Current issues in the processing of Ti alloy Ti6Al4V by laser additive manufacturing techniques

A. Mertens, Université de Liège anne.mertens@ulg.ac.be http://orbi.ulg.ac.be/

This research was carried out with the help of:

- H. Paydas, S. Reginster, Q. Contrepois, N. Hashemi, S. Salieri, J.T. Tchuindjang, J. Lecomte-Beckers – Université de Liège
- T. Dormal, D. Gravet, O. Rigo, R. Carrus, J. Magnien – SIRRIS, Liège
- O. Lemaire CRM, Liège

Outline

Introduction

– Additive manufacturing

- Laser Beam Melting vs Laser Cladding
- Specificities (1) ultra-fast thermal cycles
- Specificities (2) directional process
- Background on Ti-6AI-4V
- Importance of thermal history
 - Defects and porosities (LBM and LC)
 - Dimensional accuracy (LC)
- Influence of laser power in LC Ti6Al4V
- Anisotropy in LBM Ti6Al4V
- Summary

Introduction (1) Laser Beam Melting

- Metallic powder is deposited layer by layer in a powder-bed...
- ... then molten locally by a laser according to the desired shape

Introduction (2) Laser Cladding

- Metallic powder is projected onto a substrate and simultaneously melted through a laser beam: Powder-feed process
- Suitable for fabrication and repair
- Not limited to planar surfaces

[Bhattacharya et al., MSEA (2011)]

Introduction (3)

Laser Beam Melting (LBM) vs Laser Cladding (LC)

- Formation of defects: porosities, inclusions, oxides... ?
 - Specificities of additive manufacturing for metallic materials
 - \Rightarrow microstructures and properties

	LBM	LC
Processing parameters	Laser power, Scanning speed, Layer thickness , Hatch space, Preheating T	Laser power, Scanning speed, Hatch space, Preheating T, Powder feed rate Layer height is an outcome of the process !

Introduction (4) **Ultra-fast thermal cycles**

Introduction (5) Ultra-fast thermal cycles

- Very high cooling rates
 - Build up of high internal stresses
 - \Rightarrow Cracks, Deformations
 - \Rightarrow Influence on mechanical properties

Tool steel, LC

- Out-of-equilibrium microstructures
 - e.g. chemical segregation at a very local scale

Microsegregation of Cr in stainless steel, LBM

Introduction (6) LBM and LC are **directional** processes

- Formation of defects with particular orientations
- Cohesion between successive layers: a good wetting is important
 ⇒ Partial remelting of the previously solidified layer
- Cohesion between neighbouring tracks

 \Rightarrow Tracks overlap, stability of the melt pool OZ

Introduction (7) LBM and LC are **directional** processes

- Particular solidification processes may occur for some materials and processing conditions:
- Epitaxial growth // to the direction of maximum heat conduction i.e.
 the newly solidified layer crystallizes in the continuity of the previously solidified layer thus forming elongated columnar grains.

EBSD, Stainless steel

Outline

Introduction

- Additive manufacturing
 - Laser Beam Melting vs Laser Cladding
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
- Background on Ti-6AI-4V
- Importance of thermal history
 - Defects and porosities (LBM and LC)
 - Dimensional accuracy (LC)
- Influence of laser power in LC Ti6Al4V
- Anisotropy in LBM Ti6Al4V
- Summary

Introduction (8)

Ti-6Al-4V

- Ti 6AI 4V first solidifies in the β (BCC) structure \Rightarrow Elongated columnar primary β grains
- Upon cooling, β transforms into α (hcp): Exact nature, morphology and size of the transformation products are function of cooling rate

Introduction (9)

Outline

- Introduction
 - Additive manufacturing
 - Laser Beam Melting vs Laser Cladding
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
 - Background on Ti-6AI-4V
- Importance of thermal history
 - Defects and porosities (LBM and LC)
 - Dimensional accuracy (LC)
- Influence of laser power in LC Ti6Al4V
- Anisotropy in LBM Ti6Al4V
- Summary

Thermal history (1) - Defects and porosities

Lack of fusion

- Very detrimental for mechanical properties
- Processing conditions are too cold!

"Balling"

- Instability of the melt pool, due to an unfavourable combination of surface tension and viscosity
- This may happen because processing conditions are too hot!

Thermal history (2) - Defects and porosities

[Griffith et al., Mater. & Des. (1999)]

- Heat accumulation may cause "balling"
 - One can try and adapt the processing parameters to limit heat accumulation...
 - ... but not too much!
 - \Rightarrow Need for better optimized (path-dependent) processing parameters...

Increase of the average temperature of the part

Thermal history (3) - Defects and porosities

- ⇒ ...Need for better optimized (path-dependent) processing parameters
- Knowing the temperature evolution during processing
 - Not that simple: absolute measurements possible only locally
 - Models for thermal transfer

 Thermal conductivity

- Thermal conductivity values at room temperature are often used in FE models
- ... but the actual range of temperature during the process is much bigger: RT- T_{melt}

Control panel

Thermal history (5) - Defects and porosities

- ⇒ ...Need for better optimized (path-dependent) processing parameters
- Knowing the temperature evolution during processing
 - Not that simple: absolute measurements possible only locally
 - Models for thermal transfer

 Thermal conductivity

 \Rightarrow Thermal conductivity is strongly dependent on temperature!

Thermal history (6) - Dimensional accuracy in LC

High Speed Steel, LC

Heat accumulates during processing

- ⇒ More powder is "captured" in the melt pool
- ⇒ Layer height varies as a function of local thermal history in each point
- ⇒ Need for optimized (path-dependent) processing parameters to produce a deposit with a constant layer height

e.g. HSS deposit with a target total height of 23 mm, and a target layer height of 0,7 mm

Laser power (W)	Measured total height (mm)	Measured layer height (mm)
940	26,1	0,79
1020	29,8	0,903

[N.Hashemi, ULg]

Outline

- Introduction
 - Additive manufacturing
 - Laser Beam Melting vs Laser Cladding
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
 - Background on Ti-6AI-4V
- Importance of thermal history
 - Defects and porosities (LBM and LC)
 - Dimensional accuracy (LC)
- Influence of laser power in LC Ti6AI4V
- Anisotropy in LBM Ti6Al4V
- Summary

Influence of laser power in LC Ti6Al4V (1)

• High laser power are often preferred for high productivity

Laser power (W)	Scan speed (mm/min)	Incident energy (W*min/mm)	Building time (min)
1100	400	2,75	5,4
210	600	0,33	40

• But a high laser power also leads to coarser and more heterogeneous microstructure

Laser power: 1100 W Heat Affected Zone : ~1 mm !

[Paydas et al., Mater. & Des., (2015)]

- Investigating the potential of using a low power laser source
 - New 300 W source, installed beside the original 2kW source
 - Effect on microstructures and on process flexibility?

Influence of laser power in LC Ti6Al4V (2)

- Fabrication of thin walls by superposing single tracks
- Decreasing the laser power decreases the wall thickness

[Mertens et al., Proc. Conf. Ti 2015]

39mm

2011

Influence of laser power in LC Ti6Al4V (3)

"Refilling" a cup = Repair

Outline

- Introduction
 - Additive manufacturing
 - Laser Beam Melting vs Laser Cladding
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
 - Background on Ti-6AI-4V
- Importance of thermal history
 - Defects and porosities (LBM and LC)
 - Dimensional accuracy (LC)
- Influence of laser power in LC Ti6Al4V
- Anisotropy in LBM Ti6AI4V
- Summary

0

OY

OZ

Ar flow

Anisotropy in LBM Ti6Al4V (1)

• Laser Beam Melting:

Layer	Focus	Laser	Scanning	Hatch
thickness/µm	offset/mm	power/W	speed/mm s ⁻¹	spacing/µm
30	2	175	710	120

- Samples produced in three directions (anisotropy?)
- Ar flowing in the ox direction
- Rotation of the scanning direction between layers
- Microstructural characterisation : Optical microscopy, Scanning Electron Microscopy
- Uniaxial tensile testing (anisotropy?)

OX

- LBM is a directional process
 - Epitaxial growth
- Strong anisotropy in building direction and inside the deposition plane
 - Cracks with specific orientation in the OY and OZ samples
 - Correlation with the microstructure ?

[Mertens et al., Proc. ECSSMET (2012)]

Ti-6Al-4V (4) – microstructures

- Spherical porosities due to entrapped gas < 0,5 %
- Elongated primary β grains (// OZ) in the OY sample...
- ...but not in the OX sample, suggesting that the grains are actually tilted with respect to the building direction
- Primary β grain boundaries or α/β interphase boundaries might play a role in fracture

 \Rightarrow Anisotropy in fracture behaviour could be related to the tilt in grains longest direction (?)

x-axis

front

directio

"Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015

Ti-6Al-4V (5)

Anisotropy between ox and oy – Heat conduction

- Primary β grains grow following the direction of maximum heat conduction
- This direction for maximum heat conduction may become tilted with respect to the building direction

z-axis

Scanning strategy

top

✓Scanning direction

Scan direction

Ti-6Al-4V (6)

Anisotropy between ox and oy – Heat conduction

OY

- Primary β grains grow following the direction of maximum heat conduction
- This direction for maximum heat conduction may become tilted with respect to the building direction
 - Scanning strategy: no, rotation!

- Scanning velocity
- Geometry of the part
- Evaporation phenomena:
 Effect of Ar flow

Summary

- Laser Additive Manufacturing technologies are strongly directional processes, characterised by ultra-fast thermal cycles. As a consequence, one might observe:
 - Internal stresses
 - Anisotropy of the microstructure and mechanical properties
- Local thermal history is of paramount importance to control
 - local microstructure
 - formation of defects
 - dimensional accuracy of the parts (particularly in LC by controlling the layer height)

References

- T.Ahmed & H.J.Rack, Mater. Sci. Eng. A, (1998), **243**, 206
- S.Bhattacharya et al., Mater. Sci. Eng. A, (2011), **528**, 2309
- M.L.Griffith et al., Mater. & Des. (1999), **20**, 107
- A.Mertens et al., Proc. ECSSMET (2012), ESA SP-691
- A.Mertens et al., Materials Science Forum (2014), **783-786**, 898
- A.Mertens et al., Powder Met. (2014), **57**, 184
- A.Mertens et al., Proc. Conf. Ti2015, San Diego (CA), 16-20 Aug. 2015
- T.Niendorf et al., Metall. Mater. Trans. B (2013), 44, 794
- H.Paydas et al., Mater. & Des. (2015), **85**, 497
- S.Reginster et al., Materials Science Forum (2013), 765, 413
- L.Thijs et al., Acta Mater. (2010), **58**, 3303
- I.Yadroitsev et al., J. Mater. Process. Technol. (2010), **210**, 1624