization of the operating conditions that have been reported so far in the literature [15-19]. 

However, literature addressing this topic is confined to chemical engineering applications. In terms of 

a single-species biofilm reactor design with metal structured packing, it is crucial to understand and 

characterize fluid hydrodynamics, and its impact on biofilm formation and target molecule production. 

It is important to point out at this level that the biofilm structure is also able to affect liquid phase 

distribution across the packing and these phenomena are strongly interrelated. 

In a previous study, we investigated the production of surfactin from Bacillus subtilis GA1 in 

an experimental metal structured packing biofilm reactor having the configuration of a trickle-bed 

reactor [11]. A single packing element was placed in the top of a 20 L classical bioreactor in which the 

mechanical stirring system was removed. The liquid medium filling the bottom of the vessel was 

continuously recirculated on the packing element in which biomass grows on the form of a biofilm. 

An ascending air flow rate was performed under the packing element just above the liquid medium in 

order to avoid excessive foam formation. Multi-scale analysis previously allowed for the 

characterization of the process, i.e. biofilm distribution inside the packing element, composition of the 

biofilm and secretion profile of lipopeptides. However, the characterization stands for only one 

process condition and gives no information about the impact of operating conditions on the growth 

and distribution of the biofilm and surfactin production. 
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In the present study, we investigate the effect of the recirculation liquid flow rate and the 

mode of liquid distribution on process performances. In order to characterize the impact of these 

operating conditions, we developed an experimental methodology based on X-ray tomography 

analysis of the metal structured packing to assess the performances of liquid dispersion and biofilm 

distribution. Hydrodynamic parameters such as local flow rates, liquid hold-up and oxygen mass 

transfer were measured and correlated with biological parameters such as substrate consumption, 

biomass growth and surfactin production. On this basis, optimal operational parameters were 

identified for maximizing the colonization of the packing and surfactin yield. 

II.2 Material and Methods 

II.2.1 Strain and medium 

The Bacillus subtilis GA1 strain was used for all experiments carried out in this work. Bacillus 

subtilis GA1 was isolated from strawberry fruits by the Laboratorio Vitrocoop Cesana, Italy [20]. The 

storage of the strain as well as the optimized liquid medium used during fermentation runs were 

previously described by Zune et al. (2013) [11]. 

II.2.2 Experimental set-up 

Fermentation runs of 72 hours were carried out in the same experimental setting than that used 

in a previous study [11]. This experimental setting comprised a 20 L bioreactor vessel equipped with a 

stainless steel structured packing (BX gauze packing, 16 and 17 cm of height and diameter 

respectively, from Sulzer Chemtech, Switzerland) placed in the headspace of the vessel (Figure 1A). 

Liquid medium (6 L) in the bottom of the vessel was recirculated by a peristaltic pump (connection 

made with silicone tubing with an internal diameter of 5 mm) at different flow rates (200, 400 and 600 

mL/min respectively corresponding to liquid loads of 8.8, 17.6 and 26.4 L/min.m² on the packing 

element). The recirculated medium was distributed at the top of the packing either by a simple point 

source distribution centred on the packing (Figure 1B) or by a distributor plate (stainless steel circular 

plate perforated with 20 holes of 2mm diameter) (Figure 1C). Compressed air was supplied above the 

liquid phase just under the packing at a flow rate of 1 vvm in order to avoid foam formation. 
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Figure 1 : Scheme of the experimental setting. A 20L bioreactor equipped with one packing element at the top of the 

vessel; Position and specific dimensions of the simple and multiple point source distributor of liquid (B and C) 

 

For each experiment, inoculation was made with 2% (v/v) of an overnight preculture. 

Temperature and pH were maintained respectively at 37°C and 6.95 during the cultivation run. After 

72 hours of culture, medium recirculation was stopped and the packing was kept 2 hours in the 

bioreactor to remove the excess of liquid medium before further analysis. Each fermentation run was 

carried out in duplicate. A summary of the operating conditions and experiments tested in this work is 

given in the Table 1. 

 

Tableau 1 : Summary of operating conditions and experiments performed in this work 

 Liquid load 

 8.8 L/m².min 17.6 L/m².min 26.4 L/m².min 

Simple point source X X X 

Multiple point source - X - 

    

 

II.2.3 Experimental methods 

X-ray tomography analysis and standard methods of chemical engineering were combined to 

assess liquid hydrodynamics in a packing element before and after fermentation runs. The optical 

density and the surfactin concentration in the liquid phase were measured during the fermentation runs 

in order to characterize dynamics of the process. 
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II.2.3.1  X-ray tomography 

Liquid and biofilm distribution inside the column were assessed by high energy (420 kV) X-

ray tomography analysis (Laboratory of Chemical Engineering, Liège). The measurements of 

tomography carried out in this study were based on the work of Aferka et al. (2011) [17] who 

described the use of the X-ray tomography to characterize liquid hydrodynamics in a column packed 

with stainless steel structured packing (MellapakPlus 752.Y). Tomographic measurements of the BX 

gauze packing were performed in cross sectional areas located at different heights between the top and 

the bottom of the packing (every 3.6 and 5 mm for liquid and biofilm distribution respectively) with, 

as well as without, liquid flow and biofilm. 

The set-up used for tomographic measurements is described in Figure 2. The packing element 

was put on three equally distanced armatures attached to the wall of a Plexiglas cylinder having the 

same dimension than the 20 L bioreactor (22 and 53 cm diameter and height respectively). A funnel, 

placed on the top of the Plexiglas cylinder, was centred and adjusted above the packing element to 

reproduce the same simple point source distribution as the bioreactor. In order to study the effect of 

the multiple point source distribution, the distributor plate was placed and centred on the top of the 

structured packing. The Plexiglas cylinder was placed on the rotation platform of the X-ray tomograph 

and thus was the movable part of the set-up. Liquid recirculation was performed with a peristaltic 

pump (Watson Marlow series 300). A segmented collecting container, used to measure local liquid 

flow rates at the bottom of the packing, was placed under the packing element and was connected with 

the liquid container. 
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Figure 2 : Scheme of the setup designed for X-ray tomography analysis. A Rotation platform of the tomograph; B 

Plexiglas cylinder; C Column packed with a single gauze packing element; D Funnel centred on the packing; E Point 

source of liquid; F Liquid container; G Peristaltic pump; H Armatures supporting the packing; I X-ray channel; J 

Collecting container; K Segmented collecting container used for local liquid flow rates measurements at the bottom of 

the packing. * Only A, B, C & D are in a rotation motion during analysis **. E is connected to a silicone tubing. 

Arrows display orientation of corrugated sheets above the collecting container 

 

The procedure followed for image reconstruction of cross-section areas from tomography 

measurements was obtained by an algorithm described by Toye et al. (1998) [21]. In order to visualize 

and quantify the liquid distribution inside a non-colonized packing, the projection data obtained on the 

dry packing were subtracted, before reconstruction, from those obtained at the same height on the 

irrigated packing. The resulting projection data were then used to obtain reconstructed images of 

liquid distribution. This procedure was not applied for biofilm extraction. Thus, the biofilm 

visualization and quantification involved image processing eliminating pixels corresponding to the 

corrugated sheets of the structured packing. The visualization of the liquid distribution was not 

investigated in the colonized packing because subsequent image processing could not discriminate 

water pixels from biofilm pixels since biofilm of Bacillus subtilis contains more than 90% of water 

[11]. 
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II.2.3.2  Processing of reconstructed images 

Background noise was eliminated in order to highlight the differences between packing, liquid 

or biofilm elements. The reconstructed sections are of 699 x 699² pixels and the spatial resolution in 

horizontal planes is around 0.36 mm. The centre of the image corresponds to the centre of the packing 

cross section. The extraction of packing, liquid or biofilm elements from the reconstructed images was 

performed according to various numerical treatments available in the Image Analysis MatLab toolbox 

(mainly involving thresholding, erosion, dilatation, skeletisation) described by Viva et al. (2011) [22]. 

The extraction procedure of packing, liquid or biofilm elements from reconstructed images resulted in 

binary images (for more details, see Supplementary files 1, 2 & 3 in the supplementary material). 

These latter were used to quantify bed void fraction of the dry packing, liquid dispersion, biofilm 

amount and biofilm dispersion on each packing cross section. 

II.2.3.3  Quality of liquid and biofilm distribution within the packing 

The quality of liquid and biofilm distribution were assessed with parameters that take into 

account the geometry of the structured packing at a local scale. These parameters were measured on 

binary images resulting of the extraction of liquid and biofilm elements. A rotation of all binary 

images was performed in order to place the corrugated sheets in a horizontal position. Then, the 

indices i , j of corresponding liquid and biofilm pixels were respectively extracted in two column 

vectors A and B in order to treat liquid and biofilm pixels like events of a statistic distribution of 2 

variables. The variables A , B correspond to the distribution of liquid or biofilm elements along a 

parallel (X) and a perpendicular axis (Y) to the corrugated sheets orientation, respectively. The 

variables A , B were transformed in order that the origin (0,0) of the parallel and perpendicular axis, 

initially located in the lower left corner of the binary image, corresponds to the centre of the packing 

cross section. In Figure 3, a graph plotting (A,B) illustrates the liquid distribution on a packing cross 

section (Figure 3A), the histograms of A and B show the distribution frequency of the liquid according 

X and Y axis (Figure 3B,C) and their respective boxplots (Figure 3D,E). The interquartile range (IQR) 

was selected to characterize the performance of liquid or biofilm dispersion according to X and Y axis 

and an heterogeneity factor of the dispersion (FD) was calculated with the following equation 

(Equation 1): 

B

A

D
IQR

IQR
F =               (1) 

FD allows to estimate the effect of corrugated sheets orientation on liquid and biofilm 

dispersion. For values of FD > 1, the dispersion of liquid or biofilm mainly occurs in the direction of 

corrugated sheets whereas for values of FD near to 1, the dispersion is more evenly distributed 

irrespective of corrugated sheets disposition. For values of FD < 1, liquid and biofilm dispersion 

mainly occurs in a perpendicular direction to the orientation of the corrugated sheets. 
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Figure 3 : Characterization of the liquid dispersion on a packing cross section. A Visualization of liquid dispersion 

(blue) in a packing cross section (gray). X and Y axis are respectively parallel and perpendicular to the corrugated 

sheets orientation. B and C are the histograms of frequency distribution according to X and Y axis and D and E are  

their respective boxplots 

 

II.2.3.4  Quantification of the bed void fraction and the biofilm 

The bed void fraction of the dry packing (ε) was estimated by calculating the relative volume 

effectively occupied by the corrugated sheets (VCS) on the binary images (Equation 2 & 3): 
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CSV−= 1ε                                      (3) 

Tomographic measurements were performed on cross section areas every 3.6 mm since the 

bottom (height = 0 mm) until the top (height = 160 mm) of the packing element. The indice i 

corresponds to the cross section area number. For height = 0 mm, i = 1. PCS is the number of 

corrugated sheets pixels on the binary image arising from liquid extraction. rp is the radius of the 

packing expressed in number of pixels. 
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The relative volume effectively occupied by the biofilm (VB) in the packing element was 

similarly estimated (Equation 4): 
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Tomographic measurements were performed on cross section areas every 5 mm since the 

bottom (height = 0 mm) until the top (height = 160 mm) of the packing element. The indice i 

corresponds to the cross section area number. For height = 0 mm, i = 1. PB is the number of biofilm 

pixels on the binary image arising from biofilm extraction. 

Then, the bed void fraction of a colonized packing (εc) could be calculated (Equation 5). 

Bc V−= εε                              (5) 

 

II.2.3.5  Dynamic liquid hold-up  

A draining method was used to compare dynamic liquid hold-up before and after colonization 

of the packing element. For each operating condition, the liquid was recirculated during 15 minutes in 

order to reach a steady-state liquid flow in the packing element. Then, liquid flow was stopped and 

liquid was collected by gravity during 20 minutes at the bottom of the column. The collected liquid 

volume corresponds to the dynamic liquid hold-up, i.e. the volume fraction of the packing element 

occupied by the moving liquid at the same instant. 

II.2.3.6  Measurement of local flow rates 

Measurement of local liquid flow rates was performed with a segmented collecting container 

(Figure 2K) located at the bottom of the packing with, as well as without biofilm. Once a steady-state 

liquid flow was reached in the packing, local flow rates were quantified for each fraction of the 

collecting container in triplicate. Each fraction of the segmented container was connected with a 

silicon tubing in order to facilitate sampling and had a design minimizing liquid retention. 

II.2.3.7  Growth of vegetative cells in the liquid phase 

Dynamics of biomass concentration was measured by collecting samples of culture medium 

that were stored at 4°C before further analysis. Optical density was measured with a 

spectrophotometer (Genesys 10S UV-Vis) at a wavelength of 600 nm. 
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II.2.3.8  Surfactin quantification 

The surfactin was quantified in the supernatant of samples collected during the fermentation 

runs. The method is described in the previous study [11]. 

II.3 Results 

II.3.1 Characterization of process performances in a non-colonized packing 

II.3.1.1  Analysis of liquid distribution by X-ray tomography 

The liquid distribution was first characterized in a single element of packing non-colonized by 

the biofilm. The liquid was supplied at three different loads (8.8, 17.6 and 26.4 L/m².min) by a simple 

point source distribution centred on the packing or by a multiple point source distributor (circular 

stainless steel plate with 20 holes of 2 mm diameter). The liquid distribution inside the packing 

element was visualized by X-ray tomography. Figure 4 shows images of  irrigated cross sections 

located at the top (h1) and the bottom (h2) of the packing for each operating condition. On these 

pictures, the binary image displaying liquid is superimposed on the binary image of the dry packing 

cross section at the same height. Dark and light pixels respectively correspond to liquid and corrugated 

sheets. The liquid distribution on the packing cross section appears as a cloud of points suggesting that 

liquid flows on the form of liquid threads. These latter mainly occur at the contact point of oppositely 

oriented channels of corrugated sheets. The density of liquid threads per cross section, assuming to 

represent liquid hold-up, increases with the liquid load and is enhanced with the distributor plate. An 

increase of the liquid load increases the vertical velocity of the liquid at the exit of the distribution 

source accentuating liquid dispersion within the packing as it is observed for the highest liquid load 

(26.4 L/m².min). Whereas at a same liquid load (17.6 L/m².min), the distributor plate improves the 

liquid dispersion and thus the wetting efficiency compared to the other conditions. 
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The heterogeneity factor of dispersion (FD) increases between h1 and h2 for each operating 

condition, meaning that corrugated sheets orientation impacts dispersion of the liquid in their own 

direction (X axis). An important FD value suggests a poor liquid distribution on the whole packing 

cross section as it is observed for the liquid load of 8.8 L/m².min. On the opposite, when FD is close to 

1, the liquid distribution is more homogeneous on the whole cross section. It means that liquid velocity 

and multiple point source distribution prevail over corrugated sheets orientation for the highest liquid 

load (26 L/m².min) and the distributor plate. 

 

 

Figure 4 : Reconstructed images of packing cross section irrigated by the liquid at the top (h1) and the bottom of the 

packing (h2) for each operating ondition. Dark and light pixels respectively correspond to liquid and corrugated 

sheets. The heterogeneity factor of dispersion (FD) measures the impact of corrugated sheets orientation on liquid 

distribution 

 

II.3.1.2  Oxygen mass transfer 

The oxygen transfer rate in the packing element was estimated and compared between each 

operating condition. The overall oxygen transfer capacity was measured on the basis of the re-

oxygenation ability of the liquid phase after a CO2 degassing step. It increases with the recirculation 

flow rate and depends of the liquid distribution mode (Figure 5). Although the best KLa is observed for 

the highest liquid load, it is slightly better with the distributor plate than the simple point source 

distribution at a same liquid load (17.6 L/m².min). It means that KLa inside the packing element also 

depends of the liquid dispersion efficiency. 
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Figure 5 : Bar graph showing KLa values for each operating condition 

II.3.2 Characterization of process performances in colonized packing 

II.3.2.1  Determination of the biofilm distribution by X-ray tomography 

The distribution of the biofilm was characterized by X-ray tomography inside the packing 

element after a fermentation run of 72 hours for each operating condition. The reconstructed images of 

packing cross sections were processed in order to extract the biofilm (see files 3 in the supplementary 

materials). The biofilm characterization has only been performed for liquid loads of 8.8 and 17.6 

L/m².min supplied by the simple point source distribution. Indeed, liquid load of 26.4 L/m².min led to 

the detachment of the major part of the biofilm at the end of the culture. Figure 6 displays the area 

occupied by the biofilm (blue pixels) on a packing cross section located at middle height for the three 

operating conditions. The horizontal and vertical boxplot illustrate the dispersion of the biofilm along 

parallel (X) and perpendicular (Y) axis to the orientation of the corrugated sheets. In the case of a 

simple point source distribution centred on the packing, biofilm preferentially spreads in a parallel 

direction to the corrugated sheets rather than in a perpendicular one. Moreover, the biofilm seems to 

be absent from the areas close to the centre of the cross section. On the opposite, biofilm is 

homogeneously distributed over the packing cross section when a distributor plate is used. It must also 

be noticed that liquid hold-up in the distributor plate led to the formation of a biofilm pellicle that 

clogged some holes of the plate. This phenomenon consequently modified liquid distribution within 

the packing element and led to underfed areas stopping the growth of the biofilm. For a same height, 

the efficiency of biofilm colonization is better with the distributor plate. 
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Figure 6 : Visualization of the biofilm (blue pixels) on a cross section located at a middle height of the packing. A and 

B correspond to the liquid supplied by a simple point source distribution at 8.8 & 17.6 L/m².min whereas C 

corresponds to the liquid supplied by the distributor plate at a liquid load of 17.6 L/m².min. The horizontal and 

vertical boxplots illustrate biofilm dispersion according to X and Y axis respectively 

 

In Figure 7, biofilm distribution is characterized on the overall height of the packing for the 

three operating conditions. In Figure 7A, displaying the surface of biofilm per cross section area, 

biofilm colonization increases from the top to the bottom of the packing and is 3 times greater with the 

multiple than with the simple source point distribution. The interquartile ranges (IQR) of the biofilm 

distribution according to X and Y axis of each cross section are plotted in Figure 7B,C in order to 

characterize the biofilm dispersion. The latter increases from the top to the bottom of the packing and 

is more pronounced along X axis direction rather than Y axis direction for each condition. However, 

the distributor plate greatly improves the biofilm dispersion along Y axis compared to the single point 

source distributor. In a similar way to the liquid distribution, FD increases from the top to the bottom 

of the packing for the biofilm fed by the simple point source distributor meaning that biofilm 

preferentially grows in the orientation of the corrugated sheets. Whereas the distributor plate displays 

FD close to 1 along the height of the packing meaning that biofilm evenly colonizes the packing cross 

section (Figure 7D). 
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Figure 7 : Characterization of the biofilm distribution along the height of the packing element for each operating 

condition (excepted those of the liquid load of 26.4 L/m².min supplied by the simple point source distribution). A 

Quantification of the biofilm amount per packing cross section along the height (expressed in % of biofilm surface per 

packing cross section). The interquartile range estimating the biofilm dispersion according to X and Y axis is 

respectively plotted in B and C. The heterogeneity factor of the dispersion is plotted in D 

 

Liquid and biofilm distribution exhibit similar characteristics within the packing element. 

Thus, the performances of the liquid distribution would define those of biofilm distribution. In other 

words, biofilm mainly grows and develops on areas wetted by the liquid flow. However, liquid 

hydrodynamics inside the packing element cannot reach a steady state during the fermentation run 

because growth of the biofilm involves a decrease of the packing void fraction. This effect will be 

more thoroughly investigated in the next section. 
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II.3.2.2  Influence of biofilm on liquid hydrodynamics 

In order to assess the impact of biofilm on liquid hydrodynamics, several parameters were 

measured before and after the colonization of the packing. First, the measurements of the local flow 

rates were measured at the bottom of the packing. Figure 8 displays local flow rates (expressed in % of 

the recirculation flow rate) in 9 areas of the packing cross section for each operating condition (before 

and after colonization). When the liquid is supplied with the simple point source distribution (Figure 

8A,B & C), the liquid is only collected in areas located along the central corrugated sheets of the 

packing (areas 1, 3, 5, 6 & 9). The highest local liquid flow rates are measured in areas 1, 6 & 9 of the 

non-colonized packing for each liquid load. For these three specific areas, the cumulated liquid flow 

accounts for more than 70% of the total liquid flow rate. This non-uniform distribution of local liquid 

flow rates suggests that liquid takes preferential flow inside the packing element, i.e. liquid would 

easily flow through channels direction of the corrugated sheets. 

The presence of biofilm modifies the distribution of local flow rates at the bottom of the 

packing because the areas 3, 5 and 9 collect more than 70 % of the total liquid flow rate in the 

colonized packing. This modification occurs in areas located along the central corrugated sheets. For 

liquid loads of 8.8 and 17.6 L/m².min, liquid flow rate in the area 6 drops in the presence of biofilm 

but strongly increases in the adjacent area 5. When liquid is supplied by the multiple source point 

distribution (Figure 8D), the distributor plate divides the liquid flow in multiple liquid threads spread 

on the whole cross section of the packing at the top of the column. Thus, local flow rates are equally 

distributed on the packing cross section and reach about 10% of the initial liquid local flow rate for 

each area of the collecting container. Biofilm growth tends to accentuate liquid dispersion towards the 

extremities of the packing cross section because highest local flow rates are collected in the 6, 7, 8 & 9 

areas. The low amount of liquid in the central areas (1, 2, 3, 4 & 5) means that a small fraction of the 

liquid trickles in the areas colonized by the biofilm, increasing retention time of these liquid fractions. 
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Figure 8 : Comparison of local liquid flow rates measured at the bottom of the packing for each operating condition in 

a non-colonized packing (nc*) and colonized packing (c*). A, B and C respectively display bar histograms of local flow 

rates generated by a simple point source distribution supplying liquid at 8.8, 17.6 and 26.4 L/m².min. D displays bar 

histogram of local flow rates generated with the distributor plate supplying liquid at 17.6 L/m².min. E shows the 

disposition of the segmented container compared to the orientation of corrugated sheets and numbers the collecting 

areas 

 

The modification of the liquid distribution inside the packing arises from a decrease of the bed 

void fraction, a deformation of the bed structure and structural properties of the biofilm. The bed void 

fractions of the packing are respectively 0.927, 0.887, 0.866 and 0.693 for a dry packing, colonized 

packings fed by the simple point source distribution (8.8 and 17.6 L/m².min) and a colonized packing 

fed with the distributor plate. Greater the amount of attached biomass is, lower the bed void fraction is 

(Figure 9A). For a same liquid load, a decrease of the bed void fraction increases the dynamic liquid 

hold-up (Figure 9B). That supposes a liquid retention inside stagnant regions within the biofilm which 

loosely retain liquid and thus increase its residence time in the packing element. 
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Figure 9 : Bed void fraction and dynamic liquid hold-up of a structured packing and its colonized counterparts for 

each operating condition (A and B) 

 

II.3.3 Microbial growth kinetics 

The impact of operating conditions on biomass growth and surfactin production was 

investigated after fermentation runs of 72 hours. The optical density (OD) was measured in the liquid 

phase during the fermentation run (Figure 10A). This parameter gives relevant information about 

process dynamics. The OD increases in the first hours of culture to reach a maximum after 16 hours of 

culture. The OD subsequently decreases until a stable value at the 48th hour of culture. At the same 

time (0 - 4th hour), dissolved oxygen concentration in the liquid phase sharply decreases to a value of 

0% until the end of the culture (data not shown). This step is concomitant with the attachment of 

vegetative cells on the packing element and the formation of biofilm. The intensity of this 

phenomenon greatly depends of the operating conditions. The growth rate of vegetative cells in the 

liquid phase increases with the recirculation liquid flow rate excepted for the greatest one (26.4 

L/m².min). In this latter, an important foam formation early appears in the vessel reducing cell growth 

in the liquid phase. For a same liquid load (17.6 L/m².min), the distributor plate increases cell growth 

rate in the liquid phase. The drop of OD is linked with the attachment of vegetative cells on the 

packing element. 

The evolution of the OD in the end of the culture also depends of operating conditions. A 

sudden increase of OD means dispersion of biofilm in the liquid phase at the end of culture. The 

intensity of biofilm dispersal depends of the liquid load and more exactly of the liquid shear rate. The 

final OD of the liquid phase reaches 0.7, 6.8 and 18.9 for 8.8, 17.6 and 26.4 L/m².min recirculation 

liquid flow rates respectively. Whereas it reaches 1.6 with the distributor plate. The latter reduces the 

liquid velocity trickling in the packing element and thus decreases shear effect involved in biomass 

detachment. The liquid shear seems to be also involved in foam formation. This phenomenon is 

observed when the liquid is supplied by the simple point source distribution aspersing the packing at 

17.6 and 26.4 L/m².min recirculation flow rates. 
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II.3.4 Surfactin production 

The production of surfactin, quantified in the liquid phase during the fermentation run, 

exhibits kinetics depending of the recirculation flow rate and the mode of liquid distribution (Figure 

10B). The production of surfactin starts during the exponential growth and induces a first foam 

formation in the first 24 hours of culture. When cells enter in the stationary phase, at the moment of 

substrate depletion, two others families of lipopeptides, i.e. fengycin and iturin, are secreted (data not 

shown), leading to a second foam formation after 48 hours of culture. When the biofilm is fed by a 

simple point source, the final surfactin concentration respectively reaches 237, 84 and 15 mg/L for 8.8, 

17.6 and 26.4 L/m².min recirculation flow rates. Whereas surfactin concentration is up to 300 mg/L 

with the distributor plate. As mentioned before, important foam formation occurring at 17.6 and 26.4 

L/m².min recirculation flow rates induces transfer of surface-active molecules such surfactin from the 

liquid phase towards the foam phase. The drops of surfactin concentration in the liquid phase observed 

after 22 hours and 48 hours of culture illustrate this phenomenon. At the lowest recirculation flow rate 

(8.8 L/m².min), the intensity of foam formation is low and prevents surfactin to escape in the foam 

phase. 

 

 

Figure 10 : Evolution of the optical density and the surfactin concentration (A and B) in the liquid phase during the 

fermentation run for each operating condition 
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II.4 Discussion 

In the previous work, the experimental single-species biofilm reactor designed for the 

production of surfactin from Bacillus subtilis GA1 was characterized by a multi-scale approach 

bringing relevant information about process mass balance, biofilm composition and lipopeptides 

profiles [11]. However, no intrinsic process characterization about the impact of operating conditions 

on process performances has been investigated. These specific effects, are considered in this work and 

involve the impact of the recirculation flow rate and the mode of liquid distribution. Figure 11 

summarizes the impact of operational parameters on the efficiency of the biofilm reactor intended for 

the production of surfactin. 

 

 

Figure 11 : Summary of physicochemical and biological parameters involved in the production of surfactin in the 

experimental biofilm reactor. The interrelated effects acting between each parameter are described. The arrows 

indicate a positive effect whereas "T" indicate a negative effect 

 

The pattern of the liquid distribution before the fermentation shares similarities with those of 

the biofilm distribution at the end of culture each operating condition. In other words, the biofilm 

formation preferentially takes place on packing areas wetted by the liquid. It means that performance 

of the liquid distribution inside the packing element, i.e. the initial wetting efficiency before biofilm 

formation, is crucial for an effective biofilm colonization. Among the numerous hydrodynamic 

parameters, the wetting efficiency of structured packing is strongly influenced by the initial liquid 

distribution depending on the number of irrigation point sources per surface area above the column 

[21]. Indeed, the distributor plate gives a better liquid distribution than the simple point source. 

However, the retention of the liquid in the distributor plate allows B. subtilis to form a pellicle of 

biofilm clogging holes of the plate and thus affecting the liquid distribution. 
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The range of liquid loads (0.54 - 1.62 m³/m².h) tested in our experimentations is lower than 

those used for structured packing chemical engineering studies (1 - 25 m³/m².h) [16, 19]. At these low 

liquid loads, it has been demonstrated that the liquid flows within the packing element on the form of 

liquid threads and droplets rather than a liquid film, decreasing wetted surface compared to higher 

liquid loads [18]. 

Although liquid distribution is a critical parameter for an efficient wetting efficiency, it is also 

a key factor involved in the oxygen transfer rate [23]. The indirect methodology used for the 

evaluation of the oxygen transfer rate in the packing element reveals that for a same recirculation flow 

rate, oxygen mass transfer rate increases with the improvement of the liquid distribution. In the 

biofilm reactor supplying liquid with the distributor plate, faster growth of vegetative cells observed in 

the liquid phase in the beginning of the culture reinforces this affirmation. Despite air load influences 

liquid hydrodynamics, the absence of an effective ascending air flow within the packing element 

occurs in the experimental set-up because the packing diameter is smaller than those of the bioreactor, 

making a preferential pathway for the gas flow. 

The measurement of local liquid flow rates at the bottom of the packing permits to assess the 

intensity of the local liquid velocity within the packing element. This latter is an important parameter 

because it is directly related with shear stress (power law dependence on Reynolds number) [24]. The 

latter is a physicochemical parameter affecting biofilm formation during initial cell adhesion [25], 

influencing nutrients mass transfer towards mature biofilm [26] and acting as a key factor during 

biofilm dispersal [27] in the end of the fermentation run. More specifically, fluid flow around the 

biofilm is known to induce deformation of the biofilm structure. Depending on the Reynolds number 

value, i.e. the shear rate, the biofilm can form loose mushroom-like structures in laminar flow or 

smooth and thin structures in turbulent flow [24]. At the macro-scale, these morphological 

characteristics (thickness, roughness and compactness) influence performances of the process [28]. 

The trajectories of liquid threads, submitted to gravity, are guided by the oriented channels of the 

corrugated sheets leading to greater local flow rates, i.e. liquid velocities, in the peripheral areas of the 

packing cross section. Whereas intermittent wetting by droplets running through the channels decrease 

local velocities in the central areas of the packing cross section [16, 19]. Thus, the lower shear rate of 

liquid occurring around the central area of the packing cross section would promote cell adhesion and 

subsequent biofilm growth leading to the conical shape. Moreover, high liquid velocities trickling 

within the packing involved foam formation which contributes to decrease mass transfer rate, cell 

adhesion and surfactin recovery in the liquid phase. In soft operating conditions, i.e. simple point 

source and distributor plate supplying liquid at 8.8 and 17.6 L/m².min respectively, very low foam 

formation occurs and avoids the use of an antifoaming agent. On the other hand, shear effect of the 

liquid can benefit continuous processing of the biofilm reactor by regulating the thickness of the 

biofilm [28] and can avoid clogging of spaces between corrugated sheets. In an optimal scenario, the 
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operating conditions that control nutrients supply and shear effect should be able to balance biofilm 

growth and biofilm dispersal, i.e. keep a constant thickness of the biofilm, in order to maintain a 

steady-state liquid hydrodynamics. 

As mentioned before, initial liquid hydrodynamic conditions influence biological 

performances of the bioreactor. During establishment of the biofilm in the packing element, liquid 

hydrodynamics cannot reach a steady-state because growth of the biofilm continuously modifies the 

distribution of the bed void fraction and thus the flow patterns within the packing element. The 

decrease of the bed void fraction caused by biofilm growth is associated with an increase of the 

dynamic liquid hold-up as it has also been observed by Trejo-Aguilar et al. (2005) [2] in a trickle-bed 

bioreactor. These authors assumed that biofilm acts as a sponge that loosely retains liquid in stagnant 

regions. When liquid flow is suspended to determine the dynamic liquid hold-up, the retained liquid 

drains and is accounted for a such. Indeed, the biofilm matrix of B. subtilis is composed of sorptive 

exopolymeric substances able to retain and accumulate water (stagnant region) [29]. This fraction of 

liquid "wetting" the biofilm participates a little in the liquid-biofilm mass transfer and thus in the 

bioreactor productivity. On another hand, biofilm matrix contains water channels transporting water 

and nutrients within the biofilm (dynamic region) and extracting secreted metabolites towards the 

liquid phase [30, 24]. Although a fraction of liquid is "pumped" by the biofilm, the other liquid 

fraction seems to be deviated and takes preferential flows within the colonized packing. That liquid 

flow behaviour should have an impact on the residence times distribution of the liquid in the packing 

compared to initial conditions that are close to the dispersed plug flow model [31]. Trejo-Aguilar et al. 

(2005) [2] observed a spread of the residence times distribution curve, as well as the apparition of 

humps indicating stagnant regions, channelling and internal liquid recirculation in their trickle bed air 

biofilter. 

In conclusion, this work gives a first insight of hydrodynamic aspects within single-species 

biofilm reactor with metal structured packing and proposes an original methodology based on high 

energy X-ray tomography to characterize liquid and biofilm distribution. It has been observed that 

efficiency of initial liquid distribution controls the biofilm distribution within the packing. This 

parameter mainly depends of the liquid distributor design. The local liquid velocity within the packing 

element, depending of the recirculation flow rate, the structural properties of the packing and the bed 

void fraction distribution, have an effect on initial cell attachment and subsequent biofilm growth. The 

liquid flow rate is involved in a physicochemical effect leading to foam formation. The latter decreases 

surfactin recovery in the liquid phase and provokes biofilm detachment of the packing. Thus, the best 

surfactin yield production, up to 300 mg/L, occurs for a liquid load of 17.6 L/m².min supplied by a 

multiple point source distributor. From a technical point of view, these operating ditions are 

particularly interesting since foam formation is completely suppressed. 
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In the two following chapters, we investigate the formation of filamentous fungal biofilm in 

the experimental BfR with structured packing and we assesse the secretion performances of a target 

molecule. This third chapter focuses on the synthesis of a small protein, hydrophobin of class II 

(HFBII), from Trichoderma reesei, exhibiting surface-active properties and playing a role during 

fungal biofilm colonization of the packing element. This work is a collaboration with M. Khalesi, 

PhD student at KU Leuven. One of his thesis objectives was to design a production process of 

hydrophobin. We combined our skills to develop a production process of hydrophobin based on the 

experimental BfR. The growth performances of the fungus are characterized on diverse carbon 

substrates at the bench scale. Then, the formation of the fungal biofilm is assessed in a 2L 

bioreactor comprising several corrugated sheets of metal structured packing and hydrophobin 

production is compared with a classical submerged culture. Finally, a scale-up of the process and a 

continuous implementation are investigated in a 20 L experimental BfR. 
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Abstract 

Production and purification of hydrophobin HFBII has recently been the subject of 

intensive research, but the yield of production needs to be further improved for a generic use of this 

molecule at industrial scale. In a first step, the influence of different carbon sources on the growth 

of Trichoderma reesei and the production of HFBII was investigated. The optimum productivity 

was obtained by using 40 g/L lactose. Carbon starvation and excretion of extracellular enzyme were 

determined as two main conditions for the production of HFBII. In the second phase, and according 

to the physiological mechanisms observed during the screening phase, a bioreactor set up has been 

designed and two modes of cultures have been investigated, i.e. the classical submerged 

fermentation and a fungal BfR. In this last set-up, the broth is continuously recirculated on a metal 

packing exhibiting a high specific surface. In this case, the fungal biomass was mainly attached to 

the metal packing, leading to a simplification of downstream processing scheme. More importantly, 

the HFBII concentration increased up to 48.6 ± 6.2 mg/L which was 1.8 times higher in this reactor 

configuration and faster than the submerged culture. X-ray tomography analysis shows that the 

biofilm overgrowth occurs when successive cultures are performed on the same packing. However, 

this phenomenon  has no significant influence on the yield of HFBII, suggesting that this process 

could be operated in continuous mode. Protein hydrolysis during stationary phase was observed by 

MALDI-TOF analysis according to the removal of the last amino acid from the structure of HFBII 

after 48 h from the beginning of fermentation in BfR. Hopefully this modification does not lead to 

alternation of the main physicochemical properties of HFBII. 

Keywords: hydrophobin; foaming; biofilm reactor; Trichoderma reesei; tomography. 
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III.1 Introduction 

Trichoderma reesei is a saprophytic fungus naturally occurring in soils and can be easily 

cultivated in laboratory conditions over a broad range of temperatures (20 - 30 °C) and at relatively 

low pH [1]. T. reesei has been widely studied for its secretion efficiency and more precisely for the 

production of extracellular enzymes such as cellulases and hemi-cellulases. The ability to use a 

variety of carbon sources [2], and its growth and secretion capabilities [3] remark this fungi as a 

powerful microbial cell factory. 

Beside cellulolytic enzymes, T. reesei is able to produce hydrophobins, a family of proteins 

with high surface activity [4]. Hydrophobins exhibit a negative effect when present in carbonated 

beverages contaminated by molds, leading to gushing [5,6]. Nevertheless, due to its outstanding 

surface-active properties, several positive potential applications such as antifouling agent, drugs 

formulation, and stabilization of emulsions have been proposed for this family [7]. Class II 

hydrophobins HFBI and HFBII produced by T. reesei have been structurally studied by many 

authors [8,9]. On one hand, HFBI is bound to the mycelium and can be easily produced in 

submerged culture to a titer ranging from 1 to 2 g/L. On the other hand, HFBII is mainly secreted to 

the extracellular medium in much lower amount, i.e. around 30 mg/L with wild type T. reesei and 

around 200 mg/L with genetically engineered T. reesei. 

Although genetically engineered strains lead to a significant improvement of the titer, 

severe foaming issues are observed considering the massive release of HFBII into the extracellular 

medium. Improvement in production of HFBII can be done by optimizing the medium composition. 

Lactose has been found to be a strong promoter of cellulolytic activity and HFBII production 

through expression of the hfb2 gene and repression of hfb1 [10,11,12]. On the opposite, glucose has 

been found to promote the production of HFBI [13]. 

Beside the optimization of the cultivation medium, alternative bioreactor design can also be 

proposed. In fact, cultivation in submerged bioreactor presents several drawbacks, such as mass 

transfer limitation when viscosity is increased by mycelium growth, shear stress, and foaming when 

biosurfactants are produced. Solid-state fermentation (SSF) is an affordable alternative to 

submerged fermentation, but is generally difficult to optimize and scale-up [14]. However, SSF is 

recognized as a technique closer to the physiology of fungi and promote sporulation and excretion 

of proteins and secondary metabolites [15]. These solid-state physiology mechanisms can be 

attributed to the limitation in water activity and the formation of aerial structures after attachment of 

fungi to the solid substrate. 
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In this work, a fungal BfR has been evaluated as a new cultivation platform for the 

optimization of HFBII production by T. reesei. This reactor involves the continuous recirculation of 

the cultivation medium onto a metal structured packing exhibiting a high specific surface. This 

bioreactor set-up has been previously proposed as a scalable BfR design [16,17] and has been 

successfully used to improve lipopeptides production by Bacillus subtilis [18]. The design of the 

bioreactor has been optimized in order to promote the natural binding of the fungal biomass on the 

packing. Three main technological advantages are expected from this bioreactor configuration, i.e. 

the alleviation of foam formation since oxygen transfer is not ensured by direct bubbling of 

compressed air into the liquid phase, the alleviation of mass transfer limitation due to the increase 

of viscosity of the broth, and the excretion intensification of proteins and secondary metabolites to 

the extracellular medium considering the particular physiology exhibited by the aerial hyphae 

formed onto the structured packing [19,20]. These technical advantages has been evaluated by 

comparison with classical submerged fermentation during the production of hydrophobin HFBII. 

The possibility to extent the use of BfR in continuous mode has also been assessed. 

III.2 Material and methods 

III.2.1 Fungal strain and cultivation medium 

Trichoderma reesei MUCL 44908 (purchased from BCCM/MUCL (Agro)Industrial Fungi 

and Yeast Collection company) was used in this study. The culture medium consisted of: peptone 

4.0 g/L, yeast extract 1.0 g/L, KH₂PO₄ 4.0 g/L, (NH₄)₂SO₄ 2.8 g/L, MgSO₄.7H₂O 0.6 g/L, CaCl₂ 

0.6 g/L, CoCl₂.6H₂O 4.0 mg/L, MnSO₄.H₂O 3.2 mg/L, ZnSO₄.7H₂O 6.9 mg/L and FeSO₄.7H₂O 

10.0 mg/L. The medium was supplemented with either lactose, galactose or glucose with the initial 

concentration of 40 g/L. 

III.2.2 Bioscreen analysis of the carbon source effect 

The growth curves with different carbon sources were obtained using 

spectrophotometric/turbidimetric measurements (Bioscreen C) [21]. The culture medium was 

prepared in a microplate. For inoculation, the spores were collected from surface culture of T. reesei 

on the petri dishes with the medium of Malt Extract Agar (MEA) and placed into the test tubes 

cotaining fresh medium culture (1x105 T. reesei spores/mL). The latter was used as the overnight 

culture and was added to the fresh medium after 12 h. The machine was programmed at 25ºC to 

read frequently the optical density (OD) during 96 h at a wavelength of 620 nm with continuous 

agitation. A model based on the area under the kinetic curve (AUKC) [22] was applied for the 
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characterization of the growth rate during the culture of T. reesei in microplate. Growth was 

followed online by measuring absorbance (Bioscreen C). Based on the evolution of absorbance, 

AUKC was calculated by using the trapz function of MatLab on the basis of 3 h periods. After that, 

the relative AUKC (rAUKC) was estimated by dividing each AUKC with time and the change in 

rAUKC, namely ∆rAUKC, was calculated. Increasing ∆rAUKC is correlated to a higher growth 

rate. 

III.2.3 Bioreactor set up 

A first set of cultures were carried out in a lab-scale 2L bioreactor (working volume : 1L, 

Biostat B-Twin, Sartorius). Temperature was maintained at 30°C during the whole culture (remote 

control by the MFCS/win 3.0 software). Submerged culture was carried out by using a mechanical 

stirring system (Rushton disk turbine with 6 blades running at 800 min
-1

). For BfR, the stirring 

system was removed and the headspace of the reactor above the liquid surface was filled with a 

metal structured packing (Sulzer, Chemtech) (Figure 1A). A peristaltic pump ensured the 

continuous recirculation of the medium at a flow rate of 26 L/h (connection made with silicone 

tubing with an internal diameter of 5 mm). The recirculated medium is distributed at the top of the 

packing by 5 injector tubes distributed evenly (inner diameter of 5 mm). Air was supplied under the 

packing at a flow rate of 1 L/min. The air injection system was located above the liquid surface in 

order to avoid foam formation during HFBII production. Since the bottom part of the reactor is 

filled with liquid medium, all the standard probes can be used as well as the corresponding 

regulation loops (temperature, pH and dissolved oxygen). 

In the second experiment, the BfR was scaled up to 10L working volume (Biolafitte 

bioreactor with a total volume of 20L). As for the lab-scale BfR, the headspace was filled with a 

stainless steel structured packing made of several corrugated sheets (Sulzer, Chemtech) (Figure 1B). 

A peristaltic pump ensured the continuous recirculation of the medium at a flow rate of 26 L/h.
 
Air 

was supplied under the packing at a flow rate of 10 L/min.  After 48 hours of cultures, 8 liters were 

removed and replaced by a fresh medium. This mode of operation was considered as an intermittent 

feeding and repeated two times. 
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Figure 1 : BfR set up (A) Lab-scale BfR with 1L working volume (diameter of the vessel : 0.13m ; 

diameter of the packing : 0.1m), (B) Pilot-scale BfR with 10L working volume (diameter of the vessel : 

0.22m ; diameter of the packing : 0.2m). During cultivation, liquid culture medium is continuously 

recirculated at the top of the metal packing by the use of a peristaltic pump 

 

III.2.4 Analytical methods 

III.2.4.1 Growth, substrate and metabolites dynamics 

Lactose consumption during the fermentation was tracked by the enzymatic Lactose assay 

kits (Abcam ab83384) following the manufacturer instructions and also by a LC-20AT modular 

HPLC system (Shimadzu, Kyoto, Japan) [23]. Analyses were performed in triplicate. 

For determination of dry matter, forty milliliter of the culture medium was filtered through 

a Whatman filter No 4 (pore size 20 µm), and was dried in an oven at 105ºC during 18 h until 

constant weight [24]. Dry mass was expressed as gram of biomass per liter of the medium. 
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III.2.4.2 Hydrophobin identification and determination 

The details of the procedure to isolate and to determine HFBII has been already described 

by [25,26]. Briefly, the fermented liquid was centrifuged (Beckman CouLter™, 8000 g  x 6 ºC x 25 

min), then the supernatant was directed to 15RPC liquid chromatography (4.6 × 200 mm; GE 

Healthcare; Uppsala, Sweden). Elution was done with a linear gradient of acetonitrile (ACN) in 

MilliQ water containing 0.1% trifluoroacetic acid (TFA) (from 0 to 60%) at a flow rate of 1 mL/min 

and was monitored by UV detection at 214 nm. On the basis of gradient elution, the fractions of 

interest were collected. 1 µl of each fraction was mixed with 1 µl of matrix (α-cyano-4-hydroxy 

cinnamic acid, Brüker). MALDI-TOF analysis using an Ultraflex II instrument model in linear 

mode was carried out for identification of HFBII in mixtures [27]. Micro-spectrophotometry 

(NanoDrop ND-1000) at 280 nm wavelength was used for HFBII quantification [25,28]. 

III.2.5 High-energy X-ray tomography 

At the end of the cultures carried out in BfR, the metal structured packing was removed 

from the bioreactor and analyzed by high energy X-ray tomography, a non-invasive imaging 

technique allowing the investigation of the colonization by the fungi. Basically, materials of 

different nature exhibit different X-ray absorption properties which can be used to make the 

distinction between fungal biofilm and stainless steel. Data were collected for different cross-

sectional area of the packing and converted to two-dimensional images. Tomographic 

measurements were performed on 16 different cross-sectional areas located at different heights 

(imaging was performed every centimeter). Details about tomography facility can be found in 

previous works [18,29]. Reconstructed images were processed by using MatLab and the associated 

image processing toolbox in order to highlight mycelium distribution inside the metal structured 

packing. Stainless steel, void fraction and mycelium have distinct absorption coefficients allowing 

to distinguish them in the reconstructed image. Image processing consists of three successive 

operations applied to the reconstructed image. The first step involves a contrast improving (function 

'imadjust.m'), the second step involves a thresholding allowing the selective removal of the pixels 

corresponding to stainless steel, and the third step involves an erosion operation in order to 

eliminate the remaining pixels corresponding to stainless steel (function 'erode.m'). The resulting 

image displays pixels corresponding only to fungal biomass attached on the packing. These pixels 

were then counted in order to compute the relative area occupied by the fungal biomass over a 

given cross-sectional area of the packing. 
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III.3 Results and discussion 

III.3.1 3.1. The effect of carbon source on the growth rate of T. reesei 

Among different intial lactose concentrations in the range of 10-50g/L, the concentration of 

40 g/L was selected as optimal since the amount of HFBII produced by T. reesei at this 

concentration was significantly higher than 10, 20, 30, and the same as at 50 g/L (Table 1). 

Therefore, the rest of the experiments was performed with an initial concentration of 40 g/L. 

 

Tableau 1 : The effect of lactose concentration on HFBII production by T. reesei 

Lactose concentration 

(g/L) 10 20 30 40 50 

HFBII (mg/L)* 2.7 ± 0.5 14.3 ± 0.9 17.7 ± 0.9 20.0 ± 0.8 21.2 ± 1.7 

      

*Each value represents the average of three independents measurements   

 

The growth of T. reesei has been followed on the basis of three different carbon sources at 

initial concentration of 40 g/L. Culture carried out on galactose displays a long lag phase, 

suggesting that this carbohydrate is not suited for biomass production in the case of T. reesei. This 

observation can be attributed to the fact that galactose is not directly inserted in the central 

metabolic pathway of T. reesei, whereas glucose is simply converted to G6P using glucokinase 

[30,31]. 

The behavior of T. reesei in the presence of glucose or lactose as the main carbon source 

was almost the same, with a slightly faster growth in the case of the culture carried out on glucose. 

Glucose is indeed the first preferred carbon source for eukaryotic cells [32]. On the other hand, an 

hydrolysis step is involved before lactose can be assimilated through the metabolism, explaining the 

difference observed at the level of growth curves. The changes in rAUKC with time were maximal 

at 23 h, 30 h and 56 h of growth when using glucose, lactose and galactose, respectively (Figure 2). 

Among the tested carbohydrates, lactose was the only one that resulted in HFBII production. (Data 

no shown). Consequently, the following sections will be focused only on this carbon source. 
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Figure 2 : Evolution of the absorbance during the culture of T. reseei by Bioscreen C on different 

carbon sources 

The major part of lactose has been used before 48 h corresponded to the maximum 

∆rAUKC for growth on lactose. Thereafter, the rate of lactose depletion is reduced significantly 

(Figure 3). Previous reports have shown that HFBII production occurs mainly during the 

sporulation phase of the fungi [33]. Our results confirm that two main conditions have to be met for 

the production of HFBII: excretion of extracellular enzymes for lactose hydrolysis and starvation 

for the induction of sporulation based on the microscopic observation (Results not shown). 

III.3.2 Comparison between submerged bioreactor and BfR 

After the optimization of the cultivation medium, production of HFBII in lab-scale 

bioreactor was investigated. More precisely, two modes of culture have been investigated, i.e. 

submerged reactor and BfR. The latter comprises a metal structured packing on which cultivation 

medium is continuously recirculated during the process. 

In our conditions, this mode of operation leads to the natural attachment of most of the 

fungal biomass on the packing, with a biomass in the liquid phase remaining very low by 

comparison with submerged reactor, allowing to alleviate the problem associated with the increase 

of viscosity of the broth. Although lactose consumption profiles are quite similar in submerged and 

BfR, the CO2 profiles in the off-gas show many different trends, suggesting that carbon is directed 
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following different metabolic pathways (Figure 3). One of the consequences of this carbon 

redirection is that HFBII is produced earlier and in higher amount in the BfR. Indeed, hydrophobin 

is produced after only 11 h in the BfR, whereas at least 24 h is required in the case of submerged 

fermentation. This observation is in accordance with the physiology expected in BfR, i.e. a 

reduction of the time required to reach the secondary metabolisms with the excretion of the 

corresponding proteins and metabolites [19]. More importantly, the fungal biomass attached onto 

the metal packing exhibit aerial structures promoting the production of hydrophobins. Therefore, 

the maximum amount of HFBII in submerged culture is obtained after 75 h equals 29.6 ± 1.6 mg/L, 

whereas in the case of BfR 48.6 ± 6.2 mg/L hydrophobin is achieved after only 48 h. The amount of 

biomass in the liquid sample collected from submerged bioreactor was 47.5 ± 2.3 g/L after 75 h of 

cultivation, whereas in the case of BfR, the maximum amount was only 7.3 ± 0.4 g/L in 71.5 h. In 

this last configuration, most of the fungal biomass was attached onto the metal packing and only a 

limited fraction of the biomass is present was the liquid phase. This observation remarks the fact 

that BfR can be operated in order to simplify the downstream processing scheme, leading to a clear 

supernatant that can be directly treated for HFBII recovery without the need for prior centrifugation. 
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Figure 3 : Comparative analysis of the hydrophobin HFBII production in submerged bioreactor and in 

BfR. The results are expressed as the mean for three independent cultivations 
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III.3.3 Structure and quality of HFBII produced either in submerged 
bioreactor or in BfR 

As bioprocessing conditions could possibly affect the quality of HFBII, it is important to 

assess the integrity of this protein at the end of the process. HFBII samples were taken from 

submerged (after 75 hours of culture when maximal amount of HFBII is reached) and BfR (after 48 

hours of culture when maximal amount of HFBII is obtained) reactors and were analyzed by 

MALDI-TOF after liquid chromatography separation (Figure 4). 

 

 

Figure 4 : Analysis of HFBII by MALDI-TOF in samples collected from (A) BfR and (B) Submerged 

bioreactor. The native HFBII protein exhibits a m/z of 7.2 kDa and the truncated form a m/z of around 

7.0 kDa (loss of phenylalanine) 
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In submerged bioreactor, the native molecular weight of HFBII, mainly equals to 7.2 kDa, 

is obtained after 75 h of culture. Only a minor fraction of HFBII with a reduced molecular weight 

(MW) can be observed in this condition. The second form with a MW around 7.0 kDa corresponds 

to a loss of a single phenylalanine residue. The opposite picture is observed in the BfR after 48 

hours of culture, with a major fraction of HFBII exhibiting a loss of phenylalanine. This partial 

hydrolysis has been reported before [25,26,34], and can be attributed to protein hydrolysis which 

occurs in fungal fermentation processes at the end of stationary phase. The important issue is 

whether losing the phenylalanine might affect the activity of HFBII or not. Hopefully, this amino 

acid is located in hydrophilic side of the protein which is not actually the active side of HFBII 

includes 19 residues: Gly6, Leu7, Leu12, Val18 to Val24, Val54 to Ala58 and Ala61 to Cys64 

creating the hydrophobic patch. The latter is responsible for the main interfacial properties of 

hydrophobins. The positive gushing test of HFBII minus phenylalanine reported by Deckers et al. 

[25] practically confirms the activity. 

III.3.4 Scaling-up the BfR and effect of intermittent feeding  

In the second step, the BfR was scaled-up to an operating volume of 10L and the effect of 

intermittent feeding was investigated. Three successive cycles the medium withdrawal and 

refreshing have been considered. The amount of hydrophobin HFBII produced at the end of the first 

cycle (after 48 h) was 37.4 mg/L which is 23% less than the amount of batch performed in a 2L BfR 

(Figure 5). After the second cycle,  HFBII concentration increased up to 42.2 mg/L. This may due 

to the fact that during the second cycle, lag phase is avoided and fungal metabolism is stimulated. A 

second hypothesis is that during the second cycle, some HFBII trapped in the fungal biomass during 

the first recycle, is further released. After the third cycle, the amount of HFBII was equal to 41.7 

mg/L which is not significantly different from the previous cycle. 

 



Chapter III 

- 109 - 

 

Figure 5 : Effect of intermittent feeding mode (each arrow corresponds to the replacement of the spent 

medium by fresh medium) on the production of HFBII in a 10L BfR 

 

Another phenomenon which can be of importance for the process is the rate of packing 

colonization (Figure 6). High-energy X-ray tomography has been used for imaging different cross-

sectional area of the metal structured packing. This method allows for the distinction between 

fungal biomass and stainless steel and shows that fungal colonization is higher in the BfR for which 

successive recycling of the medium have been performed by comparison with the previous BfR 

experiment carried out in batch mode (Figure 6B). However, for the two cases, X-ray tomography 

shows that fungal biomass is not evenly distributed in the same cross-sectional area, but also from a 

cross-sectional area to another. Indeed, the surface occupied by biofilm is higher at the bottom of 

the packing than at the top, suggesting that liquid dispersion on the packing has to be improved. 

Nevertheless, biofilm overgrowth seems not affecting the final HFBII concentration, suggesting that 

this process could be operated in continuous mode on relatively long term. 
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Figure 6 : X-ray tomography analysis of the metal structured packing used to promote the biofilm 

growth of T. reseei: (A) Scheme of the packing showing the position of the three cross-sectional area 

displayed in panels (C) and (D) When BfR is running, the culture medium is continuously circulated 

from the top to the bottom of the packing (B) Evolution of the relative fungal colonization in function of 

the height of the packing (C) and (D) processed images showing the colonization efficiency at three 

different levels of the packing (C), when a single batch culture is processed and (D), when three 

successive batches are performed by refreshing the medium 

III.4 Conclusions 

Several operating parameters are involved in the production of hydrophobin HFBII by wild 

type T. reesei. Among different tested carbon sources, only lactose could be used for HFBII 

production. The production of HFBII occurs when the major part of the lactose has been consumed. 

This observation has led to the set-up of a BfR, promoting the growth of the fungal biomass in a 

“solid-state” physiology, i.e. with microorganism growing at a low rate accompanied with the 

excretion of hydrophobin. The use of BfR has led to a significant increase of HFBII production in 

shorter time by comparison with a classical submerged bioreactor. The molecular weight of the 

HFBII extracted from BfR was 7.0 kDa suggesting a loss of the last amino acid residue 

(Phenylalanine). Fortunately, this amino acid is not located in the active side (hydrophobic patch) 

responsible for the surface active properties of HFBII. 
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Scaling up of the BfR was successfully realized to 10L working volume. This culture was 

operated with an intermittent feeding mode. Additionally, X-ray tomography analysis has shown 

that biofilm overgrowth on the packing does not have any significant influence on the yield of 

HFBII, suggesting that this process could be operated in continuous mode. 
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This chapter corresponds to the article entitled "A fungal biofilm reactor based on metal 

structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus 

oryzae" Quentin Zune ,Anissa Delepierre, Sébastien Gofflot, Julien Bauwens, Jean-Claude Twizere, 

Peter J. Punt, Frédéric Francis, Dominique Toye, Thomas Bawin & Frank Delvigne) published in 
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In the last chapter, we investigate the production of a Gla::GFP fusion protein under the 

control of the glaB promoter specifically activated in solid-state culture condition from an engineered 

strain of Aspergillus oryzae. Solid-state fermentation refers to microbial systems cultivated on moist 

but solid organic substrates. In a first time, the growth performances of the fungal biofilm are screened 

in shake-flask equipped with a piece of structured packing. These culture conditions involved the 

growth of the fungal biofilm on two distinct areas of the metal structured packing. Thus, two process 

configurations are considered at the bioreactor scale. In the first one, the structured packing is totally 

immersed in the liquid medium and works like a bubble column. In the second one, the structured 

packing is previously immersed in the liquid medium in order to allow spores adhesion. Then, the 

liquid medium is transferred in an intermediary vessel and is recirculated on the structured packing 

like the experimental BfR (trickle bed bioreactor). The colonization efficiency of the fungal biofilm 

and the secretion of the Gla::GFP fusion protein are characterized and compared with a submerged 

culture. A 2D-gel electrophoresis of the extracellular proteom is performed in order to investigate the 

effect of cultures conditions on protein secretion. 
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Abstract 

Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with 

solid-state related physiological mechanisms. This work is based on the comparative analysis of 

classical submerged fermentation with a fungal BfR for the production of a Gla::GFP fusion protein 

by Aspergillus oryzae. The BfR comprises a metal structured packing allowing the attachment of the 

fungal biomass. Since the production of the target protein is under the control of the promoter glaB, 

specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the 

global productivity. Although production of the target protein was enhanced by using the biofilm 

mode of culture, we also found that fusion protein production is also significant when the submerged 

mode of culture is used. This result is related to high shear stress leading to biomass autolysis and 

leakage of intracellular fusion protein into the extracellular medium. Moreover, 2D-gel electrophoresis 

highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal BfR 

designs were then investigated further, i.e. with full immersion of the packing or with medium 

recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been 

shown that full immersion of the metal packing in the liquid medium during cultivation allows for a 

uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion 

protein. 

Keywords: fungal biofilm, bioreactor, scale-up, recombinant protein 
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IV.1 Introduction 

Filamentous fungi are eukaryotic microorganisms commonly used for the production of 

secondary metabolites such as enzymes or antibiotics. They are also considered as suitable hosts for 

extracellular recombinant protein production, due to their high secretion potential and their ability to 

perform post-translational modifications [1]. At the industrial scale, several bioreactor designs have 

been considered for filamentous fungi cultivation based on either submerged or solid-state culture 

modes. In the submerged culture mode, the filamentous biomass grows as free mycelium suspended in 

a liquid medium. Depending on different operating parameters, such as inoculum size or agitation rate, 

the fungal biomass can exhibit different morphologies, ranging from dispersed filaments to spherical 

masses known as pellets [2]. These different morphologies that are exhibited in submerged conditions 

lead to either an increase of the viscosity of the fermentation broth or a decrease of the diffusion rate. 

These phenomena lead to the decrease of oxygen and nutrient mass transfer, which in turn lowers the 

reaction rate and product yield [3]. Using the second technique, the solid-state culture mode involves 

the growth of a fungal biomass on the surface of moist but solid substrates. In this absorptive nutrition 

mode that is close to that found in the natural environment, the morphological and physiological state 

of the fungal biomass significantly increases the secretion of proteins and secondary metabolites in 

comparison with the submerged cultivation mode [4]. However, large-scale applications are limited 

due to the appearance of oxygen and nutrients gradients inside the solid mass, as well as difficulties 

for heat removal and downstream processing operations [5]. A third category of fermentation system 

based on the formation of a fungal biofilm combines the physiological advantages of solid-state 

culture and the ease of control of submerged culture operating conditions. 

The term biofilm is generally used to describe bacterial and yeast communities, but has been 

recently extended to the surface-associated growth of filamentous fungi [6]. In a biofilm reactor (BfR), 

filamentous fungal biomass naturally adheres and colonizes the surface of an inert support in contact 

with a liquid medium [7]. According to Gutiérrez-Correa et al. (2012), this kind of bioreactor is 

referred as "surface adhesion fermentation". The fungal BfR differs from solid-state fermentation in 

the use of an inert support and the high water availability provided by the liquid medium flowing 

across the support’s surface. Many examples of secondary metabolite production from filamentous 

fungi, such as Aspergillii sp. or Trichoderma sp., in a fungal BfR demonstrate higher product yields 

than submerged cultures [8]. The internal structure of fungal biofilm comprises channels in the hyphal 

layers that allow fluid circulation and promote a better mass transfer in comparison with the more 

compact structure of pellets found in a submerged culture [9]. Moreover, fungal BfRs facilitate reuse 

of fungal biomass for long-term production and downstream processing operations. 
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The concept of a BfR, mainly used for environmental applications, has been expanded in the 

field of microbial catalysis for the production of various metabolites, ranging from medium (organic 

acids, volatile compounds and enzymes) to high added value molecules (antibiotics and heterologous 

proteins) [10, 11]. In these bioprocesses, the specific area (m²/m³) provided by the solid support to 

allow biofilm growth must be as high as possible in order to maximize productivity of the bioreactor. 

Thus, this is an important parameter in making scale-up procedures as efficient as possible. Many 

solid supports, such as polyurethane foam [12] or a fibrous bed [13], have been designed in previous 

studies for fungal BfRs. This study is focused on the use of a stainless steel structured packing to 

support fungal biofilm growth. This packing can be used in two operating modes, i.e. totally immersed 

or aspersed by the liquid medium. The solid support is composed of several corrugated sheets in a 

staggered arrangement providing high specific area (750 m²/m) [14]. This kind of device was initially 

developed for the intensification of chemical processes and has been suggested as an efficient strategy 

for the design of industrial BfRs [15]. Although the structure of filamentous fungi biofilms has been 

previously investigated at the micro-scale level by confocal laser scanning microscopy and cryo-

scanning electron microscopy [9], the macro-scale characterization of biofilms inside process 

equipment had not been previously considered. 

In this work, large-scale X-ray tomography analysis will be used for the non-invasive 

vizualisation of the biofilm stucture inside the bioreactor [14, 16]. This bioreactor will be used for the 

production of recombinant protein by Aspergillus oryzae. The strain used contains a genetically 

encoded fluorescent reporter system under the control of a promoter specifically induced in solid-state 

medium physiology, pglaB [17-19]. The reporter gene is a fusion gene including the region encoding 

an amino acid sequence of a glucoamlyase (GlaA) fused with the GFP sequence, allowing a simple 

detection and quantification of the fusion protein in the extracellular medium. 

 

IV.2 Material and Methods 

IV.2.1 Engineering of the recombinant fungal strain 

Aspergillus oryzae ATCC 16868pyrG mutant [20] was used as the host strain for co-

transformation of the desired GFP expression vectors. Plasmid pAB4.1 [21] containing the A. niger 

pyrG mutant was used as the source of the selection marker. The glucoamylase B gene (glaB) was 

shown to be highly expressed during solid-state cultivation [22]. Therefore an expression vector was 

generated based on glaB expression signals. As a marker gene to monitor glaB gene expression, a 

gla::GFP fusion gene of A. niger was chosen to allow detection of gene expression using mycelial 

biofilm cultures. 
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The promoter region of the A. oryzae glaB gene (accession AB007825) was amplified by 

using the forward primer 5'–GTACGCGGCCGCGCAGGAGACCTTTACTTGGCATAG–3' (with 

the NotI site bold) and the reverse primer 5'–TTCCCCATGGTGGTGGTGACTTCCAAG–3' (with 

the NcoI site bold). For the glaB gene promoter amplification cycling conditions in appropriate buffers 

(dNTPs, Mg
2+

 and salts), conditions as indicated by the manufacturer (Promega, Leiden, The 

Netherlands) were as follows: denaturation at 94°C for 5 min followed by 30 cycles of denaturation at 

94°C for 30 sec, annealing at 55°C for 30 sec and extension at 72°C for 1 min, and a final elongation 

step carried out at 72°C for 10 min. PCR fragments were cloned in a linearized NotI-NcoI (New 

England Biolabs, Hitchin, UK) pGEMT vector (Promega, Leiden, The Netherlands). From the 

resulting clones, the cloning of the correct insert sequence was verified by sequence analysis. 

Subsequently the 0.6 kb NotI-NcoI glaB promoter fragment was ligated to a 3 kb NcoI-XbaI fragment 

from pAN56-1-pgpd-gla::GFP. The latter is derived from a vector previously described by Gordon et 

al. (2000) [23] carrying the gla::GFP fusion gene and the 2.5 kb NotI-XbaI vector backbone from 

pAN56-1 (Genbank Accession Z32700). The ligation resulted in pAN56-1-pglaB-gla::GFP. The 

gla::GFP vector was co-transformed with the pAB4-1 plasmid containing the A. niger pyrG 

auxotrophic selection marker in the A. oryzae ATCC16868pyrG protoplasts. Transformants were 

selected for growth in the absence of uridine. The transformants were analyzed by colony 

hybridization using a 32P-labelled trpC terminator probe, and one transformant was selected based on 

its highest hybridization signal. Southern analysis using a GFP probe was carried out to confirm 

integration of gla::GFP gene copies. 

To confirm secretion of the Gla::GFP fusion protein, the transformant and its parental host 

were grown on solid-state cultures for six days on pre-treated wheat kernels. Microscopic observation 

of the moulded kernels revealed clear GFP fluorescence of the Gla::GFP transformant. The secreted 

proteins were extracted, loaded onto two separate 10% acrylamide gels and blotted on polyvinylidene 

fluoride (PVDF) membranes (GE Healthcare, Eindhoven, The Netherlands). The glucoamylase and 

the green fluorescent protein were respectively immunodetected with specific antibodies on membrane 

A and membrane B and revealed with the ECL detection kit (GE Healthcare, Eindhoven, The 

Netherlands). Results show that multiple high molecular weight bands were observed with the GLaA 

antiserum, whereas with the GFP antiserum two bands of >70 kDa and 23 kDa were observed. These 

bands most likely represent the Gla::GFP fusion protein and a proteolytically truncated GFP protein. 
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IV.2.2 Inoculum preparation and cultivation medium 

A Petri dish with PDA medium (Merck, Darmstadt, Germany) was inoculated with fungal 

spores, incubated for 4 days at 30°C and stored at 4°C for up 2 weeks, before harvest by addition of 10 

mL of peptone water and scraping with a sterile syringe needle. The spores from one Petri dish were 

counted using a Burker cell in order to inoculate the liquid medium (soluble starch 5 g/L, casein 

peptone 5 g/L, yeast extract 5 g/L, chloramphenicol 100 mg/L and 1 drop of an antifoaming agent 

KS911) to the target density of 1–2 E+8 spores/L. 

IV.2.3 Operating conditions 

IV.2.3.1 Shake flask experiments 

In order to get a high-throughput version of the BfR, standard 250 mL flasks were equipped 

with support composed of 4 pieces of corrugated sheets cut from a stainless steel structured packing 

and put in the bottom (Figure 1A). The inert support was partially immersed in 100 mL of liquid 

medium. After inoculation by spores, each flask was incubated at 30°C in an orbital shaker at 130 rpm 

(rounds per minute). 

 

 

Figure 1 : Scheme of the cultivation systems (A) Flask equipped with a piece of structured packing 

partially immersed in the liquid phase (B) Stirred tank bioreactor used for the submerged culture (C) 

Fungal BfR with a totally immersed support (D) Fungal BfR with recirculation of the liquid phase on the 

support (E) Intermediary vessel 
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IV.2.4 Fungal biofilm reactor (BfR) 

The fungal BfR is a 2 L stirred tank bioreactor (STR) without its agitation axis (Sartorius, 

Goettingen, Germany). This has been replaced by a stainless steel structured packing (Sulzer 

Chemtech, Winterthur, Switzerland) having the function of an inert support with a high specific area 

(750 m²/m³). Two operating modes were considered in this work. In the first one, the support was 

totally immersed in 2 L of the liquid medium during the entire culture period (Figure 1C). In the 

second one, the support was totally immersed in the liquid medium during the first 24 hours of culture 

(Figure 1D). Then, a fraction of the liquid phase was transferred into an intermediary vessel (Figure 

1E) in order to perform a continuous recirculation of the liquid on the support by using a peristaltic 

pump (connections were made with silicone tubing with an internal diameter of 5 mm). The 

recirculated medium was distributed on the metal packing by two holes in the lid of the bioreactor at a 

flow rate of 18 L/h. An aeration flow rate of 1 vvm (air volume per liquid volume per minute), 

temperature of 30°C and pH of 6 were maintained for each fermentation run. Fermentation broths 

were inoculated with the same spore density from the same Petri dish. Table 1 summarizes the culture 

parameters of the fermentation run in the fungal BfR and STR. 

 

Tableau 1 : Overview of the operating parameters used for the cultivation tests carried out in stirred tank 

(STR) and biofilm reactors (BfR) 

Culture mode pH Temperature 

(°C) 

Aeration 

(vvm) 

Agitation 

(rpm) 

Recirculation 

flow rate (L/h) 

Specific area 

(cm²) 

Vinitial 

(L) 

Inoculum 

(spores/L) 

STR1 6 30 0.5 800 / / 1.1 1-2 E+08 

STR2 6 30 0.5 200 / / 1.1 1-2 E+08 

Immersed BfR 6 30 1 / / 6600 2.2 1-2 E+08 

Aspersed BfR 6 30 1 / 18 6600 2.2 1-2 E+08 

 

IV.2.5 X-ray tomography analysis 

At the end of each fermentation run, stainless steel structured packing was analyzed by X-ray 

tomography (Laboratory of Chemical Engineering, Liège, Belgique) in order to quantify and visualize 

biofilm colonization. X-ray tomography is a non-invasive imaging technique allowing visualization of 

a three-dimensional object. Collected data can be converted to a two-dimensional image 

corresponding to a given cross-sectional area of the metal structured packing. Tomographic 

measurements were performed on 16 different cross-sectional areas located at different heights 

(analysis is performed every 5 mm). The experimental method for tomographic measurements and 
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subsequent treatment for absorption coefficient processing and image analysis were previously 

described [14, 16]. 

IV.2.6 Biomass quantification 

Determination of the dry biomass in submerged culture was performed in duplicate on 5 mL 

of culture medium. The sample was filtered on a 0.45 µm mesh filter and amply washed with distilled 

water in order to remove all soluble matter. Then, a filter was weighed after oven-drying at 110°C for 

48 hours. Dry matter of the fungal biofilm attached to the metal packing was calculated separately by a 

gravimetric method. At the end of the culture, the packing was kept out of the bioreactor for 2 hours in 

order to remove excess liquid before further analysis. A piece of moist fungal biofilm was scraped off 

the packing and kept in an oven at 110°C for 48 hours. The weight difference before/after oven-drying 

allows for calculation of dry matter of the fungal biofilm. 

IV.2.7 Biochemical analysis 

Supernatant of the liquid phase was sampled during the culture in order to follow kinetic 

parameters. Each collected sample was filtered on a 0.20 µm syringe filter mesh and stored at -20°C 

before further analysis. A cocktail of protease inhibitors (Roche Diagnostics, Vilvoorde, Belgium) was 

added to samples used for western blot and proteomic analysis. 

IV.2.8 pH measurement 

The evolution of the pH was monitored in the liquid medium of flask-scale cultures. Each 

collected sample’s pH was measured with a pH meter (Microprocessor, Hanna instruments, Temse, 

Belgium) immediately after sampling.  

IV.2.9 Residual starch concentration and enzymatic activity of α-amylase 

A spectrometric method based on the blue starch-iodine complex was used to determine 

residual starch in the culture supernatant. Firstly, 100 µL of culture supernatant was mixed and 

incubated for 10 minutes with 4.9 mL of a reagent solution composed of 0.04% KI (w/v) and 0.1 M 

HCl, before reading absorbance at 580 nm. 

The α-amylase enzymatic activity was quantified by a standard spectrometric method (DNS) 

based on the assay of glucose and maltose amounts produced by enzymatic hydrolysis of soluble 

starch. A first test tube (T1) composed of 500 µL of a buffer solution (0.02 M NaH2PO4.2H2O and 

0.006 M NaCl, pH 6.9) was mixed with 500 µL of 1% soluble starch solution (w/v). A second test 

tube (T2) composed of 500 µL of a diluted sample was mixed with 500 µL of buffer solution. A third 

test tube (T3) containing 500 µL of the same diluted sample was mixed with 500 µL of 1% soluble 

starch solution (w/v) and incubated for 10 minutes at 40°C. Starch hydrolysis was stopped by adding 3 

mL of a DNS solution to each test tube (per litre: 10 g NaOH, 4 g phenol, 10 g DNS, 0.5 g Na2SO3 and 
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268.5 g "sel de Rochelle") followed by 5 minutes of incubation at 95°C. Then, 10 mL of distilled 

water was added to each tube before reading absorbance at 550 nm. 

One α-amylase activity unit (UA) equals 1 µmole of released glucose mL
-1

 minute
-1

. The 

amount of glucose released was obtained by subtracting the absorbance intensities: Abs(T3) - Abs(T2) 

- Abs(T1). Each measurement was performed in triplicate. 

IV.2.10 Gla::GFP fusion protein detection and quantification 

Total extracellular protein content was quantified with Biorad DC Protein Assay (Bio-Rad, 

Hercules, CA). Quantification and detection of Gla::GFP in the extracellular medium was based on the 

intensity of green fluorescence and western blot analysis. Fluorescence intensity was measured with a 

spectrofluorimeter (Victor
3
 V Wallac, Perkin Elmer, Zaventem, Belgique) in samples of 200 µL added 

to a 96-microwell black plate. 

For western blot analysis, proteins from each supernatant sample were precipitated in 25% 

trichloro-acetic acid and were two-fold concentrated after pellet resuspension in a 0.2 M NaOH 

solution. Proteins trapped in the fungal biofilm matrix and mycelial pellet (attached outside of the cell 

wall) were also recovered and subjected to western blot analysis. A sample of biofilm/mycelial pellet 

was washed with PBS (pH 7.2) and incubated in an extraction buffer (0.05% SDS in 50 mM sodium 

phosphate buffer pH 7) at 95°C for 5 minutes. Then, the sample was intensely vortexed and filtered 

(using a 0.2 µm mesh) in order to collect the supernatant. Proteins were then recovered by 25% 

trichloro-acetic acid precipitation and 0.2 M NaOH resuspension. 

Samples were separated on a 30% polyacrylamide gel (with 10 wells) respecting standard 

SDS-PAGE procedures. In order to assess the relative abundance of the Gla::GFP fusion protein in the 

total extracellular protein content, we loaded the same protein amount (25 µg). After SDS-PAGE, 

proteins were transferred on PVDF Membranes (GE Healthcare, Zaventem, Belgium). Specific bands 

corresponding to GFP and the fusion protein were immunodetected by an antibody anti-GFP and 

revealed with the ECL kit (GE Healthcare, Zaventem, Belgium). 

IV.2.11 2D-gel electrophoresis of the extracellular proteome 

The extracellular proteome of the last sample from each culture condition was analysed using 

2D-gel electrophoresis. Culture supernatant was filtered on a 0.20 µm mesh and protease activity was 

halted by adding a cocktail of protease inhibitors (Roche Diagnostics, Vilvoorde, Belgium). Proteins 

were precipitated from samples using the 2D clean-up kit (GE Healthcare, Zaventem, Belgium) and 

resuspended in an 8 M urea – 2 M thiourea buffer solution. The volume of the total protein sample was 

adjusted to 450 µL with a rehydration buffer (8 M urea – 2 M thiourea buffer solution with 0.8% IPG 

and 0.4% DTT) and loaded onto pH 3–10 strips (24 cm, linear) for iso-electrofocalization (IEF1). 

IEF1 and SDS-PAGE were carried out following established procedures described by [24]. It must be 
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noted that over-expressed proteins from the aspersed BfR, especially from the glucoamylase family, 

tended to disrupt migration of proteins of similar iso-electric points and lower molecular weights when 

sample loading exceeded 50 µg of protein. Thus, a 2D-gel electrophoresis separated 30 µg of proteins 

labelled with a fluorochrome (CyDye, GE Healthcare, Zaventem, Belgium) for image analysis and 

subsequent quantification for the first replicate. For the second replicate, 400 µg of proteins from the 

immersed BfR and the STR were separated using 2D-gel electrophoresis. The resulting 2D gel was 

stained with Coomassie Brilliant Blue (CBB) for mass spectrometry analysis and spot quantification. 

All gels were scanned with an Ettan DIGE Imager (GE Healthcare, Zaventem, Belgium). 

IV.2.12 Protein identification and quantification 

For proteins identification, spots resulting from CBB gel staining were excised with an Ettan 

Spot Picker (GE Healthcare, Zaventem, Belgium) and placed in a 96-microwell plate filled with 50 µL 

of milliQ water. All visible spots were picked after CBB gel staining for each condition. The protocol 

for sample preparation for the MALDI-TOF-MS experiment was described by Bauwens et al. (2013) 

[24]. Peptide mass fingerprinting was used to query non-redundant NCBI Databases 

(http://www.ncbi.nlm.nih.gov/protein) (Fungi taxonomy). Protein identification was considered 

positive if a mascot sore of at least 50 with 100 ppm of mass error tolerance in MS was achieved. 

Protein quantification was performed on the basis of spot intensities by using Progenesis 

Samespot Software (Non-Linear Dynamics, Newcastle upon Tyne, UK). The ratios of normalized 

volumes from the same spots were calculated in order to assess levels of protein excretion between 

biofilm and submerged culture conditions. 
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IV.3 Results 

IV.3.1 Preliminary screening of the growth and excretion abilities of fungal 

biofilms attached to metal structured packing 

The fermentation kinetic of A. oryzae under biofilm conditions was first investigated in flask-

scale with and without metal structured packing. The presence of soluble starch in the liquid medium 

involves a first step of hydrolysis in glucose monomers in order to allow carbon source assimilation, 

followed by a second step of glucose consumption inducing exponential growth phase of the 

mycelium. Starch and glucose consumption rates in the extracellular medium are higher in the flask 

equipped with the metal packing (Figure 2A and 2B). 

Acidification of the extracellular medium resulting from carbon source consumption is lower 

when considering biofilm conditions (i.e. flasks with metal structured packing) with a pH reaching a 

minimum at 6.63 against 5.66 in the case of submerged conditions (i.e. flasks with no packing) (Figure 

2C). However, the rise of pH is faster in biofilm conditions, and quickly reaches alkaline pH values 

after 50 hours of culture. These conditions can affect the quality of the fusion protein and the resulting 

quantification based on green fluorescence intensity of the extracellular medium. Based on these 

fluorescence measurements, the fusion protein production starts when glucose depletion occurs and 

reaches a maximum after 122 hours of culture (Figure 2D), and seems to be very similar between 

submerged and biofilm cultures. These observations must be carefully interpreted because significant 

medium alkalinisation could alter fluorescence of the fusion protein. 
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Figure 2 : Carbon source consumption (A and B), pH evolution (C) and green fluorescence intensity (D) in 

the extracellular medium during cultures carried out in shake flasks in biofilm or submerged conditions 

 

According to this observation, the presence of the fusion protein in the extracellular medium 

was further determined by western blot analysis (Figure 3). Several bands were detected for the two 

operating conditions suggesting that the stability of the fusion protein was impaired by the culture 

conditions. Indeed, secretion under biofilm and submerged conditions seems to involve several 

biochemical modifications including proteolytic leakage and association of fusion protein products. 

The first band at 27 kDa corresponds to a proteolytically truncated GFP, a second band at >70 

kDa corresponds to the fusion protein Gla::GFP, and a third at >100 kDa could correspond to the 

association of several fusion protein products (GFP tetramer with a molecular weight of 108 kDa). The 

bands corresponding to the fusion protein Gla::GFP have been detected between the 69th and 122nd 

hours of culture, as previously observed by fluorescence measurements. Bands observed in the 

submerged conditions are thicker than those of biofilm conditions, but this result has to be carefully 

considered since glycosylation could alter the sensitivity of the immunodetection [25]. Moreover, this 

observation also indicates that fusion protein synthesis occurs in submerged culture conditions, despite 

the use of the glaB promoter. The latter has been described as a promoter specifically induced in solid-

state conditions [17]. 
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Observation of mycelial pellet and fungal biofilm by fluorescence microscopy indicates that 

fluorescent fusion proteins can be trapped within the biofilm matrix (see Figure S4 in the 

supplementary material). This observation was further confirmed by western blot analysis (Figure 3) 

carried out on the protein fraction extracted from the mycelium pellet and the biofilm matrix (see 

Material and Methods). These first results highlight that operating conditions have a significant impact 

on the quality of the fusion protein. These phenomena will then be further investigated in a bioreactor 

with pH control, and analysis performed by 2D-gel electrophoresis. 

 

 

Figure 3 : Western blot analysis of the fusion protein GLA::GFP in flask-scale cultures. Fusion protein 

localized in extracellular medium was quantified after 69 and 122 hours of culture. Fusion protein being 

attached to the biofilm matrix / pellet was only detected at the end of the fermentation 
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IV.3.2 Colonization efficiency in shake-flask conditions 

After the inoculation step, spores quickly adhere to the metal surface immersed in the liquid 

medium, since spores cannot be seen in the liquid medium after 6 hours of culture and growth of free 

mycelial pellets is not observed in the liquid medium throughout the culture period. Spore germination 

is then followed by a first step of colonization of the whole area provided by the packing, followed by 

a second step of thickness growth of the fungal biofilm [6]. Low shear forces from orbital shaking 

prevent the detachment of the fungal biomass (Figure 4A). Under these conditions, the low viscosity 

of the liquid phase improves oxygen transfer rate at the beginning of the fermentation and can explain 

the higher rate of carbon source consumption in biofilm conditions. Liquid oscillations induced by 

orbital shaking lead to the alternate exposure of a fraction of the fungal biofilm to gas and liquid 

phases (Figure 4A). 

After removing the culture supernatant of flasks equipped with metal packing, the fungal 

biofilm attached to the support exhibited an average dry matter of 2.16 ± 0.25 g of cells per 100 grams 

of biofilm. The high water content explains why the residual volume is lower in the flask equipped 

with the metal packing. Dry matter of the fungal biofilm encompasses a non-negligible presence of 

insoluble exopolymeric substances (EPS) leading to a slight over-estimation of bioconversion yield in 

biofilm conditions (0.45 ± 0.02 g of dry biomass matter / g of carbon source against 0.44 ± 0.01 g of 

dry biomass matter / g of carbon source in submerged conditions). 

The initial amount of soluble starch influences the colonization of the packing by the fungal 

biofilm (Figure 4B). X-ray tomography analysis of cross sectional areas of the colonized support show 

that the thickness of the fungal biofilm covering the support is proportional to the initial amount of 

starch. Concentrations higher than 20 g/L cause fungal biomass clogging between the corrugated 

sheets of the packing and leads to a partial leakage of fungal biomass towards the liquid phase (Figure 

4B). This observation suggests that an optimal soluble starch concentration should be defined as a 

function of the specific dimensions of corrugated sheets in order to avoid clogging. This latter 

phenomenon could affect performance of the mass transfer, e.g. fusion protein recovery in the 

extracellular medium. 
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Figure 4 : Fungal colonization of metal structured packing in flask-scale. A Picture of metal packing 

covered with the two kinds of fungal layers, i.e. fully or alternatively immersed biofilm; B Reconstructed 

images from X-ray tomography analysis of a cross sectional area of metal packing colonized by fungal 

biofilm (white pixels) with initial starch concentrations of 1, 10, 20 and 40 g/L. Presence of fungal biomass 

in the liquid phase is observed (+) or not (-) according to the initial substrate concentration 

 

IV.3.3 The effect of bioreactor operating conditions 

The production of the fusion protein has been performed in controlled conditions with two 

BfR configurations designed on the basis of the results obtained by the shake flasks. The first one, i.e. 

immersed BfR, has the fungal biofilm area totally immersed by the liquid medium. The second one, 

called aspersed BfR, periodically immerses the biofilm area by liquid recirculation on the metal 

packing. Submerged conditions in a classical stirred tank bioreactor (STR) were also considered as a 

control with two agitation rates, i.e. either a low (200 rpm) or high (800 rpm) stirrer rate. 

Starch and glucose consumption are faster in STR conditions (Figure 5A). Biomass growth is 

only quantified in STR since all fungal biofilm in a BfR is attached to the support and cannot be 

sampled during the culture. In the presence of starch, synthesis of α-amylase and glucoamylase 

enzymes is strongly activated and constitute the major fraction of extracellular proteins found in the 

culture supernatant. Accordingly, protein secretion can be assessed by quantifying α-amylase activity 
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in the culture supernatant. Enzyme activity can be observed upon starch depletion in each culture 

condition, and the strongest rate of increase occurs in the 800 rpm STR and the aspersed BfR. On the 

other hand, the immersed BfR and the 200 rpm STR exhibit only a slight increase in enzymatic 

activity (Figure 5B). Quantification of the total proteins secreted by the fungal biomass confirms our 

previous observations, with 72.2 mg and 38.2 mg of proteins/mg of dry mycelium in 800 rpm and 200 

rpm STR respectively. These values reach 61 mg and 40.4 mg of proteins/mg of dry mycelium in 

aspersed and immersed conditions respectively (For more details, see Table S1 supplementary 

material). 

Green fluorescence of the culture supernatant follows the same trend as that displayed by the 

α-amylase enzymatic activity (Figure 5C). Surprisingly, the fusion protein is produced earlier and in 

larger amounts in 800 rpm STR than in biofilm conditions. However, the amount of biomass sharply 

decreases after 40 hours of culture in 800 rpm STR (Figure 5D). Excretion of the fusion protein is not 

observed in 200 rpm STR suggesting that the shear rate is implied in the release of this protein to the 

extracellular medium. 

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

Time (h)

S
ta

rc
h
 &

 g
lu

c
o
s
e
 (

g
/L

)

 

 

0 20 40 60 80 100
0

5

10

15

20

Time (h)

A
m

y
la

s
e
 a

c
ti
v
it
y
 (

µ
m

o
le

/m
L
.m

in
)

 

 

0 20 40 60 80 100
1

2

3

4

5

6
x 10

4

Time (h)

G
re

e
n
 F

lu
o
re

s
c
e
n
c
e
 o

f 
th

e
 s

u
p
e
rn

a
ta

n
t 

(A
U

)

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

Time (h)

B
io

m
a
s
s
 (

g
 o

f 
d
ry

 m
a
tt

e
r 

/ 
L
)

Immersed BfR Aspersed BfR STR (800 rpm) STR (200 rpm)

Starch

Glucose

D

BA

C

 

Figure 5 : (A) Consumption of carbon sources (starch and glucose) (B) Enzymatic activity of α-amylase in 

the extracellular medium (C) Recombinant protein GLA::GFP quantification in extracellular medium 

based on fluorescence intensity (D) Dry matter quantification in submerged cultures 
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IV.3.4 Impact of bioreactor operating conditions on the secretion profile 

IV.3.4.1 1D-gel characterization 

In addition to the fluorescence measurements, the quality of the fusion protein was assessed by 

western blot analysis using the same amount of protein (25 µg). The presence of the fusion protein has 

been observed for each culture condition. The characteristic bands at >70 kDa (fusion protein) and 27 

kDa (truncated GFP) appear as was previously observed in the flask-scale experiments (Figure 6A). 

These bands exhibit different intensities as a function of the bioreactor operating conditions. There 

were no 27 kDa bands detected in the immersed BfR or 200 rpm STR, indicating a good quality of the 

fusion protein. This is not the case in aspersed BfR and 800 rpm STR, where products of alteration of 

the fusion protein have been observed. Secretion of the fusion protein into the extracellular medium 

involves passage through the cell wall and the biofilm matrix. Observations of the mycelial pellet and 

fungal biofilm under fluorescence microscopy reveals fluorescence intensities concentrated in the area 

of the hyphal cell wall at the tips of growing hyphae (see Figure S4 in the supplementary material). A 

western blot analysis performed with an extract of proteins from the fungal biofilm matrix from 

immersed and aspersed BfR shows the presence of the fusion protein (Figure 6B). This fraction of 

fusion protein remained trapped in the biofilm matrix. On the other hand, the same protocol of 

extraction applied to the mycelial pellet in submerged conditions does not allow the detection of the 

fusion protein. 
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Figure 6 : Western blot analysis of the fusion protein performed with the same loading rate (25 µg) for 

each culture condition after 5 days of culture. (A) Western blot analysis of the fusion protein in the 

extracellular medium (B) Western blot analysis of the fusion protein trapped in the mycelial pellet and 

biofilm matrix 

 

IV.3.4.2 2D-gel characterization 

Further analysis of extracellular proteome with 2D-gel electrophoresis supports the 

observations obtained from 1D-gel electrophoresis, and gives additional insights about the protein 

quality and secretion pathways for each culture condition. Upon CyDye labelling (see Figure S1 in the 

supplementary material), the expression level of proteins has been compared between each culture 

condition. In parallel, preparative 2D-gel electrophoresis with Coomassie Brilliant Blue was carried 

out and led to the detection of 21 major spots that were picked for MALDI-TOF/MS identification and 

quantification (see Table S2 in the supplementary material). The majority of the extracellular proteins 

have an isoelectric point (Ip) between 4 and 6 and a molecular weight (MW) greater than 15 kDa. The 

spots of low MWs observed in labelled CyDye gels represent protein fragments or polypeptides 

resulting from proteolysis. Among the 21 spots identified by mass spectrometry, 4 families of enzymes 
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were expressed at different levels in each culture condition, i.e. proteases, polysaccharide hydrolases, 

glycosyl hydrolases and oxyreductases. The Gla::GFP fusion protein has been identified, as well as 

additional spots corresponding to the truncated GFP released after its degradation. The extracellular 

proteomes have been compared between each bioreactor operating condition (Figure 7) on the basis of 

supernatant samples taken after 5 days of culture. 

 

Figure 7 : Spot pattern relative to the comparative extracellular proteome obtained by 2D-gel 

electrophoresis (Cydye labelling). (A) Fusion protein (B) Alkaline protease (C) Specific proteins secreted 

in solid-state conditions. (See Figure S1 and Table S2 showing 2D-gels and spot identifications in the 

supplementary material). 
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Quality assessment of the fusion protein (Figure 7A). The fusion protein was identified for 

all the operating conditions tested and exhibited different molecular forms. Indeed, two spots 

corresponding to the native form of the fusion protein were found, along with four spots corresponding 

to ::GFP and two spots corresponding to truncated Gla:: released by proteolysis. 

Protease secretion (Figure 7B). Three main proteases have been identified in the extracellular 

medium: the alkaline protease AlpA (oryzin); the leucine aminopeptidase LapA; and a deuterolysin 

(neutral protease). The presence of aligned spots of different isoelectric points suggests that these 

proteases display different phosphorylation degrees or glycosylation levels (glycoform). These 

different forms can be related to a variability of post-translational modification pathways involved in 

protein secretion. 

Characteristic proteins secreted in biofilms conditions (Figure 7C). Among the proteins 

mainly secreted in the aspersed and immersed BfR, we observed large quantities of chitosanase 

(CsnC) and exo-glucanase (ExgA). The chitosanase CsnC catalyzes the cleavage of chitosan, the 

deacetylated form of the chitin polymer, a component of fungal cell walls [26]. The exo-glucanase 

(ExgA) is responsible for the hydrolysis of the glucosidic bond found in β-1-3-glucan, a component of 

fungal cell walls. This protein is particularly interesting, since its secretion is associated with growth 

on a solid surface [27]. The synthesis of ExgA and CsnC in biofilm conditions could be involved in 

EPS matrix hydrolysis and cell wall degradation occurring when nutrients are depleted towards the 

end of the culture. 
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IV.3.5 Colonization efficiency between aspersed and immersed BfR 

Significant differences between the aspersed and immersed modes of BfR have been observed, 

and large-scale X-ray tomography was used in order to quantify these differences. The first 24 hours 

of culture were performed by considering the total immersion of the packing in the liquid phase for the 

two modes of cultures in BfR. Indeed, total immersion of the packing in the liquid medium promotes 

spore adhesion and causes germination in a few hours. During the whole cultivation period, the liquid 

phase is free of biomass (with the substrate concentration considered for the bioreactor tests as 

previously investigated) (see Figure S3 in the supplementary material). When considering the aspersed 

mode of BfR, 80% of the liquid phase is transferred to a buffer vessel after 24 hours of culture. The 

transferred liquid phase is then recirculated on the packing. Liquid distribution is not homogeneous 

and induces preferential flow paths inside the support leading to spatially localized conidiation on the 

section of the corrugated sheets that are less fed with the liquid phase. 

The fungal biofilm distribution can be visualized inside the structured packing by the non-

invasive imaging technique of X-ray tomography (see Figure S2 in the supplementary material). The 

reconstructed image from a cross sectional area located in the middle of the packing height in the 

immersed BfR (Figs. 8A and 8B) shows an equally distributed biofilm of constant thickness across the 

whole cross sectional surface provided by the support. At an identical height, a cross sectional area of 

the packing in the aspersed BfR reveals heterogeneous biofilm distribution with a globally thinner 

biofilm than that observed for the immersed BfR. Evolution of biofilm surface per cross sectional area 

along the height of the packing is almost constant for the immersed BfR. On the other hand, this value 

increases from the upper section towards the bottom of the support in the case of the aspersed BfR 

(Figure 8C), resulting in a conical shape of biofilm distribution. Dry matter of the fungal biofilm at the 

end of the culture is slightly higher in the aspersed BfR (2.96 ± 0.61 %) than in the immersed BfR 

(2.60 ± 0.63%), but bioconversion yields (Yx/s) are similar and close to 0.5. 
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Figure 8 : Visualization of fungal biofilm distribution (white pixels in panels A and B) inside the metal 

packing by X-ray tomography. (A) Reconstructed image from a cross sectional area of the packing of the 

immersed BfR (B) Reconstructed image of a cross sectional area of the packing in the aspersed BfR (C) 

Quantification of the fungal biomass attached at different heights inside the metal structured packing of 

immersed and aspersed BfR 

 

IV.4 Discussion 

The development of specific cultivation devices promoting the formation of fungal biofilm is 

of high interest for the production of biomolecules or biocatalytic processes with high added-value 

[13, 7, 28, 29]. In this work, we designed a fungal BfR on the basis of a metal structured packing 

generally used in distillation or stripping applications. This packing provides an efficient support for 

biofilm growth due to its high specific area (800 m²/m³). Additionally, the support can be considered 

as an efficient way for bioprocess intensification by promoting the exchanges between the biofilm, gas 

and liquid phases due to reduced energy consumption. These metal supports can be easily stacked in 

order to scale-up the process. High-energy X-ray tomography was found to be a useful tool for 

visualizing and quantifying the fungal biomass in the BfRs. This technique has demonstrated its 

performance for the characterization of similar processes in previous studies [14, 16]. Indeed, it 

provides relevant information about the effect of hydrodynamic conditions on biofilm distribution 

inside the metal structured packing. As was observed in the aspersed mode of BfR, preferential flow 

paths in the structured packing tend to increase biofilm thickness in localized areas, inducing the 

appearance of clogs between the corrugated sheets. On the other hand, the immersed mode of BfR 

promotes homogeneous biofilm distribution with a controlled thickness, allowing it to overcome the 
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diffusional limitation of substrates and metabolites inside the biofilm matrix [30]. Despite the presence 

of naturally-formed structured channels inside the fungal matrix as reported by Villena et al. (2010) 

[9], a fraction of the fusion protein secreted remained entrapped in the biofilm. The large size of the 

fusion protein (70 kDa) could be a factor influencing its recovery in the liquid phase. In the same 

culture device, productivity of a 7 kDa hydrophobin in a fungal BfR is 2.54 times higher than in a 

submerged culture in an STR [31]. The immersed BfR works like an improved bubble column, and the 

absence of agitation allows for the intensification of the process and a reduction of the energy 

consumption in comparison with a STR. However, oxygen transfer is relatively low in the immersed 

mode of cultivation, leading to a reduction of the metabolic activity and protein biosynthesis. In 

context, the aspersed BfR could be seen as a biological gas-liquid contactor in which the high specific 

area (m²/m³) of the structured packing covered by the biofilm and the liquid film allows for an 

efficient oxygen mass transfer. Catalytic biofilms implemented in similar devices have already proved 

their performance for biotransformations requiring efficient gas-liquid exchange [32, 33]. The efficient 

oxygen transfer rate and the recirculation of the liquid phase would explain the slightly greater 

productivity of the fusion protein encountered in the aspersed BfR. In conclusion, the BfR is 

discharged with several technological constraints. The retention of the microbial biomass inside the 

support leads to several technical advantages in comparison with submerged cultures (see Table S3 in 

the supplementary material), such as the possible extension of the process to a continuous mode of 

operation with low energy consumption due to the absence of mechanical stirring (I), the maintenance 

of a low medium viscosity during the culture (II) and a simplification of the downstream processing 

operations (III). 

Besides these technological advantages, many studies have pointed out that fungal 

morphology improves metabolite excretion [34]. However, this physiological effect is not as clear in 

our work. Ishida et al. (1998) [17] highlight specific glaB expression in solid-state culture conditions 

and low expression in submerged culture conditions. However, fusion protein synthesis under the 

control of the glaB promoter has been identified in each culture condition under several molecular 

forms. Until now, none of the literature has tackled this subject because all experiments on glaB 

expression have been performed at a small-scale [18, 35, 36]. In this study, production and quality of 

the fusion protein are related to the combined effects of fungal physiology and operating culture 

conditions. Indeed, we observed a significant production of the fusion protein in the 800 rpm STR, 

suggesting that activation of the glaB promoter is not specific to solid-state fermentation conditions. 

However, it must be noted that the GlaB protein (with an isoelectric point of 4.68 and a MW of 52.4 

kDa; source http://web.expasy.org/compute_pi/) has not been identified in any of the 2D-gels because 

its peptide mass fingerprint has not yet been included in the protein databases. In previous works, 

Ishida et al. (1998) [17] observed that the expression of glaB is regulated at the transcriptional level 

and is induced by starch, low water activity, a high temperature and a physical barrier to hyphal 
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extension, e.g. the specific conditions of solid-state fermentation. However, these experiments were 

conducted at flask-scale and did not take into account a possible protein leakage induced by the 

mechanical stirring encountered in the stirred bioreactor. The high agitation rate in these systems 

induces a shear stress. It is well known that an efficient agitation rate improves the oxygen mass 

transfer rate, but Papagianni and Moo-Young et al. (2002) [37] observed that vacuolation occurring 

after glucose depletion in submerged cultures makes mycelial hyphae sensitive to shear stress and 

induces autolysis and hyphal fragmentation. This assumption is supported by the results of Talabardon 

and Yang et al. (2005) [13] in similar conditions and could explain the sharp biomass drop observed in 

800 rpm STR. Consequently, the better secretion level of the proteins in 800 rpm STR can be linked to 

an increase of cell wall permeability provoked by shear stress as well as the release of fusion protein 

induced by biomass autolysis. Productivity of the fusion protein reaches intermediary levels in both 

BfRs. The slightly higher yield obtained in the aspersed BfR could be explained by the greater oxygen 

availability and the lower water activity of the fungal biofilm, mimicking the environmental conditions 

in solid-state fermentation and required for efficient pglaB activation [38]. 

However, an important physiological advantage of the BfR has been observed at the level of 

the quality of the proteins (recombinant or natural) produced. The alteration of the recombinant 

protein by native proteases is one of the main constraints for the production of heterologous proteins 

by filamentous fungi [39]. In this work, the glucoamylase region of the fusion protein (Gla::) 

corresponds a glucoamylase from A. niger (GlaA) without its starch-binding domain. Both native 

forms of the fusion protein detected in the 2D-gel could be related to G1 and G2 isoforms of GlaA 

[40]. The linker region of Gla::GFP contains a cleavage site that could be hydrolysed by an 

endopeptidase such as oryzin (AlpA). Oryzin is highly secreted in 800 rpm STR and aspersed BfR. 

Despite unfavourable pH conditions for oryzin activity (optimal activity is at pH 9; 

http://www.uniprot.org/uniprot/P12547), the fusion protein is largely affected by proteolysis in 

aspersed BfR and 800 rpm STR. Whereas truncated ::GFP can be found to a larger extent in 800 rpm 

STR and aspersed BfR, the Gla:: fragment has mainly been found in 800 rpm STR conditions only, 

suggesting that this fragment is absent, degraded or trapped in the fungal biofilm matrix of the BfR. 

On the basis of these observations, we suggest that the operating conditions and morphological forms 

of the fungal biomass have an impact on protein secretion efficiency. The enhancement of the quality 

of the fusion protein produced in the immersed BfR could be linked to post-translational modification 

pathways improving folding and stability against protease activity. Among post-translational 

modifications, glycosylation allows for the protection of the cleavage sites of the fusion protein from 

protease activity [41]. When biomass autolysis occurs in 800 rpm STR, incomplete folding and 

glycosylation of the fusion protein released in the extracellular medium would increase its sensitivity 

to endogenous proteases. Thus, the larger amount of ::GFP fragments resulting from the cleavage of 
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the fusion protein leads to the formation of dimers and enhances the fluorescence signal measured in 

800 rpm STR [42]. 

Although the previous discussion is mainly focused on process performances and Gla::GFP 

secretion, data of the extracellular proteome provide new tracks of investigations about the effect of 

culture conditions on protein secretion by filamentous fungi. The latter are currently the most 

commonly used host organisms for industrial production process. In this study, analysis of the 

extracellular proteome highlights differences in term of proteins diversity and relative abundance (see 

Figure S1A,B and Table S2 in the supplementary material) between each culture conditions that can 

be explained by environmental factors encountered during the process. It could be expected that some 

proteins mainly found in biofilm conditions should be thoroughly investigated in further studies. 

CnsC, an extracellular chitosanase, involved in cell wall degradation [26] is one of the major proteins 

found in the immersed BfR where shear forces are very low. Whereas mechanical damages 

encountered in 800 rpm STR causing cell lysis involve a slightly secretion of CnsC. On the basis of 

the 2D-gels, it seems that CnsC is also associated with a low secretion level of proteases as it can been 

observed for immersed and 200 rpm STR conditions. It would be relevant to investigate the use of 

cnsC gene promoter for heterologous protein production in operating culture conditions involving low 

shear stress. A similar interpretation could be made with ExgA, an exo-glucanase involved in cell wall 

degradation, greatly produced in the immersed BfR [27]. Among the other specific secreted proteins in 

the fungal BfRs, MreA, an alcohol isoamyl oxydase that converts isoamyl alcohol in isovaleraldehyde 

was identified. The reason of its presence in supernatant of both fungal BfRs is unknown but confirms 

efficiency of post-translational modifications in BfR conditions because it is an extracellular enzymes 

characterized by a high molecular weight (62 kDa) and high glycosylation level (nine potential N-

glycosylation sites) [43]. In order to deepen the interpretation of our results, it would be interesting to 

analyze the intracellular proteome of fungal biofilm and to link it with the extracellular proteome. It 

would be relevant to perform a deglycosylation of extracellular proteins in order to improve their 

identification by MALDI-TOF MS [44]. The proteomic data highlighted many proteins found in high 

abundance under biofilm culture conditions such as CnsC, ExgA, MreA and hypothetical proteins. 

Some of these are still proteins with yet unclear physiological function. Though their role is still far to 

be understood, this work now offers more tools for further investigations to improve the protein 

secretion of this filamentous fungus in a biofilm-based process. 

In this work, the production of a fusion protein Gla::GFP by the filamentous fungi A. oryzae 

was performed in a bioreactor designed for promoting the formation of biofilm. Despite the use of the 

specific glaB promoter, different expression and quality levels of the recombinant protein were 

observed in each condition as well as a modification of the extracellular proteome. The Gla::GFP 

productivity depends of the combination between a physical effect (including mechanical agitation and 

diffusional mass transfer) and a physiological effect (including fungal morphology and promoter 
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choice for fusion gene transcription). The best yield was observed in the classical STR but involved 

biomass leakage and alteration of the recombinant product. On the other hand, production in the 

immersed BfR enhanced stability of the recombinant product despite protease activity. Finally, 

aspersed and immersed BfR reached satisfying productivities and are discharged of several 

technological constraints. 
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5 General discussion and perspectives 

The global objective of this project aimed to design a single-species BfR based on structured 

packing intended for the production of high-added value biomolecules. The scientific strategy, divided 

into three steps, has first considered a screening of the growth and secretion abilities of the biofilm in 

flask scale conditions. The second and third step characterized the process performances of the 

experimental BfR at the bioreactor scale and compared them with those of a conventional process 

carried out in a STR. The following discussion will focus on key factors influencing the design of a 

metal structured packing BfR and affecting the secretion performances of the target product. The 

advantages and drawbacks of the experimental BfR will be compared with a classical STR in term of 

costs, productivities and functionalities. Finally, the perspectives will propose a scale-up strategy and 

will provide new tracks of investigations for the design of biofilm-based processes. 

5.1 Key factors influencing the design of the BfR 

The biofilm formation mode of the microorganism was an important criteria for the design of 

the BfR. The biological models used to design the mono-species BfR exhibit two distinct modes of 

biofilm formation. The first one occurring by cell aggregation (Figure 1B) is related to B. subtilis 

species (chapter I & II) and the other one forming by cell filamentation (Figure 1B) is related to T. 

reesei and A. oryzae species (chapter III & IV). According to the biofilm formation mode defined by 

the preliminary flask-scale screening (Figure 1A), three configurations of the experimental BfR were 

considered. In the trickle bed reactor (TBR) configuration (Figure 1D), the liquid trickling at the 

surface of corrugated sheets meets an ascending air flow (the TBR configuration corresponds to the 

aspersed condition in the chapter IV). That creates growth conditions similar to those of the packing 

area alternatively exposed to air and liquid in the shake flask (Figure 1A). In the bubble column (BC) 

configuration (Figure 1E), the packing element is totally immersed in the liquid medium during all the 

culture and the raising of air bubbles have a mixing effect (the BC configuration corresponds to the 

immersed condition in the chapter IV). This growth conditions are similar to those of the packing area 

totally immersed in the shake flask (Figure 1A). In the last BfR configuration, the growth conditions 

of the TBR and the BC are combined (Figure 1E). 
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Figure 1 : Effect of the biofilm formation mode defined at flask-scale on the configuration of the 

experimental setup at bioreactor scale. (A) Shake flask equipped with a piece of metal structured packing 

exhibits a packing area alternatively exposed to air and liquid (1) and a packing area totally immersed in 

the liquid phase (2). (B) Packing colonized by a B. subtilis biofilm. (C) Packing colonized by a biofilm of A. 

oryzae. (D & E) Bioreactor configurations selected for biofilm growing by cell aggregation and cell 

filamentation. 

 

At flask scale, Bacillus subtilis only colonized the packing area alternatively exposed to air 

and liquid (Figure 1A,B) by forming a slack biofilm detaching in the liquid phase when nutrients 

depletion occurs. According to the literature, B. subtilis mostly develops as a pellicle of biofilm at 

air/liquid and air/solid interfaces (microtiter plate and on agar medium) when growing in static growth 

conditions. Basically, B. subtilis biofilm forms aerial structures containing sites for spore formation in 

order to optimize their subsequent dissemination in the environment [1]. B. subtilis forms multi-

cellular communities by cell aggregation [2] (see section 2.1.1 in the state of the art). During adhesion 

process, some individual cells or cell clusters irreversibly attach to the surface. The aggregation of 

microcolonies horizontally expanding at the interface and their subsequent vertical growth lead to the 

biofilm. B. subtilis GA1 biofilm is thicker and more extendible than those of other bacterial species 

forming biofilm by cell aggregation such as Pseudomonas sp. or Escherichia coli. These latter were 

also investigated for the design of the single-species BfR [3] but they cannot form biofilm in the range 

of the operating conditions defined in this work (data no shown). These species prefer more 

hydrophobic surface than stainless steel and tightly regulated laminar flow conditions. 
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The secretion of surface-active metabolites such as lipopeptides increases the hydrophobicity 

of the stainless steel surface of the corrugated sheets and improves B. subtilis cells adhesion [4]. 

Furthermore, lipopeptides facilitate cells spreading over the surface and improves substrate 

assimilation [5]. 

T. reesei and A. oryzae equally colonize the support on the form of a biofilm and no growth 

occurs in the liquid medium (Figure 1A,C). The fungal biofilm is able to expand above the oscillating 

interface and exhibits aerial structures whereas the fungal biofilm wetted by the liquid medium looks 

like a sponge. Although the term "fungal biofilm" has not been accepted by all the scientific 

community yet, it can be used to describe growth of filamentous fungi colonizing solid surface [6] and 

exhibiting a growth pattern close to bacterial biofilm occurring by cell filamentation such as those of 

Streptomyces sp. [2, 7]. After spores inoculation in the liquid medium, most of them adhere to the 

packing. The secretion of hydrophobin is involved in their attachment since these proteins are able to 

assemble into amphipathic monolayers at hydrophobic-hydrophilic interfaces [8]. Once attached, 

spores germinate into filamentous cells dividing without cell separation to form hyphae. Subsequent 

elongation and branching of hyphae induce a radial colonization of the surface to form a microcolony. 

This natural ability of surface adhesion and colonization is an attractive feature for the design of a 

single-species BfR with fungi [9]. 

The experimental data and these theoretical considerations suggest that the biofilm formation 

mode is decisive for the design of a BfR (see performances of colonization in the Table 1). The 

optimal growth conditions of biofilm occurring by cell aggregation require a multiple phases interface, 

i.e. a solid surface wetted by a liquid film in close contact with a gas phase. Thus, this category of 

biofilm is suitable for the TBR configuration (Figure 1D). However, the slack structure of the biofilm 

makes it sensitive to shear stress and involves detachment of cell aggregates in the liquid phase. The 

BC configuration was not considered because B. subtilis cells preferentially developed in the 

planktonic phase and the raising of air bubbles creates intense foam formation. Yet, recent work of 

Bridier et al. (2011) [10] show that B. subtilis is also able to form biofilm on immersed surface with 

similar mechanisms governing pellicle formation but require tightly controlled laminar flow 

conditions. On the other hand, the optimal growth conditions of biofilm occurring by cell 

filamentation is less demanding because the biofilm colonizes submerged surfaces as well as aerial 

surfaces. Thus, TBR and BC configurations are suitable for this other category of biofilm (Figure 1E). 

In the BC configuration, the efficient adhesion process of spores on the whole surface and their 

subsequent germination allow an uniform distribution of the biofilm within the packing element. That 

avoids heterogeneous growth of the biofilm in local areas as observed in the TBR configuration. 
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Another feature distinguishing biofilm formation by cell aggregation and cell filamentation is 

the structural properties of the biofilm. In the B. subtilis biofilm, the EPS matrix acts as a cell glue 

which maintains cohesion within cell aggregates and adhesion with the substrate. However, the overall 

slack structure of the biofilm makes it sensitive to shear stress and facilitating the dispersal of the 

biofilm (and the cleaning of the packing at the end of the fermentation run). On the other hand, the 

filamentous fungal biofilm of A. oryzae and T. reesei result from the embedding of hyphae from 

expanding microcolonies as well as the secretion of an EPS matrix enhancing integrity and biofilm 

adhesion. The dispersal phase liberates different planktonic forms such as spores (unicellular) and 

hyphal fragments (multicellular) in the liquid medium [11]. However, a great fraction of the biofilm 

mainly composed of dead mycelial fragments remains firmly attached to the surface of the packing 

element (which makes the cleaning of the packing difficult at the end of the fermentation run). The 

implementation of a continuous process for long-term activities should consider the control and the 

monitoring of biofilm dispersal in order to avoid a biofouling of the system decreasing performances 

of the BfR. 

 

Tableau 1 : Summary of colonization performances for each biological model studied in this work 

  B. subtilis GA1 T. reesei A. oryzae 

Adhesion TBR > 90 % > 95% > 99% 

(attached biomass) BC / / > 99% 

      

TBR Low (conical) Low (random) Low (random) 
Evenness 

BC / / High 

      

TBR Low-medium Low-medium Low-medium 
Clogging 

BC / / Low 

      

TBR Medium-high Medium-High Low 
Biofilm thickness 

BC / / Low-medium 

      

TBR High Low-medium Low 
Biofilm dispersion 

BC / / Low 
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5.2 Key factors controlling secretion performances 

The Figure 2 summarizes the parameters involved in the secretion performances of the target 

product in the experimental BfR. It shows the operating conditions and process performances 

investigated and characterized in this work, respectively. The following section describes the factors 

affecting the secretion performances of the target product in the experimental BfR. 

 

Figure 2 : Scheme summarizing the parameters involved in the secretion performances of the target 

product in the experimental BfR. Dotted lines mean mutual interactions between biological and 

physicochemical interactions. 

 

In the TBR configuration, the geometry of the liquid distributor and liquid flow rate impact 

hydrodynamics of the liquid phase in the packing element. Among the numerous hydrodynamic 

parameters, the wetting efficiency has a significant importance on the biofilm distribution within the 

structured packing (Chapter II). During the first hours after the inoculation of the preculture, the 

biofilm formation mainly occurs on surfaces irrigated by the liquid. A liquid mal-distribution within 

the packing element leads to a heterogeneous nutrient supply resulting in over and unfed areas 

(Chapter IV). The excessive growth of the biofilm in over-fed areas induces biofouling. Thus, the 

liquid distribution is a critical performance parameter because it controls the homogeneity of the 

biofilm distribution within the packing element. 
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The wetting efficiency is strongly influenced by the initial liquid distribution depending on the 

number of irrigation point sources per surface area above the column [12]. However, the liquid 

stagnation in the distributor plate can trigger the formation of a biofilm pellicle causing the clogging of 

the plate (Chapter I and II). The design of an effective liquid distributor should consider a distributor 

with liquid nozzles [13, 14] in order to avoid liquid retention as in the distributor plate. 

The increase of the liquid flow rate improves the oxygen transfer rate within the packing 

element and consequently improves microbial growth (Chapter II and IV). It influences the residence 

time distribution of the liquid and thus controls the feeding rate of the microbial system. The 

hydrodynamic regime of a TBR is characterized by a dispersed plug flow model and requires an 

optimization of the liquid residence time in order to avoid starvation of the biofilm growing at the 

bottom of the packing element [15]. Nevertheless, the liquid hydrodynamic regime could not reached a 

steady-state within the packing element during our experimentations because the growth of the biofilm 

was a dynamic process The dotted lines in the figure 1 illustrate the mutual interactions between the 

biological and physicochemical performances of the process. During the growth phase of the biofilm 

within the packing, the bed void fraction decreases and the dynamic liquid hold-up increases. Whereas 

at the end of a fermentation, bed void fraction increases because of the biofilm dispersal. 

Hydrodynamics should be characterized at different bed void fraction [14], i.e. at different times of the 

fermentation. Considering these facts and the structural and physicochemical properties of the biofilm, 

the hydrodynamic regime deviates from the dispersed plug flow model and has to take into account the 

diffusion transport in and out of the biofilm [15, 14]. Diffusion micro-channels supply nutrients across 

the biofilm according a concentration gradient involving starvation areas located in the depth of the 

biofilm. The target molecule is also transported in the biofilm by a diffusion gradient [16, 17]. Thus, 

the diffusion component of the overall mass transfer is a limiting parameter of the process 

performances that can be partially controlled by the biofilm thickness [18, 19]. 

The liquid flow rate also impacts the adhesion process and has a significant effect during 

dispersal of the biofilm, especially on biofilm formed by cell aggregation such those of B. subtilis [5]. 

The shear stress provoked by the liquid flow can prevent cell adhesion and attachment of the biofilm 

but it can benefit dispersal of the biofilm [20]. The liquid flow rate is also involved in the formation of 

foam decreasing the overall mass transfer and slowing microbial growth (Chapter II). 

The implementation of a semi-continuous process was investigated in the chapter III. The 

repeated sequence of batch cycles enhances the amount of biomass attached to the metal structured 

packing but does not influence the productivity of the target molecule. That means there is an optimal 

biomass concentration which maximizes the productivity of the system. It is likely that repeated 

growths of the biofilm clogs the packing element and slows the mass transfer of nutrients/metabolites 

within the microbial system. Thus, it is required to control and monitor the thickness of the biofilm. At 
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the end of each batch cycle, i.e. when the substrate was totally depleted, the liquid phase is sterilely 

removed from the vessel and this latter is filled with a same volume of fresh medium. 

In the BC configuration, the working volume is greater than those of the TBR configuration 

but the useful surface (m² of packing element / m³ of useful volume) is the same. In the BC 

configuration, the thickness of the fungal biofilm was proportional to the initial carbon source 

concentration and depends of the specific surface area of the packing element (m² of packing element / 

m³ of packing volume). Although the BC configuration allows for an even biofilm distribution and an 

homogeneous nutrients supply, the oxygen transfer rate is low because the air bubbles are not broken 

by a mechanical stirring system and they quickly coalesce during their ascent in the vessel. The air 

distributor should exhibit a design allowing for a liquid mixing effect and a thickness regulation of the 

biofilm thanks to ascent of air bubbles. Similar culture conditions have already been applied in an 

immersed fixed-bed coupled to the agitation axis for the production of a recombinant protein by a 

fungal biofilm [21]. 

The Figure 3 summarizes the parameters affecting secretion performances of the single-

species BfR. At the whole scale process, the secretion performances depend on the growth conditions 

of the microbial system (feeding rate, temperature, pH, pO2) and the performances of the mass transfer 

between the microbial system, the liquid and gas phases. At meso-scale, they depend on the evenness 

of the biofilm distribution within the packing element, the specific surface area of the biofilm (m² of 

biofilm surface / m³ of useful volume) and on the thickness of the biofilm. At micro-scale, the 

secretion performances of the microbial system are mainly related to the biofilm physiology that 

promotes the biosynthesis pathways of certain metabolites or proteins (surfactin or hydrophobin, 

Chapters I and III) or activates the transcription of genes clusters particular to biofilm physiology 

(glaB promoter in Chapter IV). It has been demonstrated that transcriptome and secretome of biofilm 

differs from those of their planktonic counterparts (this work, [22, 23]). Thus, it is required to select a 

metabolite with an activation pathway promoted by biofilm physiology. Within a biofilm, the division 

of labours within the cell population is spatially structured and thus is composed of producer and no 

producer phenotypes of the target molecule [16]. Their proportion and their localization in the biofilm 

influence the secretion performances of the microbial system. As aforementioned, this stratification of 

the phenotypes is involved in the improved robustness and productivity of biofilm. After the 

biosynthesis step of the target compound, the secretion pathway in the extracellular medium can 

involve post-translational modifications followed either by a passive or by an active transport across 

the cell membrane. Moreover, certain extracellular proteins are bound or retained to the cell wall and 

thus cannot be recovered in the extracellular medium. It was the case of the class II hydrophobin HFBI 

(Chapter III) secreted by T. reesei and the Gla::GFP secreted by A. oryzae (Chapter IV). 
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Figure 3 : Key factors affecting the secretion performances of the target product at different scales of the 

process. (A) Scheme of the experimental BfR. (B) Image of a packing cross section colonized by the 

biofilm (white pixels). 
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5.3 Production potential of the BfR VS STR  

One of the purposes of this work was to assess the production potential of a biomolecule in a 

BfR compared with those of a STR (Table 2 gives a summary of secretion performances). The 

secretion performances of the target molecule are characterized by a physiological effect and a 

technological effect. The physiological effect involves the microbial system and the technological 

effect is related to the process parameters of the BfR. 

Physiological effect : 

- The Table 2 gives volumetric and specific productivity of surfactin, hydrophobin (HFBII) and 

Gla::GFP fusion protein in each reactor configuration. The volumetric productivity (mg/L.h) is 

calculated on the basis of the final concentration of the target molecule recovered in the liquid 

phase after a batch fermentation. The productivities of surfactin and hydrophobin are 1.25 and 

2.64 times higher in TBR, respectively. The surfactin and hydrophobin (HFBII) were selected 

for their involvement in the biofilm formation. The hydrophobin production begins earlier in the 

fungal biofilm of T. reesei (Chapter III) because these surface-active molecules are involved in 

the adhesion process of the spores and hyphal fragments on the solid substrate [24]. These 

observations are in accordance with the physiology expected in BfR, i.e. a reduction of the time 

required to reach the secondary metabolisms with the excretion of the corresponding proteins 

and metabolites [25]. The biofilm of B. subtilis increases its specific production rate of surfactin 

(mg / g biomass) compared with vegetative cells of the submerged culture (Chapter I). The 

surfactin acts as an inducer of matrix synthesis and its surface-active properties improve cell 

swarming, substrate assimilation and spores dissemination [26, 5]. These two examples suggest 

that the production of surface-active molecules involved in the biofilm formation has a real 

interest for the design of single-species BfR. 

- Although the volumetric and specific productivity of the Gla::GFP fusion protein must be 

carefully discussed in the experimental BfR, the fungal biofilm preserves the integrity of the 

Gla::GFP fusion protein despite presence of extracellular proteases. Whereas majority of the 

Gla::GFP fusion protein is hydrolyzed in the STR. The analysis of the extracellular proteome 

highlights differences of post-translational modifications between proteins secreted by the 

fungal biofilm and the pellets cultivated in submerged cultures (Chapter IV). These observations 

suggest that fungal BfR would be suitable to produce high added value compounds with specific 

functionalities related to folding and glycosylation. Furthermore, the BfR modifies the secretion 

profile of the microbial system compared with those of planktonic cells (Chapter I and IV). In 

order to consider the production of other heterologous proteins in the BfR, further experiments 

should consider the screening of promoters particular to biofilm physiology. 
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Tableau 2 : Summary of secretion performances of the target molecule in each reactor configuration 
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Technological effect (Table 3): 

- The effect of the mechanical agitation induces foam formation leading to a loss of surfactin in 

the gas phase of the STR (Chapter I) or induces fungal biomass autolysis leading to a leakage of 

unfolded or unstable Gla::GFP fusion protein in the culture supernatant (Chapter IV). The 

absence of foam formation during the surfactin production in the BfR avoids the intensive use 

of an antifoaming agent and reduces time and costs of downstream processing operations. The 

production of hydrophobin and Gla::GFP are discharged of the viscosity constraints related to 

the mycelium growth in the liquid phase. The absence of fungal biomass in the liquid medium 

also prevents the centrifugation step required to collect the supernatant. Finally, the energy 

consumption required for the liquid recirculation in the experimental setup is lower than those 

of the mechanical agitation in the STR. In the experimental BfR, the softer operating conditions 

lead to technological progresses that are attractive in terms of production costs. 

- Despite that the working volume is lower in the experimental BfR than those of the STR, the 

continuous implementation of the BfR is expected to be easier and to greatly improve the 

productivity of the process. The BfR benefits process intensification. Indeed, the concentration 

of the microbial system in the structured packing allows for a decrease of the ratio size / 

productivity compared to a STR. Furthermore, it is expected that the high robustness of the 

biofilm can tolerate more concentrated substrates than planktonic cells and thus contributes to 

the enhancement of the productivity. 

- However, the recovery of the target metabolite in the liquid phase is not efficient. A fraction 

remains trapped in the biofilm at the end of the fermentation run (Chapter I an IV). It mainly 

depends on the diffusion mass transfer rate across the biofilm matrix. This latter is a function of 

numerous different parameters including the thickness, composition and structure of the matrix, 

flow regime conditions at the surface of the biofilm, size and physicochemical properties of the 

metabolite and localization of producer phenotypes within the biofilm. Further experiments 

should deepen the understanding of these aspects in order to optimize the diffusion mass 

transfer. 
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Tableau 3 : Summary of process and performance parameters involved in the technological effect 

Process parameters STR TBR BC 

Working volume High Low High 

Energy consumption High Low Low 

Mixing High Low Medium 

Mechanical damages Medium-high Low Low 

Continuous processing Common Efficient Efficient 

Downstream processing Common Efficient Efficient 

    

Performance parameters       

Foam formation High Low High 

Oxygen mass transfer Medium-high High Low-medium 

Substrate/Product mass transfer Medium-high Low Low-medium 

Product quality (protein) Low Low-medium High 

Biomass robustness Low-medium Medium-high Medium-high 

 

5.4 General conclusions 

At the end of this project, an experimental single-species BfR has been designed for the 

production of target molecules with high added values. Three biological models with good 

potentialities of biofilm formation and secretion performances were selected :  

- the gram positive bacterium Bacillus subtilis for the production of surfactin, a surface active 

metabolite involved in biofilm formation. 

- the filamentous fungus Trichoderma reesei for the production of hydrophobin (HFBII), a 

surface active protein (7kDa) involved in adhesion process of spores and mycelium on solid 

surface. 

- the filamentous fungus Aspergillus oryaze (engineered strain) for the production of a 

recombinant protein (Gla::GFP) under the control of the glaB promoter specifically activated in 

solid-state fermentation. 

 

The conclusions of this project will focus on decisive results obtained in each step of the 

scientific strategy. The growth abilities of each biological model was preliminary screened at flask-

scale (1). 

- At this level, biofilm formation mode was characterized for each biological model. The biofilm 

growing by cell aggregation such those of B. subtilis requires a gas-liquid interface to colonize 

the solid surface. This slack biofilm is sensitive to liquid shear stress and disperses into the 

liquid phase after nutrient depletion. The biofilm growing by cell filamentation such those of 

filamentous fungi A. oryzae and T. reesei equally develops on submerged and aerial surfaces. 
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This robust biofilm is firmly attached and spreads itself on the solid surface. On the basis of 

biofilm formation mode, the configuration of the experimental set up exhibits two 

configurations. In the first one, the recirculated medium trickles through the packing element 

and meets an ascending air flow such a trickle bed reactor (TBR). It is particularly suitable for 

the formation of B. subtilis biofilm requiring an air-liquid interface in order to colonize the 

surface. In the second one, the packing element is totally immersed in the liquid medium during 

all the culture and aerated by a sparger located at the bottom of the vessel such a bubble column 

(BC). It is suitable for the formation of filamentous biofilm such those of A. oryzae and T. 

reesei that evenly colonize submerged and aerial surfaces. 

Then, the operating conditions and the processes performances were investigated and 

characterized at the bioreactor scale respectively (2). The experiments are based on a relevant and 

original methodology using high energy X-ray tomography in order to non-invasively visualize and 

characterize the biofilm distribution within the packing element. 

- In the TBR configuration, initial hydrodynamics of the liquid phase within the packing element 

controls the biofilm formation and the biofilm distribution. The liquid flow rate controls cell 

adhesion and biofilm attachment because of the liquid shear, especially for B. subtilis biofilm. 

The wetting efficiency influences the evenness of the biofilm distribution and depends on the 

liquid distributor. Hydrodynamics of the liquid phase evolves during the growth of the biofilm 

and should be characterized at different bed void fractions. In the BC configuration, total 

immersion of the packing allows for an homogeneous repartition of the biofilm. The secretion 

performances of the experimental BfR are regulated by key factors occurring at different scales. 

At the process scale, secretion performances are affected by growth conditions (feeding rate, 

temperature, pH,...) and overall mass transfer of nutrients, O2 and metabolites. At meso-scale, 

secretion performances depend on biofilm distribution on the packing cross section, biofilm 

thickness and specific surface area of the biofilm. At micro-scale, secretion performances are 

mainly influenced by the physiology related to the biofilm. 

Finally, the secretion performances were assessed and compared with those of submerged 

culture carried out a in STR (3). 

- Compared with a conventional process in STR, the experimental BfR benefits advantages 

related to biofilm physiology and process conditions. The BfR improves the productivity of 

surface active molecules such as surfactin or hydrophobin compared to planktonic cells. The 

biofilm physiology enhances the secretion of molecules involved in the biofilm formation, 

especially those belonging to secondary metabolism. The secretion in fungal biofilm improves 

the stability and the quality of the target product and supposes that post-translational 

modifications involving folding and glycosylation are efficient. The production of a biological 
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compound in a single-species BfR benefits "softer" process conditions and is discharged of 

constraints related to stirred tank cultures. The mechanical agitation provokes foam formation 

during the production of surfactin and thus requires the addition of an antifoaming agent. 

According to the agitation rate, the biomass is sensitive to biomass autolysis and cell 

fragmentation for filamentous fungi cultures. Consequently, the technological progresses related 

to the BfR would contribute to reduce time and costs of downstream processing operations. 

Finally, thanks to their inherent properties of self-immobilization, high robustness and long-

term activity, single-species biofilms exhibit a great potential to design reactors in accordance 

with rules of process intensification (see section 2.3.1 of State of the art). However, further 

experiments should consider diffusion mass transfer of the target molecule across the biofilm 

matrix in order to optimize its recovery in the liquid phase.  

5.5 Perspectives 

This work opens new tracks of investigations about the design of single-species BfR intended 

for the production of value added compounds. These perspectives propose several issues encountered 

at different scale levels of the process. 

At a micro-scale level, it would be relevant to characterize the phenotypic heterogeneity 

impact of a single-species biofilm cultivated under different operating conditions on the secretion 

performances of a target molecule. It has been previously reported that cell population of a biofilm is 

composed of producer and non-producer phenotypes. Their localization and their proportion within the 

biofilm depends on environmental conditions. The purpose of this study would aim to understand how 

the structured phenotypic heterogeneity within a biofilm influence the secretion of a target metabolite. 

The experimental strategy would involve the design of lab-scale devices promoting the formation of 

biofilm and allowing a high-throughput screening of culture conditions. The phenotypic heterogeneity 

of the biofilm could be easily characterized by flow cytometry analysis combined with a specific cell 

staining or a strain expressing a fluorescent reporter gene. The phenotypes localization within the 

biofilm could be defined by confocal laser scanning microscopy. Finally, data of flow cytometry could 

be treated by fingerprinting analysis [27] in order to discriminate the phenotypic heterogeneity related 

to the different culture conditions. It should be noted that this perspectives stands only for biofilm 

growing by cell aggregation. 

At a meso-scale level, key factors involved in the biofilm formation and distribution should be 

elucidated in order to optimize process performances. A first approach could consider the modification 

of surface properties by the use of coating agents such as surface-active molecules. A second approach 

considering an optimal liquid distributor, the mutual interactions between the hydrodynamics of the 

liquid phase and growth of the biofilm should be investigated by tomographic measurements 

performed at different fermentation times. The effect of the liquid and gas flow rates should be 
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considered together because these operating conditions would be supposed to modulate the shear 

stress at the surface of the corrugated sheets and thus would regulate the thickness and dispersal of the 

biofilm. A thorough mathematical approach should consider the calculation of local liquid velocities 

within the packing element in order to quantify spatial distribution of shear stress. In the same time, it 

would be relevant to design a setup equalizing the inner diameter of the vessel and the diameter of the 

packing in order to avoid preferential gas flow in the void space between the packing and the vessel 

wall. Eventually, the effect of the increase of the column height by stacking of several packing should 

be investigated in order to predict the biofilm distribution face to the intensification of the process. 

At whole-scale, the production of the target molecule should be implemented in a continuous 

process. In the chapter III, the semi-continuous implementation consisted to perform a repeated 

sequence of batch cycles. At the end of each batch cycle, i.e. when the substrate is totally depleted, the 

liquid phase is removed from the vessel and this latter is sterilely filled with a same volume of fresh 

medium. The major issue of this technique is the risk of biofouling arising from the cumulated growth 

of the biofilm caused by the repeated additions of fresh medium. The clogging of the packing element 

involves a sharp decrease of nutrients and metabolites mass transfer leading to a loss of productivity. 

Thus, it is required to regulate the thickness of the biofilm within the packing element in order to 

avoid risks of biofouling. The figure 4 proposes an improved continuous processing strategy of the 

experimental BfR implemented in the chapter III. The liquid recirculation flow rate is increased during 

a defined time period at the end of each batch cycle (figure 4C), i.e. when nutrients depletion occurs, 

in order to enhance the dispersal of the biofilm in the liquid phase. This artificial dispersal would 

consequently regulate the thickness of biofilm by detaching biofilm fragments from the packing 

element (figure 4A). The self-regeneration ability of the biofilm would consume the added fresh 

medium in order to colonize again the packing element and secrete the target molecule (figure 4B). In 

their segmented flow BfR (SFBR), Karande et al. (2014) [18] controls the thickness of the biofilm by 

an aqueous-air segmented flow that generates continuous interfacial forces. The aqueous-air 

segmented flow allows to reach a pseudo steady state where growth rate of biofilm balanced with 

dispersal rate of the biofilm leading to a constant thickness of the biofilm and constant productivity of 

the target molecule (red dotted line on the figure 4). 
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Figure 4 : Continuous processing strategy of the experimental BfR in a TBR configuration. (A) Evolution 

of the biofilm thickness at the surface of corrugated sheets. (B) Evolution of the target molecule 

concentration in the liquid phase. (C) Control of the liquid recirculation flow rate during the process. The 

vertical dotted line separates the batch phase from the semi-continuous phase. The downwards arrow (d) 

defines the onset of the artificial dispersal of the biofilm. The upwards arrows (f) define the end of the 

artificial dispersal of the biofilm and the step of emptying/filling of the vessel. The dotted red line 

corresponds to the parameters of the segmented flow BfR from Karande et al. (2014) [18] 

 

Finally, a scale-up of the experimental BfR should be performed in order to assess the 

scalability of the process. With this in mind, the agitation axis of a 500 L STR has been removed and 

replaced by five stacked metal structured packings oriented at 90 degrees at each other (figure 5). The 

liquid is supplied by a single point source distributor centred on the packing cross section. The 

packing column is put on armatures fixed on the baffles. A sparger supplying air is placed just under 

the column above the liquid phase. The constant operating parameters of the scale-up are the liquid 

load, i.e. the liquid recirculation flow rate divided by the surface of the packing cross section (m³ / 

m².min), and the specific substrate amount, i.e. the initial substrate amount divided by the packing 

surface (g of substrate / m² of packing element). A couple of attempts recently performed with B. 

subtilis have showed that the alternative orientation of packing elements improves the dispersion of 

the biofilm along the height of the column. The increase of the column height is also expected to 

increase the residence time of the liquid. This set-up should contain a mechanical stirring system, only 
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activated during sterilization, in order to intensify heat exchanges and avoid high temperature 

gradients. 

 

 

Figure 5 : Scheme of the experimental BfR designed for the scale-up of the process. 
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Supplementary material Chapter I and II 

Supplementary file 1 : MatLab sheet code allowing for the visualization of corrugated 

sheets on a dry packing cross section 

 

% 1. load 'rec.mat' file corresponding to the dry packing image 

load image10_rec.mat; 

% 2. create a mask (circle shape) having packing diameter in order to mask walls of the 

Plexiglas column 

n = size(image); 

cx =(n+1)/2;cy = (n+1)/2;r = 236;ix = n(1,1);iy = n(1,2); 

[x,y] = meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy)); 

c_mask = ((x.^2+y.^2)>=r^2); 

c = image - c_mask; 

d = c>0; 

c = c.*d; 

% 3. Image thresholding in order to extract pixels of metal sheets 

ctth=c>0.004; 

% 4. morphologic operation in order to standardize thickness of corrugated sheets 

csq = bwmorph(ctth,'skel',Inf); 

ctth = ctth(cx-236:cx+236,cy-236:cy+236); 
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Supplementary file 2 : MatLab sheet code allowing for liquid characterization on an 

irrigated packing cross section 

 

% 1. load 'dif.mat' file corresponding to the irrigated image 

load image10_dif.mat; 

image = imrotate(image,X); % image rotation of X degrees in order to place the corrugated 

sheets in an horizontal position 

% 2. create a mask (circle shape) having packing diameter in order to mask walls of the 

Plexiglas column 

n = size(image); 

cx =(n+1)/2;cy = (n+1)/2;r = 236;ix = n(1,1);iy = n(1,2); 

[x,y] = meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy)); 

c_mask = ((x.^2+y.^2)>=r^2); 

c = image - c_mask; 

d = c>0; 

c = c.*d; % c corresponds to the image of the packing cross section without Plexiglas column 

wall 

se = strel('diamond',3); 

% 3. image dilatation with a structuring element 'se' for liquid pixels refinement 

cdil = imdilate(c,se); 

cdilr = cdil(cx-236:cx+236,cy-236:cy+236); 

% 4. image thresholding in order to extract liquid pixels 

cth = cdilr>0.0014; % cth displays the liquid flow pattern on the irrigated packing cross 

section 

% 5. indices of liquid pixels (value = 1) are extracted in two column vectors a & b with m 

rows (m is the total number of liquid pixels). (a,b) gives the coordinates of liquid pixels in a 

plan whom origin corresponds the lower left corner of the binary image (cth) 

[a,b] = find(cth==1); 

% 6. a & b are transformed in order to place the origin (0,0) of the parallel (X) and 

perpendicular (Y) axis at the centre of the packing cross section 

X = ones(max(size(a)),1)*(n(1)+1)/2; 

Y = ones(max(size(b)),1)*(n(1)+1)/2; 

a = a - X; 

b = b - Y; 
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% 7. interquartile range of a & b 

iqra = prctile(a,75) - prctile(a,25); 

iqrb = prctile(b,75) - prctile(b,25); 
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Supplementary file 3 : MatLab sheet code allowing for biofilm characterization on a 

colonized packing cross section 

 

% 1. load 'dif.mat' file corresponding to the colonized packing cross section image 

load image10_dif.mat; 

image = imrotate(image,X); % image rotation of X degrees in order to place the corrugated 

sheets in an horizontal position 

% 2. create a mask (circle shape) having packing diameter in order to mask walls of the 

Plexiglas column 

n = size(image); 

cx =(n+1)/2;cy = (n+1)/2;r = 236;ix = n(1,1);iy = n(1,2); 

[x,y] = meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy)); 

c_mask = ((x.^2+y.^2)>=r^2); 

c = image - c_mask; 

d = c>0; 

c = c.*d; % c corresponds to the image of the packing cross section without Plexiglas column 

 wall 

% 3. c is saved in a .tif file 

% 4. background of c.tif is substracted in ImageJ in order to attenuate biofilm pixels and 

increase contrast with metal sheets pixels 

% 5. processed image is saved and renamed 'p.tif' 

% 6. load and reading 'p.tif' in MatLab 

image = imread('p.tif'); 

% 7. image thresholding with Otsu method in order to extract metal sheets pixels 

l1 = graythresh(image); 

% 8. 'p.tif' binarization 

th1 = im2bw(image,l1); % th1 corresponds to the extracted pixels of the metal sheets 

% 9. load and reading 'c.tif' in MatLab 

image = imread('c.tif'); 

% 10. image thresholding with Otsu method in order to discriminate metal sheets and biofilm 

pixels from those of voids and noise background 

lv1 = graythresh(image); 

% 11. '.tif' binarization 
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bth1 = im2bw(image,lv1); % bth1 corresponds to the extracted pixels of metals sheets and 

biofilm 

% 12. images subtraction to extract biofilm pixels 

g1 = bth1-th1; 

% 13. image refinement with dilatation and erosion ('smoothing') 

se = strel('disk',1); 

g1 = imdilate(g1,se); 

g1 = imerode(g1,se); 

% 14. indices of biofilm pixels (value = 1) are extracted in two column vectors a & b with m 

rows (m is the total number of liquid pixels). (a,b) gives the coordinates of biofilm pixels in a 

plan whom origin corresponds the lower left corner of the binary image (g1) 

[a,b] = find(cth==1); 

% 15. a & b are transformed in order to place the origin (0,0) of the parallel (X) and 

perpendicular (Y) axis at the centre of the packing cross section 

X = ones(max(size(a)),1)*(n(1)+1)/2; 

Y = ones(max(size(b)),1)*(n(1)+1)/2; 

a = a - X; 

b = b - Y; 

% 16. interquartile range of a & b  

iqra = prctile(a,75) - prctile(a,25); 

iqrb = prctile(b,75) - prctile(b,25); 
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Figure S1 : Photos of a colonized packing by Bacillus subtilis GA1 after a fermentation run of 72 hours. 

(A) Distributor plate clogged by the biofilm. (B) Fragments of biofilm hanging at the bottom of the 

packing (C) Corrugated sheets covered by the bioflim 

 



Supplementary Material of Chapter IV 

 - 1 - 

 

Figure S1 2D-gel electrophoresis of extracellular proteins A Coomassie brilliant blue (CBB) stained gels of 

immersed biofilm reactor (Immersed BfR) and highly stirred tank reactor (STR, 800 rpm) samples B Cydye 

labelled gels of each culture condition (spot number is referred to the following Table S2) 

 

 

Figure S2 : Metal structured packing supporting fungal biofilm growth. A) Colonized packing at the end 

of a culture in aspersed BfR. B) Fig1A viewed from below. C) Reconstructed image from a X-ray 

tomography analysis of a cross sectional area of the packing. 
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Figure S3 : Photo of the immersed BfR at the end of the culture 

 

 

Figure S4 : Photo of A. oryzae glaB 8.04 with optical fluorescence microscopy. (A) Mycelial pellet of A. 

oryzae cultivated in STR. (B) Fungal biofilm of A. oryzae scrubbed of the packing in the immersed BfR 
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Tableau S1 Summary results of  biomass bioconversion yields and secreted proteins concentrations for each 

culture condition 

    
Time 

(h) 

Vi 

(L) 

Dry 

biomass 

(g/L) 

Attached dry 

biomass (g) 
Yx/s** 

Protein 

(mg/L)* 

mg prot / 

g biomass 

200 rpm 88 1,1 3,2 NA 0,64 122,2 38,2 
STR 

800 rpm 64 1,1 2,1 NA 0,52 151,6 72,2 

Aspersed BfR 88 2,2 0 5,3 0,48 146,9 61,0 

Immersed BfR 90 2,2 0 6,3 0,56 117,6 40,4 

         

*only extracellular proteins of the supernatant are quantified     

**biomass bioconversion yield is given for the greatest dry biomass concentration in the bioreactor 

All quantifications are carried out in triplicate     
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Table S2 Summary of identified spots from MaldiTOF-MS and quantification of expression levels between the immersed BfR reactor and the highly stirred tank reactor 

Protein family number Protein name 
Quantification Immersed BfR/ 

STR 800 rpm 

Accession 

number database 

(NCBI or AspGD 

)  

MW (kDa) PI Mascot score 

Number of 

peptides 

identified 

Sequence 

coverage (%) 

      Cydye CBB             

Heterologous 

protein 
1  Gla::GFP 1.96 1.51 

gi|13194618 (gfp 

sequence) 
80.2 4.71 72 11 24 

     
AMYG_ASPNG 

(An03g06550 ) 
  123 13 57 

  2 ::GFP 0.11 0.46 gi|13194618 27 5.58 140 120 44 

Protease 3 AlpA 0.44 0.6 
AO090003001036 

(gil217809) 
42.5 5.95 66 6 21 

 4 LapA 0.69 0.59 
AO090011000052  

(gi|169782567) 
41.3 5.03 152 13 40 

  5 Deuterolysin 1.15 2.01 gi|17942761  19.3 4.42 56 4 20 

Polysaccharide 

hydrolase 
6 AmyA 0.91 1.14 AO090003001591 55.3 4.48 112 15 28 

 7 GlaA 0.27 0.83 AO090010000746 65.5 4.99 62 10 23 

 8 Gla:: (1) 0.09 0.45 
An03g06550 

(gi|261278645) 
50.4 4.2 70 9 27 

 9 Gla:: (2) 0.18 0.47 
An03g06550 

(gi|261278645) 
50.4 4.2 63 8 20 

 10 ExgA 1.67 1.16 
AO090038000279 

 (gi|169781516) 
33.6 4.7 129 12 39 

  11 α-Galactosidase 0.29 0.72 AGALA_ASPOR 59.4 4.57 34 8 14 

Chitin hydrolase 12 CsnC 4.27 4.12 
AO090113000063 

(gi|317150727) 
40.6 4.61 121 9 33 

 13 

Glycosyl 

hydrolase 

family 

1.44 1.3 gi|169780190 47.8 5.23 96  26 

 14 NagA 0.57 1.74 gi|169766420  67.9 4.82 109 14 25 

  15 Endochitinase 0.32 0.64 gi|317143979  44.2 5.46 74 10 14 
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Oxydoreductase 16 MreA 2.82 4.65 
AO090005000347  

(gi|169765902 ) 
62.5 4.99 60 11 29 

 17 
Dihydrolipoyl 

dehydrogenase 
0.17 0.44 gi|169783306 54.9 7.62 266 28 58 

  18 SodC 0.03 0.53 AO090020000521 16.1 6.03 138 9 48 

Other 19 
Hypotetical 

protein 
1.07 1.78 gil169781020 27.6 5.52 166 11 46 

 20 
Hypotetical 

protein 
/ 2.22  gil169765746 31.7 6.32 197 19 54 

 

Table S3 Comparative analysis of bioprocesses experimented in this study : Technical outcomes 

 STR 200 rpm STR 800 rpm Aspersed BfR Immersed BfR 

Mechanical stirring 

(power consumption) + ++ - - 

Mechanical damages 

(shear stress) + ++ - - 

Working volume + + - + 

Fusion protein 

productivity - +++ ++ + 

Fusion protein quality + - - ++ 

Performances of biomass 

colonization NA NA - + 

 


