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Introduction (1)
Laser Beam Melting

Building direction

Previous layers

Initial plate

» Metallic powder is deposited layer by layer in a powder-bed...
e ... then molten locally by a laser according to the desired

shape



Introduction (2)
Laser Cladding

* Metallic powder is
projected onto a i s
substrate and
simultaneously melted
through a laser beam:  ‘soeas
Powder-feed process wounoding—
Suitable for i
fabrication and repair

NOt Ilmlted tO planar [Bhattacharya et al., MSEA (2011)]
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Introduction (3)
Laser Beam Melting (LBM) vs Laser Cladding (LC)

Several tracks
make a layer

Microstructure Oz e Formation of defects:

in one layer? - . .
A por05|t|es, mclusmns,
c .
S  oxides... ?
(&) g g ..
2 e« Specificities of additive
g, manufacturing for metallic
S  materials
- .
Cohesion cotosion bet @ = microstructures and
ohesion between :
between layers? ke propertl es
Processing parameters Laser power, Scanning Laser power, Scanning speed,
speed, Layer thickness, Hatch space, Preheating T,
Hatch space, Preheating T Powder feed rate

Layer height is an outcome of the
process !



Introduction (4)
Ultra-fast thermal cycles

Laser ,
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Introduction (5)
Ultra-fast thermal cycles

* Very high cooling rates
— Build up of high internal stresses
= Cracks, Deformations
= Influence on mechanical properties

¥

[J.T.Tchuindjang, ULg]

Tool steel, LC

— Qut-of-equilibrium microstructures
e.g. chemical segregation at a very local scale

Microsegregation of Cr in
stainless steel, LBM

[Mertens et al., MSF (2014)]

MAG: 2500 x HV: 15.0 kV WD: 10.5 mm




Introduction (6)
LBM and LC are directional processes

Formation of defects with particular orientations

Cohesion between successive layers: a good wetting is important
= Partial remelting of the previously solidified layer
Cohesion between neighbouring tracks

= Tracks overlap, stability of the melt pool oY4
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Introduction (7)
LBM and LC are directional processes

« Particular solidification
processes may occur for some
materials and processing
conditions:

= Epitaxial growth // to the
direction of maximum heat
conduction i.e.
the newly solidified layer
crystallizes in the continuity of
the previously solidified layer
thus forming elongated
columnar grains.

[Niendorf et al., MMTB (2013)]
Building direction

EBSD, Stainless steel

10



Outline

e Introduction

— Additive manufacturing
« Laser Beam Melting vs Laser Cladding
» Specificities (1) ultra-fast thermal cycles
» Specificities (2) directional process
— Background on Ti-6Al-4V
Importance of thermal history
— Defects and porosities (LBM and LC)

— Dimensional accuracy (LC)
Influence of laser power in LC Ti6AI4V
Anisotropy in LBM Ti6Al4V

Summary

11



Introduction (8)
Ti-6Al-4V

* Ti— 6AIl -4V first solidifies in the B (BCC) structure = Elongated columnar

primary 3 grains
* Upon cooling, B transforms into a (hcp): Exact nature, morphology and

Building direction

[Ahmed & Rack, MSEA, 1998]

[Reginster et al., MSF (2013)]
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Introduction (9)

Defects,
Grains
morphology

Anisotropy(?)

Thermal
conductivity

\

Processing of alloy
Ti6AlI4V by LBM or LC

Tensile behaviour
Anisotropy(?)

Dimensional accuracy:
control of layer height
in LC
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Thermal history (1) - Defects and porosities

Lack of fusion

[Mertens et al., MSF (2014),]

e Very detrimental for
mechanical properties

e Processing conditions are too
cold!

"Balling"

“Distortion :

@ -
*
- -
- -
- o 4
v
> €

[Yadroitsev et al., IMPT, (2010)]

e Instability of the melt pool, due to
an unfavourable combination of
surface tension and viscosity

 This may happen because
processing conditions are too hot!
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Thermal history (2) - Defects and porosities

(a)

Thermocouple

at a fixed _
positon ¢ Heat accumulation may

Peak due to ; L
first melting TC cause "balling
\ N « One can try and adapt the
1400 [ processing parameters to
1200 | Temperature peaks ] limit heat accumulation...
: associ_ated with laser e ___ but not too much!
5 1000 1 scanning ] — Need for better optimized
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[Griffith et al., Mater. & Des. (1999)]
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Thermal history (3) - Defects and porosities

= ...Need for better optimized (path-dependent) processing
parameters

Knowing the temperature evolution during processing
- Not that simple: absolute measurements possible only locally
- Models for thermal transfer = Thermal conductivity

“I/;als'er Sens de déplacement
eltin du faisceau
g =

 Thermal conductivity values at
room temperature are often

/ ]20-30 - used in FE models
! e ... but the actual range of
Transferts l ) Gouche de temperature during the process
thermiques il poudre
refondue

Is much bigger: RT- T o
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Thermal history (4) - Defects and porosities

 Determination of thermal conductivity
Laplace’s Equation : X(T)=a(T)*p(T)*C,(T)

e

a(T)= thermal diffusivity, _ _
(Laser Flash) p(T)= Density, (dilatometry also

Tube 3

gives CTE) C,(T)= Specific heat, (DSC)

Vacuum flange
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Thermal history (5) - Defects and porosities

= ...Need for better optimized (path-dependent) processing
parameters

e Knowing the temperature evolution during processing

Laser
Melting

Transferts I r\
thermiques

—> Thermal conductivity is strongly dependent on temperature!

Not that simple: absolute measurements possible only locally
Models for thermal transfer = Thermal conductivity

=y
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[Mertens et al., Powder Metall. (2014)]




Heat accumulates during processing

= More powder is "captured” in the melt
pool

= Layer height varies as a function of local
thermal history in each point
—> Need for optimized (path-dependent)
processing parameters to produce a
deposit with a constant layer height

e.g. HSS deposit with a target total height of 23 mm,
and a target layer height of 0,7 mm

Laser power (W) | Measured total Measured layer
height (mm) height (mm)

940 26,1 0,79

1020 29,8 0,903

20
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Influence of laser power in LC Ti6Al4V (1)

e High laser power are often preferred for high productivity

Laser power (W) | Scan speed Incident energy | Building time
(mm/mm) (W*min/mm) (mm)

1100 2,75

210 600 0,33 40

e But a high laser power also leads to coarser and more
heterogeneous microstructure

f——':; @=80mm ’5’"2’[

100mm

S

Laser power: 1100 W P e . [Paydasetal,
Heat Affected Zone : ~1 mm ! . T oo | Mater. & Des., (2015)]

* Investigating the potential of using a low power laser source
— New 300 W source, installed beside the original 2kW source

— Effect on microstructures and on process flexibility? 22



Influence of laser power in LC Ti6AI4V (2)

/
\ 7/
e Fabrication of thin walls by superposing single tracks '\~ ="’
\ ~=~-
e Decreasing the laser power decreases the wall a\ Sy
. \ ~ o -
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[Mertens et al., Proc. Conf. Ti 2015]
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Temperature
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Anisotropy in LBM Ti6Al4V (1)

 Laser Beam Melting:
Layer Focus Laser Scanning Hatch
thickness/um | offset/mm power/W speed/mm st | spacing/pum
30 2 175 710 120

— Samples produced in three directions (anisotropy?)
— Ar flowing in the ox direction
— Rotation of the scanning direction between layers

e Microstructural characterisation :
Optical microscopy, Scanning Electron Microscopy e o

e Uniaxial tensile testing (anisotropy?) \

[Mertens et al., Proc. ECSSMET (2012)] 26
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« LBM is a directional process

— Epitaxial growth

e Strong anisotropy in building direction and

Inside the deposition plane

— Cracks with specific orientation
in the OY and OZ samples

— Correlation with the microstructure ?

[Mertens et al., Proc. ECSSMET (2012)]



Spherical porosities due to entrapped gas < 0,5 %

Elongated primary B grains (// OZ) in the QY sample...

...but not in the OX sample, suggesting that the grains are actually
tilted with respect to the building direction

Primary B grain boundaries or o/p interphase boundaries might play
a role in fracture
—> Anisotropy in fracture behaviour could be related to the tilt in

grains longest direction (?)
[Mertens et al., Proc. ECSSMET (2012)] 28



Advanced vianuts

Ti-6AI-4V (5)

Anisotropy between ox and oy — Heat conduction
 Primary B grains grow following the
direction of maximum heat conduction

e This direction for maximum heat
conduction may become tilted with
respect to the building direction

— Scanning strategy

i o - % der bed
Building direction i 3000
top Z-axis
melt pool ..
side s [Thijs et al.,
heat conduction Acta Mater 2010]

2000 Y

front y-axis _—

—_— substrate
P
4 1000
7

Scanning direction 500

X-axis

[Mertens et al., Proc. ECSSMET (2012)] 29



Ti-6Al-4V (6)

Anisotropy between ox and oy — Heat conduction
 Primary B grains grow following the
direction of maximum heat conduction

e This direction for maximum heat 1
conduction may become tilted with bk
respect to the building direction 5 R

. . . | 7.7\ i ] B . Y \-',‘:_" ﬂ
— Scanning strategy: no, rotation! Lo o e AdFECHOR
> ‘_ Tempera u[r;,I o, M‘-ﬁ
< powder bed oy T scan direction Wy a A ol 1
- = Z
< / / / < melt pool 2500
/// 0z heat conduction -

1500

— Scanning velocity
— Geometry of the part

— Evaporation phenomena:
Effect of Ar flow S D

substrate

1000

[Thijs et al.,
Acta Mater., 2010]
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Summary

e Laser Additive Manufacturing technologies are strongly directional
processes, characterised by ultra-fast thermal cycles. As a
conseqguence, one might observe:

— Internal stresses
— Anisotropy of the microstructure and mechanical properties

e Local thermal history is of paramount importance to control
— local microstructure

— formation of defects

— dimensional accuracy of the parts (particularly in LC by controlling the layer
height)

31
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