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1. INTRODUCTION 

Since 10 years topology optimization has been trying to bring an efficient answer to 
the automatic choice of the morphology of mechanical components, i.e. the number 
and the relative positions of the holes in the structural domains, the number and the 
nature of the structural members, their connectivity and the character of the 
connecting joints. This problem is one of the main questions to be addressed during 
the preliminary design phase of mechanical and structural components. Up to now, 
the selection of the mechanical morphology has been let to engineers’ experience or 
to their intuition (which is even worse sometimes). With topology optimization the 
choice of the morphology can now rely on rational arguments and can be driven 
with the help of mathematical tools. This has two advantages. At first topology 
optimization can facilitate the automation of the preliminary design, but it can also 
improve substantially the performance of new mechanical products, that is, topology 
optimization can propose original and innovative solutions to engineering problems. 

For a long time topology optimization has been based on ‘compliance type’ 
arguments as in the pioneer paper of Bendsøe and Kikuchi (1988). This kind of 
formulation has produced quite interesting results in many problems especially 
because controlling the displacements under the loads is generally good for 
deflection control and because, for one load case, compliance minimization leads to 
a fully stressed design nearly everywhere in the structure (Rozvany and Birker, 
1994, Rozvany, 1996 and 1998). However recently new results showed that 
topology predictions can not always be reduced to a compliance minimization. For 
example Rozvany and Birker (1994) have demonstrated that, for trusses, topology 
optimization can lead to different results when there are several load cases, different 
stress limits in tension and compression, or when there are several materials 
involved.  

This key role of stress constraints has to be demonstrated in the framework of 
topology optimization of continuum structures, for several load cases and when 
unequal stress limits in tension and compression are considered. 

The present developments continue along the work that was done in Duysinx and 
Bendsøe (1998) to introduce stress constraints in topology optimization of 
continuum structures. At first an integrated (i.e. global) relaxed stress constraint is 



introduced. A second contribution is the generalization of the von Mises equivalent 
stress to other quadratic criteria that are able to cope with unequal stress limits. 

In addition to these mechanical constraints, one can also introduce geometric 
constraints on the material distribution. Besides the very classic area/volume 
constraint, the perimeter constraint offers an elegant way to control the complexity 
of the geometry that comes out from the optimization procedure. A first contribution 
has been made to cope with this difficult constraint in the mathematical 
programming solution procedure. A second development aimed at extending the 
existing perimeter measure to 3-D and axisymmetric problems. 

2. FORMULATION OF TOPOLOGY PROBLEM 

Shape optimization of structures without any a priori on the structural topology can 
be achieved by formulating the problem as an optimal material distribution on a 
given design domain (see Bendsøe, 1995). In order to solve numerically the optimal 
material distribution problem, the design domain is divided into finite elements and 
a density variable is attached to each element. The optimal material distribution 
problem could be solved as a discrete valued problem, but this approach is very 
complicated because of its highly combinatorial nature. Here a simplified 
formulation is considered. We allow the density parameter to run continuously from 
void to solid via all intermediate densities. The modeling of effective intermediate 
densities properties is based on a power-law model (also called SIMP model as in 
Rozvany et al., 1992). This model is extremely popular for solving industrial 
applications because of its simplicity. If the script * denotes effective properties of 
the porous material and the index 0 is relative to the solid material properties, the 
effective Young's modulus E* is given in term of the density ρ  by 0* EE pρ= . The 
exponent p > 1 is introduced to penalize the intermediate densities in order to end up 
with ‘black and white’ designs. 

This continuous formulation presents the advantage to allow the use of 
sensitivity analysis and mathematical programming algorithms to solve the problem 
in an efficient way (see for example Duysinx, 1997). However because the power 
law model is an approximation of composite materials the design problem is ill-
posed, i.e. the numerical solutions are mesh-dependent. To overcome the difficulty, 
we use here a restriction method of the design space based on a bound over the 
perimeter (Haber et al., 1996). 

In addition to stiffness properties, if one wants to consider stress constraints in 
continuous topology optimization, one also needs the definition of a relevant stress 
measure in the porous composites. Modeling of strength properties can be made by 
following the approach developed in Duysinx and Bendsøe (1998). An overall stress 
measure controls the stress state in the microstructure. In the framework of the SIMP 
model, Duysinx and Bendsøe (1998) showed that a power-law model with the same 
power p is a consistent model for the micro-stresses ijσ . Therefore if the failure is 
predicted by a quadratic overall failure criterion like von Mises equivalent criterion, 



the first failure in the microstructure of the porous composites is predicted by the 
following criterion in terms of effective stresses: 

 p
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3. PERIMETER CONSTRAINT 

The perimeter constraint was originally introduced by Haber et al. (1996) to assure 
the regularization of topology problems (even with 0/1 variables and with 
intermediate density penalization). In addition to that property it was shown that the 
perimeter method is a very elegant solution to control the complexity of topology 
solutions, and thereby, to introduce an indirect control over the manufacturability of 
the solution (Figure 1). When working with distributions of porous materials, the 
intuitive geometric measure of perimeter can be replaced by the total variation of the 
density, which is just the density jumps across the finite element edges when density 
discretization is constant on each element. 
 

 

 

 

 

Figure 1. Using perimeter constraint for the control of the complexity of topology solutions. 

Perimeter constraints showed to be very difficult to control within the 
mathematical programming solution procedure. A first contribution was realized to 
cope with this type of constraint (Duysinx, 1997). Another part of the work has been 
devoted to extend the existing measure, which was restricted to planar geometries, to 
3-D (Bruyneel, 1998) and axisymmetric structures (Figure 1b). 

4. STRESS CONSTRAINTS 

At first it is interesting to remind the reader with a very important difficulty that 
arises when dealing with stress constraints in topology optimization. As it has been 
shown in Kirsch (1990) and in Cheng and Jiang (1992), topology optimization with 



stress constraints is subject to the ‘singularity phenomenon’. At short the paradox 
comes from the fact that the optimization procedure is often unable to remove or to 
add some vanishing members without violating the stress constraints although one 
would end up with a perfectly feasible design if they were removed or added. From 
a mathematical point of view, the classical algorithms are unable to reach some 
optimum configurations because of the degeneracy of the design space. In order to 
turn around the difficulty, one has to use a perturbation technique of the stress 
constraints, generally known as the ε-relaxation technique (Cheng and Guo, 1997) 
that results in a relaxation of the stress limits in the low-density regions. In this 
paper we use the following ε-relaxed formulation of the overall stress criterion:  
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This relaxed formulation of the stress constraints is considered in the numerical 
solution of the topology optimization problem with stress constraints. The solution 
procedure requires the solution of a sequence of perturbed problems with decreasing 
values of the parameter ε. 

5. INTEGRATED STRESS CONSTRAINTS 

In Duysinx and Bendsøe (1998) the stress is treated as a local constraint, i.e. for 
every finite element. This formulation offers a full control of the stress state, but it 
also dramatically increases the size of the optimization problem and thus the 
computation time of the solution. Here we propose an alternative approach based on 
an integrated version of the ε-relaxed failure criterion. The global stress constraint 
(i.e. integrated constraint) simplifies the computational complexity of the 
optimization problem at the expense of a weaker control of the local stress state. A 
key issue is to take into account the 'singularity phenomenon' of the stress 
constraints. So an original aspect is to include simultaneously the ε-relaxation 
technique that alleviates the singularity phenomenon and the use of effective stress 
criteria into the global stress constraint.  

We propose to consider two global measures of the relaxed distributed stress 
criterion. The first global constraint is the 'q-norm' of the relaxed stress criterion (3); 
the second one is the 'q-mean' of the relaxed stress criterion (4). 
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 To prevent negative valued relaxed criteria from contributing to the norms, one 
must consider the maximum value of the relaxed stress criterion and zero. Negative 
values of the relaxed criterion appear only for low stressed elements and thus can be 
truncated without influencing the global constraint. Furthermore, the function 
remains continuous up to derivative ‘q-1’, so that the constraint remains sufficiently 
smooth. A major advantage of ‘q-norm’ and ‘q-mean’ functions comes from the fact 
that they make possible to bound the maximum value of the relaxed criterion by 
upper or by lower values.  The ‘q-norm’ is an upper bound of the maximum value of 
the criterion while the ‘q-mean’ is a lower bound of the maximum local value of the 
criterion. In addition this gap closes to 0 when ‘q’ value is going to infinity. So sharp 
bounding needs to take high values of ‘q’ parameter. However in practice, we take 
q=4 because it allows to control weakly the maximum value of the stress criterion 
while avoiding ill-conditioned optimization problems. 

6. TREATMENT OF UNEQUAL STRESS CONSTRAINTS 

Up to now topology optimization with stress constraints was based on the quadratic 
von Mises criterion. This criterion is very usual, because it predicts very precisely 
failure for ductile materials and metals, which are commonly used in mechanical 
engineering. However von Mises criterion is unable to predict real-life designs when 
the structure is made of materials with unequal stress limits like concrete or 
composite materials. One can also remember that thin structural members, like 
cables or thin sheets, are not able to sustain high compressive loads because of 
buckling. An indirect procedure to take into account this buckling constraint in the 
preliminary design phase consists in restricting the compressive loads by reducing 
the stress limit in compression. From a practical point of view these different 
behaviors in tension and compression result in quite specific designs. In order to 
predict layouts that take into account different behaviors in tension and compression, 
one requires particular failure criteria that are able to cope with unequal stress limits. 

To this end, two quadratic criteria have been selected and implemented. They 
both introduce a dependency on the first invariant of the stresses. The first 
equivalent failure criterion is the Raghava criterion (5a), which is generally used 
with adhesive materials. An interesting alternative to Raghava is the Ishai criterion 
(5b). These stress criteria and the related equivalent stress can be written as: 
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T and C are the stress limits (in absolute value) respectively in tension and 
compression, and 's' is the ratio between the stress limits in compression and in 
tension: TCs /= . The criteria are written in terms of the first stress invariant iiJ σ=1  
and the second deviator stress invariant ijijD ssJ 5.02 = . The presence of the second 
invariant is obvious because the criteria have to render the von Mises criterion when 
the stress limits are equal. The first invariant is related to the hydrostatic pressure 



and its presence in the criteria is essential to introduce the dependence upon the sign 
of the stress state and so the different behaviors in tension and compression. 

7. THE 3-BAR TRUSS EXAMPLE 

Despite its extreme simplicity, the 3-bar truss problem is very well suited to 
illustrate several concepts related to topology optimization with stress constraints. 
The geometry of the problem is given in Figure 2. The sizes and material data of the 
benchmark are normalized: L=1 m, W=2.5 m, E=100N/m², ν=0.3. Three load cases 
(with different magnitudes and orientations) are applied at the center of the free 
edge. The design domain is meshed with 50 x 20 finite elements. This means that for 
local stress constraints one has to deal with 3 x 1000 restrictions. The volume bound 
is set to 25% of the design domain area.  

At first the minimum compliance design is studied (Figure 3a). The optimal 
topology is a 2-bar truss. Compliances for the 3 load cases are 73.3 Nm, but stress 
level is quite high. Using von Mises criterion, maximum value of the local criterion 
varies from 228 N/m² to 571 N/m² per load case. In a second optimization run one 
consider local von Mises stress constraints with a stress limit of 150 N/m² and one 
gets the topology of Figure 3b which is a 3-bar truss. The compliances of the 
minimum stress design solution are a bit bigger than minimum compliance solution 
(91.2 Nm, 45.6 Nm and 45.0 Nm for load cases 1, 2 and 3). 

The conclusion that can be drawn from the comparison of these two optimization 
runs is that compliance design and minimum stress design can lead to different 
topology solutions when there are several load cases. 

 

 

Figure 2. Geometry of the ‘3-bar truss’ problem. 

One can further compare the local stress constraint formulation and the 
alternative approaches based on global restrictions (‘q-mean’ and ‘q-norm’) with 
optimization runs presented in Figures 4. One has the solution when minimizing the 
volume of material with a (heuristic) bound of 92 N/m² over the ‘q-mean’ of von 
Mises stresses (Figure 4a). The optimal area is 0.56 m². In Figure 4b, the bound over 
‘q-norm’ is set to 500 N/m² and the optimal area is 0.62 m². Topology results, which 
are 2-bar truss designs, look more like the compliance design, because we lose the 



control over the local stress state. However maximum local stress values are much 
lower than in compliance design. For ‘q-mean’ one has the following maximum von 
Mises stresses: 237 N/m², 215 N/m², and 207 N/m² for the first, second and third 
load cases. For the ‘q-norm’ on has a maximum von Mises stresses of 230 N/m², 235 
N/m², and 231 N/m² respectively for the three load cases. The weaker control over 
stress level allows to save one or two orders of magnitude in the optimizer solution 
time compared to the local stress approach. Finally one can appreciate the effect of 
unequal stress limits in tension and compression and Ishai criterion with results 
presented in Figures 5. The two results exhibit globally a 2-bar truss topology as for 
minimum compliance design, even though the geometry is quite different. When 
material is very resistant to compressive stresses, the middle and the left bars merge. 
In the opposite way when material is very good in tension, the optimal structure 
looks like a cable structure. This shows that real characteristics of the problem, here 
the unequal properties in tension and compression, may strongly influence topology 
results. 

 

                   

Figure 3. a) Min. compliance solution and b) Min. of the max. of the local von Mises stress. 

                      

Figure 4. a) Min. of ‘q-mean’ of stress criteria and b) Min. of ‘q-norm’ of stress criteria. 

                     

Figure 5. Minimum of maximum of local Ishai criteria  
a) T =150 N/m², C=450 N/m² and b) T =450 N/m², C=150 N/m². 

8. CONCLUSIONS 

Our work has extended the number of mechanical criteria, which can be considered 
in topology optimization design. For static analysis, we can consider compliance and 
deformation energy criteria, displacements constraints and stress constraints. Of 
course these constraints can be considered for one or several load cases. Because of 
their local character, the treatment of stress constraints in every finite element can be 



very cumbersome. So local stress constraints can be replaced by integrated (global) 
constraints with a certain success. Different stress criteria can also be taken into 
account. The classic von Mises criterion can be substituted by Raghava or Isaï 
criteria for unequal stress limits in tension and compression. 

In addition to mechanical constraints, one can also introduce geometric 
constraints on the material distribution: area/volume and perimeter constraint. 
Perimeter constraints are very interesting because they offer an elegant way to 
control the complexity of the geometry that comes out from the optimization 
procedure. Several works were realized to extend the 2-D perimeter measure for 
plane structure to 3-D and axisymmetric problems. 

As illustrated in the numerical application of this paper, the optimal structural 
morphology can be sensitive to the design criteria that are considered in the 
optimization. More generally the experience gained while solving optimization 
problems with the different design criteria presented herein leads to reconsider the 
general idea that topology optimization, as a preliminary design tool, can be based 
on a restricted number of design criteria, especially compliance. On the contrary we 
believe that a larger set of criteria like stress constraints have to be introduced in 
topology design in order to predict really optimal morphologies of structural 
components. 
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