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Abstract

Ball mills, i.e. rotating cylindrical drums filled with a feed material and metal balls, also known
as the charge, are a major category of grinding devices in mineral processing and cement pro-
duction. Since the grinding process is excessively energy-intensive and aggressive in terms of
wear, a profiled and wear-resistant liner is installed in the mill to transfer energy to the grinding
charge more efficiently and to protect the mill shell. Because of the harsh environment inside of
the mill and the relatively long lifespan of its liner, the optimization of the liner by the classical
way, i.e. experimental testing, is a difficult and slow process.

In this thesis, a procedure for predicting the charge motion and the power draw of a ball mill
based on the discrete element method (DEM) is calibrated and validated by means of photographs
of the charge, and power draw measurements of a 1:5-scale laboratory mill, which were kindly
provided by the company Magotteaux International S.A. . This computational method essentially
renders future experimental testing unnecessary with respect to these characteristics.

Based on this first method, a generic process for predicting the wear distribution and the
progressive shape evolution of liner surfaces is developed and validated by the wear profiles of
the shell liner in the first chamber of a 5.8 m diameter cement mill monitored during a decade
by Magotteaux International S.A. . The energy dissipated by tangential damping defined by the
linear spring-slider-damper DEM contact law was found to be the best fitting wear model with
respect to the real wear data. The progressive update of the liner geometry by a multi-step pro-
cedure delivers relatively accurate results for liners without axial height variation while further
investigations are still required for almost fully variable geometries. Nevertheless, detailed phe-
nomena, like the creation of grooves in the liner, were for the first time numerically modeled in
this thesis.
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Introduction

In the following lines, the general introduction of the research in the framework of this thesis is
presented. The research context is discussed in the first section. The objectives and the structure
of this document are described in the two following sections. Finally, the last section gives
an overview of the new contributions to the fields of DEM ball mill modeling and liner wear
prediction.

Context

Comminution or particle size reduction is an essential component of mineral processing or ce-
ment production. Grinding is the final stage of comminution consisting in breaking small parti-
cles into much smaller ones in order to enhance their chemical and physical properties. A major
category of grinding devices are tumbling mills, i.e. rotating cylindrical drums filled with a feed
material and the grinding media. In particular, ball mills are tumbling mills whose grinding
media are metal balls.

The overall objectives of grinding are to maximize the mill throughput with the required
reduction ratio while minimizing the operating costs. Grinding is, however, not only exces-
sively energy-intensive, but also highly aggressive in terms of wear. A profiled, replaceable and
abrasion-resistant liner is therefore installed to transfer energy to the grinding charge more effi-
ciently and to protect the mill shell at the same time. Hence, the operational performance of the
mill depends not only on the operating conditions, i.e. mainly the rotation speed and the filling
ratio, but also on the liner itself. For this reason, the slightest improvement of the liner design
becomes a significant competitive advantage.

In general, the liner design depends on its material and its initial shape. Due to the collisions
between the balls, the ore and the liner, its surface material is progressively worn away and
its shape changes. Consequently, it might be expected that less energy is transferred to the
charge and that the particle flow pattern adapts to this change by reducing the mill throughput.
Moreover, the liner also looses little by little its protective capability because of the increasing
material loss due to wear after several ten thousand hours. Developing a liner with a uniform
wear distribution and globally low wear rates thus saves the cost of frequent relining and more
importantly avoids production losses during the mill downtime. Accordingly, the liner design
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Introduction 2

should not only depend on the initial shape of the liner but also on its change in geometry due to
wear over time.

Because of the harsh internal mill environment and the relatively long lifespan of the liner,
the optimization of the liner design by the classical way, i.e. experimental testing, is a difficult
and slow process. This is why, computational engineering becomes more and more popular as an
alternative way to solve this problem. In particular, the recent advances in computing hardware
rendered it possible to simulate the motion of the balls in a mill by the discrete element method
(DEM) on almost every personal computer in a decent amount of time. The objectives, which
we will try to achieve by means of this method, are explained in the next section.

Notice that this thesis was written during an internship at the company Magotteaux Interna-
tional S.A., the leading global provider of high performance wear resistant products to industries
where crushing, grinding, and other comminution processes are an essential step in the value
chain. The connection between the research and its application is therefore more direct and the
numerical results will be calibrated and validated by detailed experimental data of shell liner
plates in the first compartment of clinker grinding cement tube mills1.

Objectives

This thesis has essentially two objectives, which consist in developing a method to predict:

• the charge motion and the power draw of a ball mill;

• the wear distribution and the wear evolution, i.e. the shape modification, of the shell liner
in a ball mill as a function of time and the operating conditions.

Structure

This thesis is divided into three chapters:

• Chapter 1: in the first chapter, the general theoretical background of the models, which
are used in the following chapters, is explained by means of an extensive literature review.
First, the ball mill and its mode of operation are described. Then, the most promising
charge motion model, i.e. the discrete element method, is defined. In the third section, the
most popular wear models are introduced. In the last section of this chapter, the ball mill,
the discrete element method and the wear models are combined to clarify the underlying
principles and the current state of the art in the wear modeling of ball mill liners.

1As will be explained in the first chapter, tube mills are balls mills with a length to diameter ratio between 3
and 5.
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• Chapter 2: the aim of the second chapter is to explain and to assess the solution to the
first objective of the thesis, i.e. the DEM ball mill simulation. First, the experimental
data (charge photographs and power measurements), which was recorded in a 1:5-scale
laboratory mill, is introduced to calibrate and validate the DEM model. Then, we select
the DEM software, which is used to predict the charge motion and the power draw of the
laboratory mill. On the basis of the DEM model defined in the third section, the numerical
results are analyzed in the forth section in order to assess the capability of the discrete
element method to predict the charge motion and the power draw of the ball mill.

• Chapter 3: in the last chapter, a general procedure to predict the wear distribution and the
change in geometry of liner surfaces due to wear by the interaction with granular materials
is presented. In this thesis, the emphasis is put on the liner wear simulation of an industrial
ball mill but it was tried to keep the algorithm as general as possible in order to apply it
to other comminution devices in the future. In a similar way to the second chapter, the
experimental data (wear profiles) is described in the first section of this chapter. Then,
the charge motion simulation model is defined in order to sample the numerical wear data.
In the last section, the wear simulation as such is explained. In particular, the best fitting
wear model and its wear constant are determined on the basis of the experimental data. By
means of the resulting wear distribution, a multi-step method is then introduced to predict
the progressive change in the geometry of the liner.

The different appendices are referenced in the text, except for the appendix E. This appendix
gives some guidelines about how the simulation data of this project can be used in future projects
by means of the CD, which was distributed with this document.

Original contributions

Some new contributions2 to the fields of DEM ball mill modeling and liner wear prediction
in this document are briefly mentioned and referenced in order to simplify the search for new
information by readers, who are already very familiar with these topics:

• introduction of a position density limit on the basis of the position density plot in order
to compare more easily the global charge motion in the pseudo steady state of mills with
different operating conditions and different liner profiles (section 2.3.4);

• calculation of the power components of the linear spring-slider-damper contact law, i.e.
the normal, tangential and sliding power, in order to show by which idealized mechanism
the power in a ball mill is mainly dissipated (sections 2.3.1 and 2.4.2);

2Saying that these contributions are new might be an exaggeration. Nevertheless, we did not find them explicitly
in the articles, books and websites mentioned in the bibliography, and we therefore believe that they might be
interesting to specialists in these fields.
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• detailed study of the influence of the contact parameters (of the linear spring-slider-damper
contact law, e.g. the normal stiffness, the tangential coefficient of restitution, . . . ) on the
global charge motion and the power draw of the mill (section 2.4.2);

• explicit superposition of the DEM results and the photographs of the real charge motion
in order to prove their agreement from this point of view (section 2.4.2);

• position density plots showing the charge distribution from the top of the mill and illustrat-
ing the creation of a structured ball motion in the presence of an axial obstruction like end
walls without tangential interaction (section 3.3.2);

• determination of the best fitting wear model and its wear constant a posteriori by the cor-
relation of the real wear data and several numerical data sets corresponding to six different
wear models (section 3.3.4). A similar approach was, however, already introduced in
[Cleary et al., 2009];

• creation of grooves in the liner plate by the numerical model leading to the conclusion that
a liner design with grooves similar to the real grooves might increase the lifespan of the
liner (section 3.3.7).



Chapter 1

Theoretical Background

In this chapter, the theoretical background of ball mill liner wear modeling will be summarized
by explaining the three main components of this method: the ball mill, the discrete element
method (DEM) and the wear modeling. In the forth section, these elements will be combined to
outline the current state of the art in ball mill liner wear modeling.

1.1 Ball Mills

To design a model which accurately simulates the ball mill liner wear, it is essential to understand
what a ball mill is. In this section, we will therefore show the place of ball mills in the general
context of comminution, describe its structure, analyze its mode of operation and introduce the
characteristic parameters used in practice to specify its operating conditions.

1.1.1 Comminution

Particle size reduction, also known as comminution, is an essential component of mineral pro-
cessing and the cement production. It usually starts with the removal of rocks from their natural
beds by explosives. The blasting of the rock is then followed by the crushing of rather massive
fragments.

Crushing is accomplished by direct compression or impact of the ore (or the limestone in
the case of the cement production) against sufficiently rigid surfaces in primary and secondary
crushers. Heavy-duty primary crushers, like jaw and gyratory crushers, reduce the ore to a size
appropriate for transport and for feeding to secondary crushers. Secondary crushers, like cone
crushers and hammer mills, further reduce the rocks to a size suitable for grinding1.

1Detailed explanations of the different steps, crusher types and differences between the mineral processing pro-
cedure and the cement production are deliberately not provided here as the purpose of this section is to determine the
place of the ball mill in the field of comminution from a bird’s eye perspective. Further information can, however,

5
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Grinding is finally the last stage of comminution. The ore particles are ground mainly by
abrasion and impact from around 5 - 250 mm to 40 - 300 µm. This relatively high reduction
ratio2 in comparison to primary and secondary crushing (reduction ratio from three to six in
each stage) is necessary to increase the ratio of the surface area to the volume of the ore, which
enhances its physical and chemical properties. In consequence, grinding is the most energy-
intensive comminution operation in mineral processing or the cement production. For instance,
around 110 kWh of electrical energy are consumed per ton of cement produced. 70% of this
energy are needed to grind the raw material and the clicker [Kawatra, 2006]. This is why, even
the slightest improvement in terms of energy efficiency can lead to a considerable economic
impact. Grinding can be performed by tumbling and stirred mills, high pressure grinding rolls
(HPGR), vertical roller mills (VRM) and some other machines. Here we will focus only on
tumbling mills to eventually locate the position of ball mills in the field of comminution.

Roughly speaking, tumbling mills are cylindrical drums closed by flat or conical end walls.
These drums are filled with the mill charge, or simply the charge3, i.e. the feed material and
the grinding media. The grinding media are hard and heavy grinding bodies, like metal balls
or rods. Because of the tumbling mill’s rotation around the horizontal axis of the drum, the
charge is lifted up by friction against its walls and the loosely moving grinding media take part
in the comminution of the feed material. Depending the grinding media, different tumbling mill
types can be distinguished, like rod mills, ball mills, autogenous mills (AG mills, the ore is the
grinding medium) and semi-autogenous mills (SAG mills, steel balls are used in addition to the
feed material).

1.1.2 Structure of a ball mill

As mentioned earlier, ball mills are tumbling mills whose grinding media are metal balls with
typical diameters from 10 to 150 mm, thus weighting 1 g to over 4 kg. On average, ball mills have
a 4 m diameter and consume around 5 to 10 MW of power (figure 1.1). Their length to diameter
ratio varies between 1 and 1.5. Longer ball mills with a length to diameter ratio between 3 and 5
are called tube mills (figure 1.2).

The cylindrical drum of the ball mill is called the mill shell. The mill shell commonly rotates
at constant speed around its horizontal axis by being supported on oil-lubricated or roller-type
bearings at its ends. In tube mills, the cylindrical drum is sometimes divided into several com-
partments with decreasing bulk material size; for instance, this is the case for clinker grinding in
the cement industry [Cleary, 2009] (figure 1.3).

Because of the very aggressive impacting and abrasion environment inside of the mill, it
is protected by liners (figure 1.4). Liners are very wear-resistant, replaceable metal or rubber

be found in [Wills & Napier-Munn, 2005] or [Kawatra, 2006].
2The reduction ratio can be defined as the ratio of the maximum particle size entering and the maximum particle

size leaving the crusher or grinding machine.
3The mill charge, or charge, has not to be mistaken with the ball charge. The ball charge are the balls without

the feed material, as explained later on.
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Figure 1.1: Ball mill [Longding, 2015] (adapted). Figure 1.2: Cross-section of a tube mill with two
chambers [FLSmidth, 2015].

Figure 1.3: Two chamber clinker grinding cement tube mill [Wikipedia, 2015].
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Figure 1.4: Head liner, shell liner and balls inside
of a ball mill [Magotteaux S.A., 2015].

Figure 1.5: Part of a boltless liner row with its
principal dimensions. In particular, this figures
shows the keystone of the vaulted liner, which is
the only liner plate bolted to the mill shell. Length
dimensions in mm [Magotteaux S.A., 2015].

working faces attached to the inside of the mill. Liners can be divided into two categories4: head
liners and shell liners. Head liners can be conical or flat liners which protect the head, i.e. the
lateral end walls of the cylindrical mill. Shell liners take the form of arched plates attached to
the mill shell either by bolts, by vault effect (boltless lining), i.e. the wedge-shaped liner plates
interlock themselves similar to the stones of a masonry arch, or by direct bonding to the inner
surface in case of rubber linings. As shown in the figure 1.5, the liner plates are assembled along
the circumference of the mill to build ring-like structures, called rows. Several rows put together
along the axial direction, then form the entire shell liner.

Liner plates are usually made from chromium, manganese, molybdenum and nickel alloys.
These alloys have the advantage to be relatively hard and abrasion-resistant but more and more
brittle with increasing hardness. Their counterpart are therefore rubber liners, which are particu-
larly well adapted to normal impacts because of their high elasticity, i.e. they deform easily and
resume their shape, when the forces are removed. Rubber/steel composites also exist as well as
more sophisticated magnetic liners protected by thick rubber layers which are themselves pro-
tected by the attracted mill charge [Powell et al., 2006]. In this work, we will, however, only
focus on metallic shell liners.

Besides the protection of the mill shell, the liner’s second primary function is the energy
transfer to the charge from the rotary motion of the mill, which ultimately leads to the grinding
of the feed material. To promote the most favorable motion of the charge, liners have different
profiles (figure 1.6), which should enhance the size reduction by adding impact crushing and
higher abrasion efficiency to the comminution process through its lifting action. Lifting literally

4It is possible add a third category, i.e. classifying liners, which are usually installed in the second chamber of
cement tube mills. This liner category will, however, not be analyzed in this thesis.
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consists in moving the charge to a higher position in the mill by the combination of centrifugal
and friction forces. Ultimately, the charge falls down under the action of gravity and impacts it-
self, thus increasing the grinding rate. The characteristic part of the liner profile, which enhances
the lifting of the charge, is simply called a lifter5.

Figure 1.6: Different liner profiles [Wills &
Napier-Munn, 2005].

Figure 1.7: Wear profile of a lifter in a 7 m diam-
eter SAG mill [Powell et al., 2006].

With increasing wear of the liner, it gradually looses its lifting capacity (figure 1.7). This
is also the reason why some tumbling mills are equipped with removable lifters attached to the
liner plates since they have to be exchanged more often due to their high exposure to abrasion.
A typical liner lifespan in the first compartment of a cement tube mill is around 5 to 10 years.

In addition to the minimal liner thickness for the protection of the mill shell, the preservation
of the liner profile is therefore a fundamental requirement for a long liner life. Moreover, relining
represents a major cost in the operation of a mill not only because of its manufacturing and
material cost but also because of the limited throughput of the plant and the employment of
additional staff during the relining. For these reasons, liner profile validation and optimization in
terms of wear are necessary steps during the liner design.

1.1.3 Charge motion

The figure 1.8 shows the ball charge motion6, its different zones and characteristic positions.
The charge is lifted by the rising side of the liner profile due to the combined action of rotation
and friction. Once gravity exceed the resultant of the centrifugal and friction forces, the charge
either cascades or cataracts down the free surface formed by the other particles. More precisely,
at lower rotation speeds, the charge cascades down, i.e. the balls roll down, and at higher speeds,

5In practice, lifters are replaceable parts of a liner, which are attached to a liner plate. The previous definition is
therefore a little more general since a wave of the liner plate, which enhances the lifting of the charge, would also
be considered to be a lifter.

6In addition to the balls and the feed material, balls mills might also contain a slurry, when grinding is performed
wet. In this work, we will, however, focus only on dry ball milling or at least, neglect this effect.
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the balls fly down until colliding with the balls and feed material in the impact zone. This
cataracting motion leads to comminution by impact, while cascading balls rather reduce the
material size by abrasion.

Figure 1.8: Ball charge motion in a ball mill. The straight arrows point to the centers of different char-
acteristic zones and positions: 1. Grinding zone; 2. Dead zone (in blue); 3. Tumbling zone; 4. Shoulder;
5. Cataracting charge in the flight zone; 6. Cascading charge; 7. Crushing/Impact zone; 8. Toe. The curved
arrow shows the orientation of the rotation. The color code indicates the translation velocity: blue is slow
and red is fast.

The position at which the highest point is reached by the charge is called the shoulder. For
a low rotation speed, this position is clearly defined, while it becomes more difficult to identify
for the cataracting charge motion at higher speeds. For this reason, [Cleary et al., 2003] defines
a lower and an upper limit of the shoulder position. These limits are respectively located at the
points where the particles near the liner begin to diverge from it and where the charge reaches its
highest position. The counterpart of the shoulder is the toe. It is the position down to which the
bodies cascade or cataract from the shoulder. Its lower limit is situated at the intersection of the
charge free surface and the mill liner, while its upper limit can be defined at the position below
which the largest concentration of cataracting particles have impacted on the liner7. Usually the
shoulder and the toe are specified by the shoulder and toe angles, θs and θt , which will be defined
with respect to the 6 o’clock position, by convention, positive in both directions. It seems not
necessary to mention that these parameters are quite subjective despite the definition of a lower
and an upper limit8.

7Here, we interchanged the definitions of the lower and upper limit provided in [Cleary et al., 2003], because
they depend on the definition of the toe angle.

8In cases, in which a strict numerical values is not needed, we will therefore try to superpose the simulated or
photographed charge shapes in order to validate the numerical results instead of measuring and comparing these
angles.
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Five zones represented in the figure 1.8 can be defined according to
[Radziszewski & Morrell, 1998]:

• grinding zone: ball layers slide over another, grinding the material trapped between them.

• dead zone: balls are practically without motion in this zone, i.e. grinding is locally very
low.

• tumbling zone: balls roll over one another and break material in relatively low energy
breakage compared to the breakage in the grinding zone.

• flight zone: balls fly along a parabolic path under the action of gravity.

• crushing/impact zone: balls in flight impact the charge and crush rock particles at relatively
high energies.

Theses zones are obviously not clearly separated; their definition is only used to qualitatively
separate the different zones in the mill and to ease the description of the mill charge motion. In
terms of liner wear, it is very important to notice that the lower toe limit is not always located in
the impact region. At high rotation speeds, for a low filling of the mill or poorly designed liner
profiles, the mill charge, and most importantly the cataracting balls, might impact the liner di-
rectly, which ultimately leads to greatly accelerated liner wear. In addition, the milling efficiency
might also decrease because the collisions with the highest impact energy occur against the liner
instead of on the toe.

1.1.4 Characteristic parameters

In practice, the mill operation can be described by two values: the percentage of critical speed
and the filling ratio.

Percentage of critical speed The percentage of critical speed quantifies the constant rotation
speed of a ball mill, which is usually equal to 75% in clinker grinding tube mills. This percentage
is defined by the ratio of the current speed to the critical speed. The critical speed is the speed of
the mill for which its charge would be centrifuged. Thus, the critical speed is reached when the
centrifugal force equals the force exerted by gravity on a ball:

m v2/R = m g (1.1)

where the linear velocity v of a ball of mass m can be written as a function of the rotation
speed N of the mill in [rpm] and the radius to the center of rotation R = (D−d)/2 with D and d
being respectively the diameter of the mill and the diameter of the ball:

v =
2 π N R

60
(1.2)
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As mentioned earlier, the ball diameter is negligible in comparison to the mill diameter. For
this reason, the critical speed Nc is commonly defined by the following formula:

Nc =
42.3√

D
[rpm] (1.3)

Filling ratio In addition to the percentage of critical speed, the mill operation is characterized
by the filling ratio (related to the balls), if no complete ball charge distribution is available. The
ball charge distribution is based on the partitioning of the ball charge into groups according to
their diameter. Each group is defined by an interval of diameters, which allows to calculate the
mean diameter. Knowing the ball material density and the mass of each ball group, it is possible
to deduce a number of balls for each mean diameter. It is important to notice that, even though
the balls are also ground, i.e. their form is altered and their radius reduced, their size distribution
is kept uniform by continuously adding new balls. Thus, the ball size distribution in the mill
seems not to change over time.

If this relatively precise information is not known, the filling ratio can be used to determine
the quantity of balls in the mill. The filling ratio is the percentage of volume occupied by the
balls (and their interstices, without the feed material) with respect to the total volume of the mill.
The total volume of the mill can be calculated by means of the mean diameter of the liner profile
and the mill length. In the first chamber of a clinker grinding tube mill, the filling ratio commonly
takes a value between 20 and 40%.
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1.2 Discrete Element Method

To predict the liner shape evolution due to wear, it is essential to understand and to quantify the
motion of the mill charge and its resulting interaction with the mill liner. The most promising
method in this field is the discrete element method (DEM). For this reason, we will first describe
the method in general and then focus on its application in the field of ball mill modeling.

1.2.1 General description

The discrete element method (DEM), originally termed the distinct element method, is a numer-
ical method used to simulate the kinematic and dynamic behavior of granular materials. The
method was first formulated in [Cundall, 1971] for the analysis of rock movement mechanics.
The initial formulation was based on the definition of circular bodies interacting according to a
contact law. Later, more sophisticated models with deformable 3D bodies of almost any shape
were developed [Bićanić, 2005]. Here we will, however, concentrate on a 3D sphere element
model with a linear spring-slider-dashpot contact law. To understand the following principles, it
is necessary to mention that the discrete element method is based on the Lagrangian description
of discrete bodies interacting by a soft contact model, i.e. the spheres may slightly overlap during
the simulation, and on an explicit time integration scheme of the equations of motion.

These essential characteristics of DEM simulations will be explained by summarizing a clas-
sical simulation loop. This computational sequence describes the iterative steps which are nec-
essary to get from the current state in time to the next state. The simulation loop successively
passes through three stages related to the bodies, their interactions and the time integration.

Bodies

The bodies in DEM simulations can be classified into two categories: discrete elements and
boundary elements.

Discrete elements The discrete element method is based on the definition of bodies or elements
whose motion is described by Newton’s second law and a contact law in terms of a Lagrangian
formalism, i.e. the motion of each particles is tracked individually. In ball mill modeling, these
bodies are generally spheres representing the balls. Each sphere j is characterized by the follow-
ing properties:

• state properties: center position x j, translation velocity ẋ j, angular velocity ωωω j, translation
acceleration ẍ j, angular acceleration ω̇ωω j, force applied to its center F j and the moment of
force, i.e. torque, around its center M j;

• shape properties: diameter d j (or radius r j);
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• material properties: density ρ j and contact parameters (explained hereinafter).

These spheres are floating in space according to Newton’s second law (translation and rota-
tion):

m j ẍ j = F j (1.4)
I j ω̇ωω j = M j (1.5)

where m j = 4π ρ j r3
j/3 is the mass of the particle and I j = 2m j r2

j/5 the moment of inertia.
Notice that we simplified the general equilibrium equation in rotation because of the sphere’s
symmetry, i.e. the inertia tensor is diagonal.

Boundary elements In addition to spherical elements, it is necessary to include one more
category of elements in the simulation. Strictly speaking, these elements are no real discrete
elements because their motion is restricted and not governed by Newton’s law. For this reason,
we will call them boundary elements. A very versatile category of three-dimensional boundary
elements are triangulated surfaces. By assigning a specific motion to the resulting surface mesh,
it is possible to model very complex environments with which the particles interact, for instance,
a ball mill liner. The triangular elements of the mesh will be called facets. The next step of a
simulation is to manage the interactions between the bodies.

Interactions

Interactions result either from collisions between bodies, i.e. sphere-sphere or facet-sphere9, or
from other forces, like gravity. The critical algorithmic issue of DEM simulations is the contact
detection between elements. Once the contacts are known, contact laws are used to calculate the
interaction forces.

Contact detection Contact detection is crucial because of the possible number of bodies in
the simulation [Bićanić, 2005]. For instance, in most industrial applications, typical minimum
problem sizes range from 20,000 to 100,000 particles [Cleary & Sawley, 2002]; tube mills have
around 50,000 balls in their first compartment. Considering also the bulk material in tumbling
mills, as it is usually done in AG and SAG mills, several hundred thousand particles or even
millions are necessary to accurately model the charge motion. For instance, in a recent study of
a full 3D cement tube mill simulation, the Cundall number (number of particle time steps per
CPU second) was around 170,000 on a single 3.6 GHz CPU [Cleary, 2009]. In consequence,
for a simulation with 50,000 particles, a typical time step of 10−6 s and a simulated time of 10
s, around 8 hours of computation are necessary to complete the simulation. Hence, in terms of
algorithmic complexity, it is necessary that the collision detection is clearly not O(n2) but rather

9Facet-facet collisions are not mentioned here, because this type of collision never happens in ball mills. In other
circumstances, it is certainly possible to define facet elements whose motion is governed by Newton’s law.
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O(n logn) or even O(n) with O and n being the big O notation and the number of particles, re-
spectively. Notice that the intuitive algorithm, which consists in checking for each particle, if it is
in contact with another particles, requires n(n−1)/2 inspections; these inspections simply con-
sist in checking the distance between the centers of spherical bodies as they may slightly overlap
during the simulation. To limit the calculation time, numerous contact detection algorithms are
described in the literature [Munjiza, 2005]. To give a glimpse of how contact detection can be
managed efficiently, we will briefly describe two algorithms, i.e. the sweep and prune insertion
sort algorithm and the category of grid algorithms.

Both algorithms are based on a two phase strategy. During the first phase, a fast and approx-
imate collision detection is performed, while the exact local contact resolution is determined in
a second phase. The sweep and prune insertion sort algorithm is the standard contact detection
algorithm in the Yade plateform [Šmilauer et al., 2014], an open-source DEM solver. The key-
stone of this algorithm are axis-aligned bounding boxes, i.e. rectangular parallelepipeds which
contain each a sphere or a facet, and whose edges are aligned with the axes of the coordinate
system. A 2D example is provided in the figure 1.9. This figure shows that two bodies can only
be in contact, if their bounding boxes are. In the first phase, it is thus only necessary to check
for contacts of the bounding boxes. These boxes can be represented as three lists, one for each
dimension, which contain the bounds of the bodies (B̃i0

j and B̃i1
j values in the figure 1.9). Besides

the bounds, each element in a list further contains a reference to the corresponding body and a
flag which indicates whether it is the lower or the upper bound. At the beginning, these lists
have to be sorted. This operation has a complexity of O(n logn) in the best case but it is only
performed once. The key of the collision detection algorithm is surprisingly the insertion sort
algorithm10. In fact, the three boundary box lists are initially sorted and the collisions are known.
At the next iteration, the elements of the list are updated and it might happen that some elements
are not sorted anymore, i.e. one box enters or leaves another box11. The collisions are then
detected and managed by the insertion sort of the three lists. If the insertion sort swaps a lower
and an upper bound of two distinct bodies, a new contact either appears or disappears depending
on the swap direction. Because of the small time step in DEM simulations, it seems acceptable
to admit that only few elements are swapped during each iteration. Hence, the complexity of the
insertion sort is rather O(n logn) than O(n2), which leads to the efficiency of the method.

The category of grid algorithms, also referred to as boxing or binning algorithms, is based

10In simple words, the insertion sort builds a sorted array by sweeping through the unsorted array. For instance, if
the array should be sorted in an increasing order, the algorithm starts at the second element. If this element is lower
than the first element, both elements are swapped. Then the algorithm continues with the third element and sorts it
with respect to the two first elements, i.e. if it is smaller than the second element, they swap their position, . . . The
algorithm then continues with the forth element and so on. A simple example is given by the following sequence:
(4 3 2 1); (3 4 2 1); (3 2 4 1), (2 3 4 1); (2 3 1 4), (2 1 3 4), (1 2 3 4).

11Notice that this is a consequence of the explicit time integration and the soft contact method. More precisely,
as the time step in the explicit integration schemes is rather small, i.e. around 10−6 s in DEM simulations, a
particle moves only a little bit between two successive time steps. As the soft contact method allows particles to
slightly overlap, the little displacement between time steps might lead to the slight overlapping of two particles. In
consequence, the value associated the bound of one particle becomes smaller than the respective bound of the other
particle.
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Figure 1.9: Sweep and prune insertion sort collision detection algorithm illustrated in 2D, where three
spherical bodies B1, B2 and B3, and their axis-aligned bounding boxes B̃1, B̃2 and B̃3 are represented.

on the discretisation of the simulation space into cubic cells whose edge length is specified by
the size of the largest particle in the simulation. The center of a particle is always inside of a
cell, called the center cell. Because of the specific cell size, a particle can only be in contact
with particles which either share the same center cell or which have their center located in one
of the immediate neighboring cells. If the size distribution of particles is sufficiently restricted,
the algorithm’s complexity isO(n), because only particle pairs in a near-neighbor interaction list
have to be checked for contact [Munjiza, 2005].

In conclusion, the sweep and prune insertion sort algorithm is efficient in DEM simulations
with a large size distribution of the particles, i.e. with small and big particles at the same time,
while the category of grid-based algorithms is very efficient if the particles have similar sizes.

Contact laws Once the contact has been detected, contact or interaction laws are used to de-
termine the forces created during the interaction. In DEM simulations, a soft contact method
is usually used, which means that the contacting bodies overlap slightly. The amount of over-
lap gives then rise to the interaction forces. Various contact laws have been defined and the
most promising models are the linear spring-slider-damper model, the non-linear spring-damper
Hertz-Mindlin model and the elastic perfectly plastic model [Mishra, 2003a]. To understand the
essence of a contact law, we will present the formulation of the easiest one, i.e. the linear spring-
slider-damper model [Pournin et al., 2001], in the context of the contact between two spheres
(figure 1.10).

Let B1 and B2 be two spherical bodies entering into contact at a point C (figure 1.11). Let P
be the plane tangent to B1 and B2. The unit vector normal to P and pointing to B2 can be defined



Discrete Element Method 17
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Figure 1.10: Schematic representation of the linear spring-slider-damper contact law with its normal and
tangential components Fn and Ft .
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Figure 1.11: Geometric contact representation to derive the linear spring-slider-damper interaction law.

The relative velocity of B1 and B2 at point C is then calculated by the following formula:

vc = ẋ2− ẋ1 +un× (r̃1ωωω1 + r̃2ωωω2) with

{
r̃1 = ‖C1C‖
r̃2 = ‖C2C‖

(1.7)

The normal component Fn of the contact force is a function of the overlap ∆x and the normal
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velocity vn weighted by the equivalent12 normal stiffness kn of the linear spring and the equivalent
normal damping coefficient cn of the dashpot, respectively:

Fn =

{
Fn un , if Fn ≥ 0

0 , otherwise.
with


vn =−un ·vc

∆x = r1 + r2−‖x2−x1‖
Fn = kn ∆x+ cn vn

(1.8)

In this formula, Fn might be negative because of the viscous damping. To prevent any at-
traction forces it is thus necessary to change its value depending on its sign. The tangential
component Ft of the interaction force can be calculated by the following formula:

Ft =

{
µ ‖Fn‖ Ft/‖Ft‖ , if ‖Ft‖> µ ‖Fn‖
Ft , otherwise.

with

{
vt = vc− (vc ·un)un

Ft = kt
∫
∗ vt dt + ct vt

(1.9)

The integral13 term in this formula represents the spring that stores energy from the relative
tangential motion and models the elastic tangential deformation of the contacting forces. The
tangential force is limited by the Coulomb friction limit, at which point the surfaces begin to
slide over each other.

Finally, the forces and moments applied at the center of each sphere are equal to:

F1 = −Fn +Ft (1.10)
F2 = −F1 (1.11)

M1 = C1C×Ft (1.12)
M2 = −C2C×Ft (1.13)

Previously, we presented a quite rigorous formulation of the model. In practice, it is usu-
ally represented by the following set of equations, which is certainly less rigorous but easier to
understand:

Fn = kn ∆x+ cn vn (1.14)

Ft = min
(

µ Fn, kt

∫
vt dt + ct vt

)
(1.15)

12Notice that the equivalent stiffness or the equivalent damping ratios are different from the elementary ones.
The equivalent structural components, i.e. springs and dampers, are obtained by the connection in series of the
elementary components. For instance, if two bodies have the elementary stiffness coefficients kn1 and kn2, the
equivalent stiffness is kn = kn1kn2/(kn1 + kn2). In this thesis, we will always use the equivalent coefficients in order
to simplify the explanations; one should, however, be aware of this additional layer of abstraction.

13The star sign ∗ in the integral represents an operation, which is far from being trivial and therefore not described
here [Šmilauer et al., 2014]. This operation consists in taking into account the invariance of the tangential elastic
component of the contact force to a change in orientation of the particles, when their relative positions are unchanged
with respect to each other.
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The purpose of this section is to give a broad but sufficiently detailed overview of the general
DEM method. For this reason, we will neither define the standard values of the parameters
nor explain the advantages and drawbacks of this model in this section. As the reader might
anticipate, we will obviously revisit the linear spring-slider-damper model in the literature review
section about the DEM modeling of ball mills.

Other forces As mentioned earlier, interactions between spheres and spheres or spheres and
facets are not the only interactions. The particles might also interact with other factors, like
gravity. The force due to gravity m j g is simply added to the forces, which are already acting on
the spheres14. Once all the forces applied to a particle have been determined, its new accelera-
tion, velocity and position can be determined by Newton’s second law and the numerical time
integration scheme presented in the following section.

Time integration

The last part of the discrete element method, which makes this explanation complete, is the time
integration of the dynamic equilibrium equations 1.4 and 1.5. Conditionally stable explicit time
integration schemes are usually used to solve these equations in DEM applications [Bićanić,
2005]; especially, the leap frog algorithm has been quite successful [Mishra, 2003a]. In fact,
at each time step, the forces and moments acting on the different particles are determined as
explained before. In consequence, the translation and angular accelerations are immediately
known by Newton’s law:

ẍ j = F j/m j (1.16)
ω̇ωω j = M j/I j (1.17)

The translation velocities and positions are then updated as follows15, from iteration n to
n+1 with a constant time step ∆t:

ẋ(tn+1/2) = ẋ(tn−1/2)+ ẍ(tn) ∆t (1.18)
x(tn+1) = x(tn)+ ẋ(tn+1/2) ∆t (1.19)

The instantaneous velocity is then calculated as:

ẋ(tn) =
ẋ(tn+1/2)+ ẋ(tn−1/2)

2
(1.20)

Similar formulas are used to determine the rotation velocity. The angular position is usually
not determined for spheres because of their symmetry.

14Again, it would make no sense to apply gravity on the facets because they are considered to be boundary bodies
in this project, i.e. their movement is explicitly prescribed.

15The notation tn+1/2 has the meaning tn +∆t/2. Likewise, tn−1 = tn−∆t and tn+1 = tn +∆t.
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The leap frog algorithm is second order accurate, i.e. the error on the position is O(∆t2)
due to the time discretisation. More specifically, this means that the error on the displacement is
divided by 4 if the time step is divided by 2. In addition, the algorithm is conditionally stable.
In simple terms, this means that the error introduced by the explicit integration is not amplified
for time steps which are sufficiently small ∆t ≤ ∆tcr. The critical time step ∆tcr and a strategy to
choose the time step ∆t are presented in the following section.

In conclusion, the discrete element method is based on discrete bodies, mainly spheres and
boundary facets, interacting by contact laws, like the linear spring-slider-damper law, and floating
through space according to Newton’s second law, which is solved by an explicit conditionally
stable time integration scheme.

1.2.2 Review of DEM ball mill modeling

In this section, we will briefly summarize the modeling process of ball mills by the discrete el-
ement method in order to choose the most promising contact law, geometrical approximation
and simulation parameters. Moreover, the major validation methods of DEM results in the con-
text of tumbling mill modeling will be introduced. Detailed reviews can be found in [Mishra,
2003a, Mishra, 2003b] or more recently in [Weerasekara et al., 2013].

Contact laws

Previously, we described the linear spring-slider-damper law, which is certainly the most used
contact law in DEM simulations of tumbling mills. This law was first applied to ball mills
by [Mishra & Rajamani, 1992] and later Cleary certainly aided its spread within the scientific
community by his significant work in this field, i.a. [Cleary, 1998]. Other researchers used
the Hertz-Mindlin non linear contact law, which seems to have gained popularity because of its
implementation in the EDEM discrete element solver, i.e. one of the leading commercial solvers
[Khanal & Morrison, 2008, McBride & Powell, 2006, Powell et al., 2011, Rezaeizadeh et al.,
2010a]. A third alternative is an elastic perfectly plastic contact law summarized in [Mishra,
2003a]. Before briefly explaining each model, it is necessary to understand, that these models and
the resulting interaction forces should not be over-interpreted in terms of physical significance;
the contact is idealized.

Linear spring-slider-damper contact law The linear spring-slider-damper contact law16 is
the simplest model to account for energy transfers from one particle to another while dissipat-
ing some of this energy during their interaction. Without the tangential force component and
the dampers, neither the particle rotation, nor the energy dissipation during collisions could be
simulated, respectively. Moreover, the total tangential force is limited by the Coulomb friction
limit allowing particles to slide over each other. All these different mechanisms are necessary to

16A more rigorous definition of the model was provided in the section 1.2.1.
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model a ball mill with the discrete element method17. In a simplified way, the law can be writ-
ten as follows, where Fn and Ft are the normal and tangential components of the contact forces
applied at the contact point:

Fn = kn ∆x+ cn vn (1.21)

Ft = min
(

µ Fn, kt

∫
vt dt + ct vt

)
(1.22)

Despite the apparent simplicity of the model, it contains already 5 material parameters: the
normal stiffness kn, the tangential stiffness kt , the normal damping coefficient cn, the tangential
damping coefficient ct and the friction coefficient µ . In the following section, we will explain
how these parameters can be determined. The correct choice of the parameters seems to be
key in finding accurate results with the linear spring-slider-damper contact law [Dong & Moys,
2002], even though the shearing and sliding mechanisms seem to be inadequately or at least
approximately modeled [Chandramohan & Powell, 2005].

Hertz-Mindlin contact law The Hertz-Mindlin contact law is very similar to the linear spring-
slider-damper law. The difference consists mainly in the definition of the stiffness and damping
coefficients, which are not constant anymore. The Hertz-Mindlin law is based on the quite pop-
ular problem of contact between two spheres in linear elasticity theory [Timoshenko & Goodier,
1951]. The stiffness coefficients are thus partly derived from the elastic properties of the ma-
terial: the Young modulus and the Poisson ratio. It is, however, very important to notice that a
reduced Young modulus is used in practice due to the relation between the critical time step and
the elastic properties of the system, i.e. the real Young modulus leads to excessively small time
steps. Furthermore, the model can be criticized because a fine layer of crushable material might
be located between the impacting balls in a ball mill. This layer might be the cause of a com-
pletely different pressure distribution in comparison to the Hertzian theory. The Hertz-Mindlin
contact law is therefore not necessarily a better contact model than the previous linear model.

Elastic perfectly plastic contact law A third contact law which should be mentioned is the
elastic perfectly plastic contact law. The damping coefficients in the linear spring-slider-damper
law and in the Hertz-Mindlin law are in general determined by the restitution coefficient. This
will be shown in the next section for the linear model. The restitution coefficient is, however, not
an intrinsic material parameter, like the Young modulus, i.e. it changes with the ball diameter and
the impact velocity. The elastic perfectly plastic contact law tries to alleviate this shortcoming
by linking the restitution directly to the plastic dissipation during contact. A detailed comparison
of the different contact models can be found in [Thornton et al., 2013].

In conclusion, the linear spring-slider-damper model seems to be the best contact law for
ball mill simulations because of its sufficient and necessary simplicity. On the one hand, we did

17The dissipation makes it possible to calculate the mill’s power draw. A ball without rotation about itself seems
to be quite non physical. And finally, the sliding between the balls themselves and the liner is one of the origins of
grinding.
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not find any evidence in the literature showing that one contact law leads to a significantly better
correlation with the reality than another law (in the field of tumbling mill DEM simulations),
i.e. the linear contact law is sufficient. This justification is also related to the limited validation
data available for ball mills [Cleary, 2001b], as we will point out later on. On the other hand,
the law is able to model the different phenomena observed in a real mill, i.e. transfer of the
angular moment from one ball to another, energy dissipation and sliding of the ball charge. For
this reason, the model is also necessary.

Geometrical approximation

Dimensionnality Ball mills were first modeled in two dimensions by the discrete element
method in [Mishra & Rajamani, 1992]. With the advent of more powerful computers, 3D full
scale simulations with several million particles have become possible. For instance, an entire two
chamber cement tube mill has been simulated by [Cleary, 2009]; the second chamber contained
3.81 million particles and the calculations took 56 CPU days for 1.5 revolutions. An intermedi-
ate stage between the 2D and the full 3D simulations is a 3D model with a periodic boundary
condition. Such a condition makes it possible to simulate an axial slice of the complete mill; it
is called periodic because the balls which are leaving the mill on one side are reentering by the
other side. Even though the influence of the end walls can not be modeled with this condition,
the computation time can be significantly lowered because of the reduced number of particles.
In some cases, it might even be desirable to neglect the influence of the end walls. For instance,
this is true if the performance of the liner profile per se has to be evaluated (figure 1.12).

(a) 2D DEM simulation of a
7 m diameter SAG mill with
around 5000 particles [Cleary,
2001a] (adapted).

(b) 3D DEM simulation of a
0.5 m slice of a 10 m diameter
SAG mill with 185,000 parti-
cles [Cleary, 2001c] (adapted).

(c) 3D DEM full scale simula-
tion of the second chamber in
a cement tube mill with 3.81
million particles [Cleary, 2009]
(adapted).

Figure 1.12: Simulations in different dimensions.

In the context of SAG mills, [Cleary et al., 2003] compares these three different ways of



Discrete Element Method 23

approximating the geometry in terms of its dimension (2D, 3D or 3D slice). It is demonstrated
that 2D circular particle DEM models consistently under-predict the shoulder and toe positions,
i.e. the shoulder is too low and the toe too high in comparison to experimental results. This can
be explained by the limited strength of the 2D particle structure against shear. In fact, the axial
compression of the particles in a 3D simulation makes the failure of this structure much more
difficult. The results of the 3D slice model are in between the 2D and the full scale 3D model
because the friction of the charge against the end walls is neglected in this model. In conclusion,
if an entire mill has to be analyzed, a full scale 3D DEM simulation is certainly the best choice,
while a 3D axial slice seems to be sufficient to analyze the intrinsic properties of the liner profile.
Nevertheless the full scale 3D simulation is commonly replaced by the simulation of the axial
slice because of its important computation time.

Liner modeling In addition to the choice of the dimension, the mill and its content have to
be geometrically modeled in a DEM simulation. The important parts of the mill in terms of
this simulations are its boundaries, i.e. the shell liner and the end walls. The simplest surface
representing a shell liner is the outer surface of a cylinder, i.e. the extrusion of a circle along
the axial direction. Because of their very limited lifting action, liner profiles are in practice
not circular, as we mentioned earlier. In consequence, a liner is better represented by the axial
extrusion of the liner’s profile curve, which might be a stepped or undulated curve. Such a liner
may be called a 1D liner design because its height varies only along the azimuthal direction, i.e.
that, in cylinder coordinates, where the z axis is aligned with the rotation axis of the mill, the
liner surface can be parameterized by r = r(θ), where r is the distance between the profile and
the rotation axis, and where θ is the azimuthal angle about this axis. For instance, Magotteaux’s
previous liners, like the Duolift and XLift liners, are 1D liner designs. More recently, 2D designs
are considered. The height of these liners varies not only along the azimuthal direction but
also along the axial direction, i.e. the liner profile surface can be parametrized by the relation
r = r(θ ,z) in cylindrical coordinates, where z represents the axial coordinate. Magotteaux’s New
Duostep liner therefore is a 2D liner.

In DEM simulations, liner profiles are approximated by segments in 2D or by surface meshes
of facet boundary elements in 3D. Notice that 2D liner designs cannot be fully modeled in 2D
DEM simulations since the profile curve of the liner changes along the axial direction; this is an
additional reason for simulating ball mills in 3D.

The liner surface can either be approximated by triangular or quadrangular elements. Quad-
rangular facets are at best used to model 1D liner designs because they reduce the number of
necessary facets, if two opposed edges of each quadrangular facet are aligned with the rotation
axis (figure 1.13). Triangular elements are used to approximate 2D liner design because of their
better capability to capture the curvature of the surface, even though the total number of boundary
elements increases significantly.

Charge modeling Finally, the mill charge has also to be approximated in geometrical terms.
The easiest, computationally least expensive and most common way to model the ball charge and
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Figure 1.13: Surface mesh of a 1D liner with quadrangular elements (full view and zoom). The end walls
are modeled by big quadrangular elements which rotate with the mesh of the shell liner [Sawley, 2006]
(adapted).

the bulk material are spheres (or circles in 2D). Because of their three-dimensional symmetry,
the exact contact detection and the calculation of the interaction forces is straightforward. Alter-
natives to spheres are clusters (rigidly connected spheres) [Šmilauer et al., 2014], super-quadrics
[Bićanić, 2005] or polygonal elements [Feng & Owen, 2004]. In general, the consequence of
non-spherical bodies in DEM simulations is the increase in shear strength of the mill charge
due to the more efficient interlocking of non-spherical particles; hence, the height of the shoul-
der is raised as well as the power consumption18 (at sub-critical speeds) [Cleary, 1998, Cleary,
2001c, Cleary, 2001a, Cleary et al., 2003]. Despite their better capability of modeling the real
geometry of the feed material (or worn balls), non-spherical bodies are, however, not used if they
are not absolutely necessary because of their computational cost. For instance, super-quadrics
have a computational cost between 2 and 5 times that of spheres [Cleary et al., 2008]. But even
simulations with spherical balls can take quite a long time, e.g. 5.7 CPU hours for two rotations
of a 53,000 particle model [Cleary, 2009]; notice that this CPU time is rather short, i.e. the solver
seems to be very efficient.

Anticipating what will be explained in the next section (wear modeling), it seems reasonable
to suppose that the balls are the predominant source of liner wear because of their greater size
and mass (density of steel: 7800 kg/m3; density of clinker, the ground material in the cement

18The power consumption of the mill will be explained hereinafter. At this point, it is only necessary to know
that the power consumption is the power necessary to mechanically keep the mill in rotation at a constant angular
velocity. In other words, it is the power dissipated by the dampers and sliding devices of the contact model in the
simulation.
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mill: 1400 kg/m3), as well as their higher hardness with respect to the feed material (hardness of
clinker: 500 HV; hardness of steel liner: 700 HV). This material might, however, indirectly be the
source of wear despite our previous hypothesis, which states that the balls are the predominant
factor. In fact, the ground material might contain a small mass percentage of very hard particles,
like silica SiO2 (1000 HV, approximately), i.e. quartz, the most common constituent of sand.
This leads to the conclusion, that the ground material intervenes indirectly in the wear process
by minor contributions of very hard particles, while it can geometrically be neglected due to
its smaller size and mass in comparison to the ball charge. Notice that the volume occupied by
the feed material in a ball mill (clinker grinding) is only equal to the volume of the interstices
between the balls at rest. Although it thus seems acceptable to not model the feed material in
a geometrical sense, one should bear in mind that it might still be incorporated indirectly in the
DEM simulation through the contact law (and the wear constants, as explained later on), e.g. a
specific feed material might increase the sliding of the charge; in consequence, the coefficient of
friction in the contact law decreases.

In a broader sense, material breakage will obviously not be simulated in this study even
though a significant research interest exists in this field [Herbst & Nordell, 2001, Morrison &
Cleary, 2004, Morrison & Cleary, 2008, Powell & McBride, 2006, Powell & Morrison, 2007,
Powell et al., 2008]. Notice also that the ball charge will be approximated by spheres while balls
can become highly non spherical due to wear [Sawley, 2006]; the majority is, however, almost
spherical.

Simulation parameters

In one of the previous sections, we discussed why the linear spring-slider-damper contact law is
sufficient and necessary for DEM simulations of balls mill. This model depends on several pa-
rameters, i.e. the normal and tangential stiffness, the normal and tangential damping coefficients,
and the friction coefficient. In addition to these material parameters, one more value has to be
chosen, i.e. the time step of the numerical time integration scheme. In this section, we will try to
find some guidelines about how to choose the values of these parameters.

Time step As we mentioned in the general description of the discrete element method (sec-
tion 1.2.1), the equations of motion are numerically solved by an explicit conditionally stable
time integration scheme. This scheme is stable, i.e. numerical errors are not amplified from one
iteration to the next, if the time step ∆t is smaller than a critical time step ∆tcr. A linear undamped
oscillatory system is thus stable if the time step ∆t is smaller than the following value [O’Sullivan
& Bray, 2004]:

∆tcr =
2

ωmax
(1.23)

The variable ωmax stands for the greatest natural frequency in the system. In a single degree
of freedom system, the critical time step is simply defined by the following formula, in which
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m represents the mass of a point particle attached to a rigid fixation in space by a spring of
stiffness k:

∆tcr = 2
√

m
k

(1.24)

This formula has been extensively used in DEM simulations and should, however, be strongly
criticized according to [O’Sullivan & Bray, 2004] because the 1D result can not simply be ex-
trapolated to 3D DEM cases which are subjected to more complex contact conditions. By explic-
itly calculating the mass and stiffness matrices of numerous interaction conditions with a linear
spring contact law, O’Sullivan and Bray showed that the resulting eigenvalues (representing the
natural frequencies) are significantly higher than the eigenvalues of the single degree of freedom
system. Hence, in DEM simulations, the critical time step should satisfy the following condition,
where m is the minimum mass of a particle and where k is the smaller of kn and kt , i.e. the smaller
of the normal and tangential stiffness of a linear spring contact law:

∆tcr ≤ 0.22
√

m
k

(1.25)

This time step is around 7 times smaller than the critical time step previously mentioned. In
consequence, the question rises whether all former DEM simulations based on the 1D critical
time step are false in a certain way. The answer is obviously no, even though one has to bear
in mind that any numerical simulation is false to some extent. The specific reason of this an-
swer is that the simulation should accurately integrate the collision in addition to the stability
requirement. More precisely, the time step is commonly chosen in order to recover the coeffi-
cient of restitution from which the damping coefficient was chosen. For instance, [Cleary, 1998]
uses about 20 to 50 time steps for a sphere-sphere collision. According to the results in the ap-
pendix A.1.3, the collision time of this system is equal to π

√
meff/(kn(1−ζ 2)) in the normal

direction, where ζ = cn/(2
√

meff kn) is the normal damping ratio and meff the effective mass,
which is equal to m/2 if particles of the same mass m collide. Usually, the damping ratio is
relatively small so that the time step can be chosen equal to ∆t = π/20

√
m/(2kn) in the worst

case (with the factor 20 suggested by Cleary); this time step is around two times smaller than
the critical time step19. In consequence, this time step leads not only to a stable integration but
it is also sufficiently energy consistent, i.e. the coefficient of restitution is recovered. To choose
a time step which is admissible for all particles in the simulation, it is important to calculate the
time step with the material properties of the particle with the greatest normal stiffness and the
smallest mass. A typical DEM time step takes a value between 10−3 and 10−6 s according to
Cleary, i.a. [Cleary, 1998].

For the sake of completeness, we will mention one last condition related to the time step
which is usually not mentioned because the previous requirements generally imply the satisfac-
tion of this condition. More precisely, if the time step is too large or the speed of the particle too

19This result is partially based on the fact the kt , the tangential stiffness, should in theory have a value between
2/3 and 1 of kn, the normal stiffness, according the Hertz-Mindlin contact theory, which is at the origin of the
Hertz-Mindlin contact law [Mishra, 2003a]. Thus, the time step is minimal for the normal stiffness.
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high, it might happen that one particle moves (numerically) through another particle because of
the explicit time integration scheme. This is generally not true for DEM simulations of ball mills
since the velocities remain relatively low with respect to the time step.

Stiffness As explained earlier, the interactions are calculated by a soft particle method, i.e. the
particles are allowed to overlap and the interaction forces are determined on the basis of this
overlap and the overlapping velocity.

The maximum overlap ∆xmax depends on the normal stiffness and is usually limited to a value
between 0.1 and 1% with respect to the particle diameter [Cleary, 2001b], thus requiring a normal
stiffness between 106 to 107 N/m in 2D and 104 to 106 in 3D according to [Cleary et al., 2003].
The normal stiffness is lower in 3D than in 2D since the mass of spherical particles is lower than
that of cylinders of unit length (in 2D), for a given maximum percentage of overlap [Cleary &
Sawley, 1999]. There is, however, no perfect value of maximum overlap; maybe 10% would
still lead to satisfying results even though the geometrical interaction seems to be significantly
altered in comparison to the reality where steel balls never overlap that much. In addition, the
desire to decrease the overlap is mitigated by the necessary reduction of the time step when the
stiffness increases. In simple words, a lower overlap implies a longer computation time. The
following formula gives the maximum overlap, which is reached during the normal collision of
two particles colliding at a relative velocity vr and having each a mass m (see appendix A.1.3)20:

∆x∗∗max = vr

√
m

2kn
(1.26)

If p∆x is the percentage of maximum overlap with respect to the particle diameter d, the
stiffness coefficient can be written as a function of this percentage:

kn =
v2

r m
d2 p2

∆x
(1.27)

The average relative velocity vr in this formula can for instance be determined by the diameter
of the ball mill. Supposing that a ball falls from a height equal to around half the diameter D of
the mill on the toe, its terminal velocity can be calculated by the conservation of energy:

1
2

mv2
r = mg

D
2

⇒ vr =
√

gD (1.28)

Besides this quite artificial evaluation of the normal stiffness, [Mishra & Rajamani, 1992]
determined its value by experiments. These experiments consisted in the measurement of the
strain waves in a 5 m long steel rod when a steel ball is dropped on it. Stiffness coefficients
of the order of 108 N/m were measured for metal-metal contact. Such coefficients would lead

20The normal dashpot was neglected in this formulation. On the one hand, its influence is usually rather small
in comparison to the spring. On the other hand, it is possible to obtain a rather practical worst case formula by not
considering the damping. In fact, the overlap is higher without than with damping, for a constant stiffness.
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to excessively small time steps and very long computation times. Moreover, pure metal-metal
impacts are less likely to occur in a ball mill which is grinding the feed material. For this reason,
they also performed a series of experiments with a layer of quartz particles between the colliding
bodies. In these experiments, the resulting stiffness rather had an order of magnitude equal to
3 · 105 N/m, probably due to the progressive brittle breakage of the quartz. Spring constants of
this order of magnitude are used in numerous studies and led to a good correlation with validation
data, i.a. [Cleary et al., 2003, Sawley, 2003, Kalala et al., 2005a, Kalala et al., 2005b, Rajamani
et al., 2000a].

Since the determination of the normal stiffness is more an art than a science, the tangential
stiffness kt is even harder to evaluate and only very few information could be found about its
value. Mainly [Mishra & Rajamani, 1992] and [Mishra, 2003a] recommend to chose a tangential
stiffness varying between 2/3 and 1 of the normal stiffness kn according to the Hertz-Mindlin
contact theory.

Damping coefficient The normal damping coefficient cn is commonly expressed in terms of
the coefficient of restitution εn representing the ratio of the relative speeds after and before an
impact of two bodies. As we explained earlier, the coefficient of restitution is no intrinsic mate-
rial property but rather a function of the impact velocity, the particle geometry and its material
properties. According to the proof in the appendix A.1.3, the following relation exists between
the normal21 damping coefficient and the normal coefficient of restitution for a linear spring-
slider-damper model:

cn =−2 ln(εn)

√
meff kn

π2 + ln2(εn)
with meff =

m1 m2

m1 +m2
(1.29)

where meff and kn are the effective mass of the two colliding particles (m1 and m2 being their
individual mass), and the normal stiffness coefficient, respectively.

Typical coefficients of restitution have a value between 0.3 and 0.8; the lower value is com-
monly used for ball-liner impacts and the upper value for ball-ball impacts [Cleary, 1998, Cleary,
2009, Datta et al., 1999, Kalala et al., 2005b, McBride & Powell, 2006, Mishra & Rajamani,
1992, Rajamani et al., 2000a]. [Mishra & Rajamani, 1992] determined the coefficient of resti-
tution by dropping balls from a fixed height on a thick metal plate and recording the rebound
heights. They found out that εn varies between 0.4 and 0.6 in this case. The ball-ball contact was
also studied with a pendulum device and it was concluded that εn = 0.97. As the power draw of a
tumbling mill is more sensitive to the coefficient of restitution and the coefficient of friction than
the stiffness of the material, these coefficients are a convenient way to calibrate the model based
on the experimental power draw [Kalala, 2008]. This sensitivity seems, however, to be relatively
small for the coefficient of restitution according to [Cleary, 1998]; the power draw of the mill
increases only by around 5% if the (normal) damping ratio is changed from 0.3 to 0.5. It is not
mentioned whether the tangential damping ratio was also changed but we suppose that Cleary

21Similar relations exist for the tangential damping coefficient in [Pournin et al., 2001].
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chose ct = cn. This observation can be explained by the fact that it matters little whether a single
or several collisions in a rapid sequence are required to dissipate any relative motion. The same
conclusion was drawn by [Sawley, 2003].

In a similar way to the tangential stiffness, only very few consistent strategies to determine the
tangential damping coefficient ct were found in the literature. In fact, the most direct hypothesis
is seemingly to suppose that ct = cn.

Coefficient of friction The coefficient of friction µ limits the total tangential force conforming
to Coulomb’s law of friction. As stated in [Kalala, 2008] and [Sawley, 2003], the power draw of
tumbling mills is more sensitive to the coefficient of friction than the stiffness and the damping
coefficient. Indeed, when the coefficient of friction decreases, the sliding of the charge increases
and the shoulder angle decreases. As less charge is lifted up, less torque, i.e. less power, has to
be supplied to the mill. In the same way as for the coefficient of restitution, the coefficient of
friction spans a wide range in the literature even though the same materials were supposed to be
modeled, i.e. rocks and steel balls: 0.1 in [Mishra & Rajamani, 1992], 0.2 to 0.4 in [Dong &
Moys, 2002, Kalala, 2008], 0.5 in [Datta et al., 1999, Rajamani et al., 2000a], 0.4 in [Djordjevic,
2005], 0.5 or 0.75 in [Cleary, 1998, Cleary, 2009]. This explains the necessity of the following
subject, i.e. validation.

Validation

Previously, we noticed that it is not obvious which parameters have to be used in the model to
accurately simulate the real material. Two dependent reasons seems to be at the origin of this
parameter variability. On the one hand, the parameters seem to have no significant influence on
the results, which can be validated, like the power draw. On the other hand, only very few results
can be validated because of the very harsh milling environment. Below, we will briefly describe
the most used validation parameters of the discrete element method in the field of tumbling mill
simulations.

Power draw In practice, the power draw by the mill can be directly determined by the torque
applied to the mill shell measured by a torque-meter. In DEM simulations, this value is calculated
by summing the contribution of the individual torques created by the collisions of the ball charge
with the liner. An additional way of computing the power by the discrete element method is to
integrate the energy dissipation for each collision and to divide it by the simulation time. This
way of calculating the power is, however, much more difficult and less accurate since it is based
of many small contributions (numerical problem) [Cleary, 2001a]. According to [Cleary et al.,
2003, Datta et al., 1999, Makokha et al., 2007, Mishra, 2003b, Rajamani et al., 2000a, Rajamani
et al., 2014, Sawley, 2003], the discrete element method is able to predict the power draw of the
mill relatively precisely but its validity depends on the accuracy of the real power measurements.
In fact, the power used by real mills is not entirely transferred to the mill shell due to mechanical
looses in the drive or bearings.
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Moreover, quantitatively good power predictions do not necessarily imply that the DEM
model delivers reliable results in terms of other parameters, like the charge motion or the contact
forces [Moys et al., 2000] because of its synthetic or global character. For this reason, further
validation parameters were introduced.

Charge motion The charge motion in a ball mill can be examined mainly by three methods.
The first method consists in taking photographs of the mill along the axial direction, where
one end wall has been replaced by a transparent PMMA (Plexiglas) or tempered glass window
[Cleary et al., 2003, Van Nierop et al., 2001, Dong & Moys, 2002, Prignon & Lepoint, 2001,
Sawley, 2003] (figure 1.14). As expected such a study is usually only carried out in a laboratory
ball mill with a reduced diameter because of the reduced cost. A side effect of the smaller mill
size is the lower impact and abrasion energy, which makes it possible to not have to change the
window after each test since the window gets progressively opaque.

(a) Shutter speed equal to 1/12 s. (b) Shutter speed equal to 1/50 s.

Figure 1.14: Photographic validation data of the charge motion in a laboratory mill and influence of the
shutter speed [Prignon & Lepoint, 2001].

Important parameters of this study are the finite focal length of the camera, its shutter speed
(exposure time) and the finite depth-of-field of the images. Due to the finite focal length, the
pictures show a noticeable amount of perspective. In computer geometry visualizations, this
perspective is usually created by an isometric projection. Thus, it is important to compare the
pictures with post-processed simulation data projected in a similar way, e.g. not by using a
parallel projection with a focal point at infinity. The finite shutter speed allows the experimenter
either to observe the particle at their instantaneous position or their pathlines, i.e. their trajectories
during the time over which the film or the sensor is exposed (figure 1.14). Finally, the finite depth-
of-field of the images is a consequence of the camera’s focus, i.e. the balls just in front of the
window can be clearly distinguished on the pictures while the balls, which are further away, are
blurred.
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More recent methods are x-ray filming [Govender, 2005] and Positron Emission Particle
Tracking (PEPT), summarized in [Rajamani et al., 2014] and [Weerasekara et al., 2013]. X-
ray filming consists in tracking the 3D trajectories of the charge particles by generating two
orthogonal x-ray images and applying an edge detection algorithm, achieving a 0.15 mm accurate
reconstruction at 100 frames per second. X-ray filming has been extended by Position Particle
Emission Tracking (PEPT). This technique makes it possible to track individual particles by
labeling them with a radio active tracer decaying with the emission of positrons.

Force on the liner To complete the energetic and kinematic validation, [Moys et al., 2000]
introduced the dynamic validation by instrumenting a lifter with strain gauges measuring the
normal and tangential forces applied to this lifter in a 0.55 m diameter ball mill (figure 1.15a).
The 2D behavior of the charge motion was studied because of the large 9.5 mm average diameter
of the balls with respect to the length of the mill, which was only equal to 23 mm. This study
is explained in more detail by [Kalala, 2008]. Despite the pronounced standard deviation of
the signal a relatively good correlation between the real and the simulated forces was achieved
(figure 1.15b).

(a) Instrumented lifter [Moys et al., 2000]. (b) Numerical and experimental results [Kalala,
2008].

Figure 1.15: Illustration of the dynamic validation based on measuring the force exerted on an instru-
mented lifter.
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1.3 Wear Modeling

In a general sense, wear is the progressive removal of material from solid surfaces due to their
mechanical interaction. It is a complex phenomenon and its physical mechanisms are still not
completely understood. [Meng & Ludema, 1995] surveyed 5466 papers in the Wear journal be-
tween 1957 and 1992 and the Wear of Materials conferences from 1977 to 1991; their conclusion
was that no single predictive equation could be found for general use. Nevertheless, several types
of wear and the corresponding mathematical models have been established by modern research.

In the field of ball mill liner wear, it is possible to classify wear models into two categories:

• impact (or normal) collision wear resulting from the normal force created during the col-
lision of high-speed cataracting/cascading balls on the liner surface. This type of wear is
supposed to occur preferentially in the toe region where the lifters enter again into the ball
charge.

• tangential collision wear resulting from the shear forces created by the sliding motion of
the balls subjected to gravity and by the liner profile which lifts them from the toe to the
shoulder.

Tangential collision wear could also be called abrasion wear, which is probably easier to
understand but misleading. By intention, we did therefore not use this term. More precisely,
anticipating what will be explained later on, impact wear can for instance be caused by the
abrasion wear mechanism due to microscopic sliding of the colliding surfaces in the presence
of abrasive hard particles. In this case, the distinction between impact and abrasion wear is
incoherent and a classification according to the impact direction seems to be more consistent
while it remains, however, an imperfect idealization.

In the following sections, we will take a closer look at different wear models used to simulate
the wear of liners. First, the major wear mechanisms will be explained. Then, some derived
models from these mechanisms, which have already been used in the context of the mill liner
wear, will be presented.

1.3.1 Major wear mechanisms

The classification of wear according to different mechanisms is complex because of their interde-
pendent nature. Nevertheless, four major mechanisms of wear, i.e. adhesion, abrasion, corrosion
and surface fatigue wear, were established in [Archard, 1980, Rabinowicz, 1995]. These four
mechanisms will be explained hereinafter in the context of metal wear.
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Adhesive wear

Adhesive wear is the most common form of wear and occurs whenever two solid surfaces slide
over each other. Its origin are adhesive forces created when atoms come into intimate contact.
Such a contact is created when two surfaces are brought together. As real surfaces are micro-
scopically rough, atom-to-atom contact appears only locally in regions called junctions. If the
adhesive forces at junctions are sufficiently strong, they are able to break the material through a
surface inside one of the contacting solids instead of through the previous interface of the con-
tact during their relative motion. In consequence, when the surfaces are separated again, a small
fragment is removed from one of the original surfaces, i.e. an adhesive wear particle is created
(figure 1.16).

Solid 1

Solid 2

Contact interface

Wear fragment

Figure 1.16: Creation of an adhesive wear fragment at a junction since the material breaks inside of the
solid 1 instead of along the interface of the contact.

This phenomenon might seem to be unlikely, which explains why adhesive wear is a very
slow process. Further theories were developed to explain why breakage inside of the material
would occur. For instance, the IBM fatigue theory assumes that the junctions are stressed by
fatigue during normal or sliding contact, which ultimately leads to the breakage of surface asper-
ities by defect propagation.

Adhesive wear can be quantitatively described by the Archard wear equation [Archard, 1953,
Archard, 1980]. Sliding wear experiments revealed that the volume V , which is worn away when
two bodies slide over each other, depends on the normal load Fn, the sliding distance xs and
the penetration hardness of the material H. The penetration hardness represents the highest
stress (in Pa or MPa) that a material surface can withstand without plastic yielding. In practice,
it is generally determined by the Vickers hardness test. The Archard equation combines these
different factors as follows:

V = Kadh
Fn xs

H
(1.30)

This equation can be determined by means of a few hypotheses in order to find the meaning
behind the wear constant Kadh. As mentioned earlier, real surfaces are rough. Hence, the real
area of contact Ar, where surface asperities are actually in contact, is lower than the apparent,
i.e. macroscopic, area of contact Aa. By supposing that the real area of contact is so small that
the interfacial asperities yield due to the normal force, a minimum value of this contact area is
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suggested by the following formula:

Ar =
Fn

H
(1.31)

Assuming also that the contact between surface asperities leads to circular junctions of radius
a, the total number of junctions at any instant is the number n (figure 1.17):

Ar = n π a2 ⇒ n =
Ar

π a2 =
Fn

π H a2 (1.32)

Solid 1

Solid 2
2a

Contact surface

Fragment

Figure 1.17: Idealized microscopic asperity contact representation with a circular contact surface of radius
a and a potential hemispherical adhesive fragment production. The circular contact surface has been
represented two times in this figure: once between the two surfaces (only a line is visible) and once
projected to show its circular shape.

It seems reasonable that each junction is broken after a sliding distance 2a. Therefore, the
total number of broken junctions along a sliding distance xs is N

N =
n xs

2a
=

Fn xs

2π a3 H
(1.33)

As explained earlier, breakage may happen at the interface of a contact or along a surface
inside one of the solids, thus producing an adhesive wear fragment. The probability of creating a
fragment is denoted by k and the shape of the fragment is supposed to be a hemisphere of radius
a. In consequence, the total volume lost due to adhesive wear for a sliding distance of solids
subjected to a normal force Fn is V :

V = k N
2
3

π a3 (1.34)

=
k Fn xs

3 H
(1.35)
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The shape factor 3 and the fragment creation probability k are commonly combined in the
non-dimensional constant Kadh = k/3, called the wear constant. For adhesive wear of unlubri-
cated low carbon steel, the wear coefficient has in general a value between 10−4 and 10−3.

The Archard equation was explicitly used in [McBride & Powell, 2006, Glover & De Beer,
1997, Qiu et al., 2001, Radziszewski & Tarasiewicz, 1993a, Radziszewski & Tarasiewicz, 1993b]
to predict the liner wear in tumbling mills.

Abrasive wear

Abrasive wear occurs, when a hard solid body slides against a softer solid body or when two
bodies of similar hardness slide against each other in the presence of harder particles in the
contact region. The harder body or the particles plow grooves in the softer body. Wear fragments
are eventually created due to the degradation of the surface integrity.

A mathematical model can be derived by supposing that the hard asperities or particles have
a conical form. The penetration of this abrasive grain into the softer surface can indirectly be
expressed by a, the radius of the cone at the surface of the softer contacting body (figure 1.18):

∆Fn = H ∆A = H πa2 (1.36)

θ

xs

Volume removed

Hard grain

2a

Soft body

Figure 1.18: Simplified abrasive wear model consisting of a conical hard grain or surface asperity pene-
trating the surface of a softer body and removing material from this body over a sliding distance xs.

The variables ∆Fn and H denote the normal force exerted on the individual asperity and the
penetration hardness of the softer material. When the cone moves a distance xs, a volume ∆V
will be removed:

∆V = a2 tan(θ) xs =
tan(θ) ∆Fn xs

π H
(1.37)

Adding all the contributions from the different asperities or grains, and supposing that tan(θ)
is the weighted average over all the cones, the total volume loss V of the soft body for a sliding



Wear Modeling 36

distance xs is determined by the following equation, which will be called the abrasion wear
equation:

V =
tan(θ) Fn xs

π H
(1.38)

Finally, the volume loss can also be written in an similar form as the Archard wear equation,
which will be called the general abrasion wear equation:

V = Kabr
Fn xs

H
(1.39)

The abrasion wear constant Kabr = tan(θ)/π has a similar or even slightly higher order of
magnitude in the two-body case, i.e. hard and soft body contact, than the adhesive wear constant
Kadh: Kabr = 6 · 10−3 to 6 · 10−2. In the presence of hard particles between two soft bodies,
the constant is about an order of magnitude smaller, i.e. Kabr = 3 · 10−4 to 3 · 10−3, probably
because the abrasive grains spend some time rolling between the surfaces instead of cutting them
[Rabinowicz, 1995]; these values are very similar to those given for Kadh previously.

Due to the similarity with the Archard equation, the general abrasion wear model was im-
plicitly used in all the studies about liner wear simulation, in which the Archard equation was
used. The described mechanism of abrasive wear is, however, explicitly the basis of other models
like Radziszewki’s abrasion energy model [Radziszewski & Tarasiewicz, 1993a, Radziszewski
& Tarasiewicz, 1993b, Radziszewski, 1997, Radziszewski et al., 2005], Rezaeizadeh’s pressure
model [Rezaeizadeh et al., 2010a], Powell’s wear model with diameter [Powell et al., 2011] or
even Finnie’s law [Finnie, 1972]. These models will be briefly explained in the section about
derived wear models.

Corrosion wear

Corrosion wear is a third wear mechanism, which can be seen as an amplifying factor of the
two previous wear mechanisms, i.e. adhesion and abrasion wear. In fact, if the contacting sur-
faces interact chemically with their environment, for instance with the slurry in a tumbling mill,
these surfaces tend to form a film on top of themselves, like rust for oxidizing steels. Oxides are
usually harder and more brittle than the surfaces they are covering. In consequence, when the
film reaches a critical thickness, it can be removed as a result of the sliding that takes place in
the contact region. The worn volume might not only be increased by the brittleness of the layer,
which allows it to flake off completely at one time, but in addition, the hard particles might act
as abrasive grains. Corrosion is a complex phenomenon because it combines chemical kinetics
with mechanical interactions. For this reason, it is currently not possible to take corrosion ex-
plicitly into account in the liner wear model. Notice that corrosion might, however, implicitly
be taken into account by the wear constants Kadh or Kabr, which contain in a certain way all the
uncertainties related to wear.
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Surface fatigue

Surface fatigue at the microscopic level is very similar to macroscopic fatigue which generally
results in the failure of the structure by breakage. Due to the repeated loading of a surface,
inherent material discontinuities (dislocation) will increase in size and form cracks. These cracks
will eventually result in the breakup of the surface with the formation of large fragments. Surface
fatigue has been extensively studied in the field of rolling contact elements, like ball-bearings.
In a broader perspective, surface fatigue might also be associated to a more general concept of
wear modeling, i.e. fracture mechanics. Slow surface wear can be due to surface fatigue, while
fast wear (impact) might arise from surface fracture.

In conclusion, it is interesting to notice that this presentation followed the general trend of
wear modeling in the literature as pointed out in the extensive review by [Meng & Ludema,
1995]: wear modeling started with empirical relations, then contact-mechanics-based equations
were introduced and finally wear models based on material failure mechanisms appeared.

1.3.2 Derived wear models in the context of liner wear

While some of the previous models were directly included in mill liner wear simulations, like
the Archard equation or the similar general abrasion wear equation, other formulations of the
previous mechanisms have been used to model the liner wear in grinding mills. In the following
lines, these models will be categorized according to the collision direction, as explained earlier,
i.e. impact wear, tangential collision wear and combined wear models. Unfortunately, some of
the following models were not always clearly presented in the literature. We tried, however, to
capture their essence as best as possible.

Impact wear models

Rabinowicz’s general description of impact wear Impact wear occurs when two surfaces
collide in the normal direction at high speed. The literature on impact wear is divided as to
the cause of this wear process. First, the adhesive wear mechanism can be considered due to
microscopic sliding between the surfaces during their collision. [Rabinowicz, 1995] suggests
therefore the following mathematical model:

V = K
I n
H

(1.40)

where I is the energy per impact and n the total number of impacts. The wear constant K depends
on the proportion of the total impact energy expended in interfacial slip. The law was derived
from the Archard equation in a similar way than Finnie’s erosion law will be derived from the
general abrasion wear equation in one of the following sections. This explanation clearly shows
that impact wear is not a wear mechanism by itself, like adhesion, abrasion, corrosion or surface
fatigue, but rather a way in which the constituents leading wear can be applied. This explanation
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also emphasizes why we preferred to use the terms impact and tangential collision wear instead of
impact and abrasion wear. Besides adhesion wear, abrasion might also be the cause of wear due
to impact if hard particles are present in the interaction. In his impact experiments, Rabinowicz
concluded that no correlation exists between the material loss and the hardness of the material;
the hardness could thus be removed from the previous equation for normal impacts. Very brittle
materials, which are usually relatively hard, have, however, high wear rates.

Impact wear can thus also be caused by surface fatigue which is directly related to surface
fracture. In fact, if the material is rather ductile and if the impact energy is sufficiently low, the
cracks simply propagate slowly (fatigue), like described in classical fracture mechanics [Zehnder,
2012]. If, however, the material is brittle and if the impact energy is large, rapid material removal
occurs. Therefore, it seems reasonable to suppose that impact wear is proportional to the kinetic
energy, more precisely:

V ∝ m v2
n (1.41)

where V , m and vn are the volume loss due to impact wear, the mass of the ball and the relative
normal velocity at the moment of the collision, respectively.

Two impact wear models will be briefly explained hereinafter. As the corresponding articles
were not available, the following description is only based on third party information found in
[Arekar, 2004] and [Kalala, 2008].

Sheldon-Kanhere impact wear model Sheldon and Kanhere studied the impingement erosion
process of large single particles on an aluminum surface and derived a mathematical model of
the volume loss due to wear [Sheldon & Kanhere, 1972]. The volume of material V removed by
the wear mechanism is computed by the empirical relation:

V = K d3 v3
(

ρ

H

)3/2
(1.42)

where K, d, v, ρ and H are the wear constant, the particle diameter, the impact velocity (direction
not specified), the material density of the ball and the hardness (not specified of which body,
probably the aluminum surface), respectively. Arekar criticizes the exponent 3 of the velocity
based on Finnie’s law which has only an exponent 2. This critique can neither be affirmed nor
denied because of the lack of information.

Wellinger-Breckel impact wear model Wellinger and Breckel investigated the relationship
between physical values and wear of metallic materials tested by repetitive impacts [Wellinger
& Breckel, 1969]. Their experiments showed that the volume loss V due to impact wear is
proportional to vn, where v is the impact velocity (its direction has not been specified) and where
n is an exponent between 1.5 and 2.2.
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Tangential collision wear models

Radziszewki’s abrasion energy model Based on experimental studies using an abrasion wheel
[Radziszewski et al., 2005], Radziszewki develops the following wear equation to quantify the
volume loss due to abrasion:

V =
tan(θ) µ Fn xs

π H
(1.43)

This equation can be rewritten in terms of the abrasion energy:

V =
tan(θ) Eabr

π H
(1.44)

In the first equation, the coefficient of friction µ seems, however, to come out of nowhere if
this equation is based on the abrasion wear model derived previously (equation 1.38). Hence,
Radziszewki’s abrasion energy model might be incoherent with respect to the general wear equa-
tion in theory. In practice, his model might lead to more accurate data, though; unfortunately no
validation results were provided.

To reconcile this model with the general abrasion wear equation (equation 1.39), it is more
meaningful to introduce the tangential force Ft in the abrasion wear equation by using Coulomb’s
law of friction, Ft = µ Fn, where µ is the coefficient of friction:

V =
tan(θ) µ Fn xs

π µ H
=

tan(θ) Ft xs

π µ H
=

tan(θ) Eabr

π µ H
(1.45)

It might be difficult to use this equation as a predictive model, i.e. obtaining good quantitative
estimates of wear by replacing its variables by their values, because the determination of these
values is complex. To reduce the complexity, the individual variables can again be combined in
a non-dimensional constant22 K∗abr = tan(θ)/(π µ), obtained in practice by the calibration of the
model, which leads to the abrasion energy equation:

V = K∗abr
Eabr

H
(1.46)

This model is equivalent to Radziszewki’s model, if the abrasion wear constant is defined
differently: K∗∗abr = tan(θ) µ/π .

Rezaeizadeh’s pressure model Rezaeizadeh’s model is a direct particularization of the general
abrasion wear equation [Rezaeizadeh et al., 2010b]. In fact, the height ∆h lost due to wear during
a time ∆t can be written in terms of the sliding velocity vs and the average pressure on the surface
of the liner pave:

∆h
∆t

= Kabr
pavg vs

H
(1.47)

22This variable is called a constant but it might actually change as a function of the material, the normal force,
the sliding velocity and so on.



Wear Modeling 40

Powell’s wear model with diameter Powell introduces a wear model based on the abrasion
wear mechanism but takes explicitly into account the ball diameter [Powell et al., 2011]. In fact,
he supposes that the volume loss V due to wear from a ball-liner contact can be approximated
by a rectangular cross-section having the dimensions d h, which is extruded along the sliding
distance23 xs = vs t (figure 1.19):

V = d vs t h (1.48)

Fn

xs

d

h

Figure 1.19: Powell’s wear model of a ball having a diameter d sliding along a distance xs and penetrating
the surface by a (strongly amplified) distance h due to the normal force Fn.

The variables d, vs, t and h denote the diameter of the ball, the sliding velocity, the sliding
time and the penetration depth h of the ball into the liner surface, which is implicitly supposed to
be softer than the ball. Moreover, the penetration depths is assumed to be proportional to Fn and
inversely proportional to the hardness H of the liner. Hence, the volume loss for one ball-liner
contact is given by:

V = K
d Fn vs t

H
(1.49)

This equation is similar to the general abrasion wear equation, except for the diameter d,
which turns K into a dimensional wear constant. This model can thus be criticized because it
implies that a ball with a greater diameter produces a greater volume loss for the same normal
force, sliding distance and wear constant. This is not necessarily true because this model takes not
into account that the penetration depth decreases with the diameter since the force is distributed
over a higher surface area24, e.g. it is easier to stick a pointed object (small diameter) in the
ground than a blunted one (great diameter). For this reason, Powell’s model has to be used with
precaution.

23It is important to notice that we use the sliding velocity and not the total velocity in the following equation. In
the related paper, Powell explains that he did not account for the angle of impact in his simulations, i.e. he did not
project the relative velocity into the sliding plane. It is unclear why he used a different technique in the simulations
than in his explanation of the wear model.

24This characteristic is exactly what makes disappear the radius a in the general abrasion wear equation.
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Finnie’s law Finnie’s law was developed to model erosion wear of ductile metals struck at
grazing angle by hard abrasive grains [Finnie, 1972]. Erosion is the wear process related to
surfaces impinged by solid particles carried in a fluid, like in sand blasting. It might thus be
surprising to find out that this model has been used to model ball mill liner wear in [Cleary,
1998]. Nevertheless, Finnie’s law is essentially nothing else than an alternative form of the
abrasive wear equation (equation 1.38), which might be more convenient to implement in some
cases. Before showing the connection between both theories, the wear model will briefly be
presented from Finnie’s perspective.

Finnie calculated the material removal by solving the equations of motion of a hard particle
when it removes the surface material of a ductile solid in a way similar to metal cutting (fig-
ure 1.20). The resulting volume V removed from a surface with hardness H by a mass M of
eroding particles having an individual mass m, inertia moment I, average radius r and a velocity
v is equal to the following quantity:

V =
c M v2

4 H
(

1+ m r2

I

) (cos(α)2−
(

ẋt

v

)2
)

(1.50)

where α is the collision angle and c the fraction of particles cutting in an idealized manner.

Figure 1.20: Idealized representation of an abrasive particle striking a soft surface at a collision angle α

and removing its material [Finnie, 1972].

The horizontal velocity of the particle’s tip ẋt , when the cutting ceases, can either be zero
(i.e if tan(α) > 1/3, empirical result) or the particle may leave the surface while its tip is still
moving forward. Finnie’s law can therefore take the following simplified form, supposing that
only one particle impacts the surface [Finnie et al., 1992]:

V = K f (α)
m v2

H
with f (α) =

{
1/3 cos(α)2 , if tan(α)> 1/3

sin(2α)−3sin(α)2 , otherwise.
(1.51)

The non-dimensional constant K is the wear constant which contains the shape factors and
the ideal cutting probability c, while f represents the angular dependence in the collision angle
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α . The form of this equation already resembles the abrasion wear equation (equation 1.38). More
precisely, Finnie’s law can be derived from this equation:

V =
tan(θ) Fn xs

π H
=

tan(θ) Ft xs

π µ H
=

tan(θ) Eabr

π µ H
(1.52)

where the normal force has again been replaced by the tangential force estimated from Coulomb’s
law Ft = µ Fn in order to express the lost volume as a function of the abrasion energy Eabr = Ft xs.
If we suppose that this energy is a fraction w (dependent on the impact angle) of the kinetic
energy 1/2 mv2 of a particle, which collides on the surface, the volume loss due to abrasion can
be rewritten as follows:

V =
tan(θ) w(α) m v2

π µ H
= K w(α)

m v2

H
(1.53)

Eventually, we found again Finnie’s law starting from the abrasive wear equation. The wear
constant K might have a slightly different definition but it remains non-dimensional. In any case,
this constant has to be directly determined by experimental data and hence, it is not calculated
by combining the components of its definition, which are highly variable themselves (e.g. coef-
ficient of friction) or very complex to measure in practice (e.g. ideal cutting probability or shape
factors).

Combined wear models

Radziszewki-Tarasiewski’s model A surprising combination of wear models was chosen in
[Radziszewski & Tarasiewicz, 1993a, Radziszewski & Tarasiewicz, 1993b, Radziszewski, 1997],
where the adhesive wear equation (equation 1.35) and the abrasion wear equation (equation 1.38)
were explicitly added to give the total volume loss. Instead of combining these equations in one
single equation and calibrating a single wear constant due to their similar form, the adhesion
probability P and the cutting angle θ were separately determined. The separation seems to stem
from the assumption that different wear mechanisms are active in different parts of the mill.

Kalala’s wear model Based on the previous wear models, Kalala concludes that adhesion,
abrasion and impact are the main types of wear in ball mills [Kalala, 2008]. Adhesion and
abrasion wear can both be predicted by the Archard wear equation, where the constant Kadh/abr
represents the wear constant which takes into account the contributions from adhesion and abra-
sion wear:

V = Kadh/abr
Fn xs

H
(1.54)

To further simplify the model, the hardness and the wear coefficient are combined in the wear
rate coefficient W , such that the volume loss due to adhesion and abrasion can be written:

V =
K
H

Fn xs =W Eadh/abr (1.55)
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The coefficient of friction was omitted in the expression of the adhesion/abrasion energy Eadh/abr
as it is anyways multiplied by a weighting factor, i.e. W .

The previous equation shows that there is no wear, if there is no sliding motion between
the grinding media and the mill liner. In the literature we found, however, that wear can occur
without tangential relative motion, i.e. by impact. Sheldon-Kanhere’s and Wellinger-Breckel’s
impact wear models therefore lead to the definition of an impact term in the wear equation, which
is equal to25:

V =
K
H

Eimp with Eimp =
m v2

2
(1.56)

The exponent 2 of the velocity was chose as it is related to the kinetic energy, despite the fact
that the exponent 3 was found in [Wellinger & Breckel, 1969]. It is unclear whether the variable
v represents the absolute value of the velocity or only the relative normal impact velocity. This
later choice would be more rigorous as the macroscopic sliding action should not be taken into
account in the impact term; in fact, it is already contained in the tangential collision term, i.e. the
abrasion/adhesion component. The impact model and the adhesion/abrasion model are finally
combined by taking the sum of the different wear contributions:

V =W (aadh/abr Eadh/abr +aimp Eimp) (1.57)

It is not clear why Kalala uses three different material factors instead of two; maybe his intention
is to normalize aadh/abr and aimp, which are weighting factors associated to the different wear
mechanisms.

Cleary’s four component wear model Cleary’s four component wear model is finally the
most general model of wear prediction [Cleary, 2001c, Cleary et al., 2009]. Impact and abrasion
wear will each be determined by two components, which are unfortunately not described by
mathematical formulas in the article; their meaning can, however, be deduced approximately
from the description.

Impact wear is determined from the following two contributions:

• the normal work, i.e. the energy dissipated in the normal direction between the particles
and the liner. The normal work can be calculated by integrating the normal component
Fn of the force provided by the spring-slider-damper DEM contact law multiplied by the
normal relative velocity vn over time; it is the energy dissipated by the normal damper.

• the excess kinetic energy of impact for collisions above a threshold collision velocity, e.g.
0.1 m/s. Low-speed impacts, which are high in number, only deform the liner surface
elastically, while high-speed impacts lead to significant liner damage due to the quadratic
dependence of the kinetic energy in the velocity.

25In the reference, the variable K denotes the wear constant for abrasion/adhesion or impact wear. In both cases,
the values of the variables is probably not the same, which explains the introduction of the variables aadh/abr and aimp
hereinafter.
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Tangential wear is calculated on the basis of:

• the shear work, i.e. the energy dissipated along the tangential direction due to sliding
between the particles and the liner. The shear work is determined by integrating the tan-
gential component Ft of the force provided by the spring-slider-damper DEM contact law
multiplied by the tangential velocity vt over time. This way, the model includes the viscous
tangential damping as well as the sliding dissipation, when the Coulomb friction limit has
been exceeded.

• the kinetic energy of collision with a strong angular dependence; this measure of abrasion
wear is similar to Finnie’s law, which explains the angular dependence; in fact, shallow
oblique collisions produce more abrasion wear than normal or orthogonal impacts with
respect to the liner surface.

It is interesting to notice that the individual components of each wear type (normal impact
wear/tangential wear) try to account for similar mechanisms in rather different ways: numer-
ical contact mechanics (spring-slider-damper law) and experimental wear models (Wellinger-
Breckel/Archard). Notice that the second way is the one used by Kalala [Kalala, 2008], who
replaced Finnie’s law by the almost equivalent Archard equation26. The different components of
the wear model are then each multiplied by some weighting factor, i.e. the wear constant of each
component, and added to obtain the total volume loss due to wear.

26Even though the Archard equation is associated to the adhesion wear mechanism, its form is identical to the
general abrasion wear equation, except for the wear constant, which is determined by experimental calibration in
any case. Moreover, Finnie’s law can be deduced partially from the general abrasion wear equation. This explains,
why we suppose that Finnie’s law is almost equivalent to the Archard equation.
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1.4 Ball Mill Liner Wear Modeling

The efficiency of ball mill liners progressively declines over time due to wear. On the one hand,
the thickness of the liner decreases, which reduces the protection of the mill shell. On the other
hand, the specific liner profile changes and it loses its capability to lift the charge to a specific
height, i.e. the throughput of the mill drops due to the reduced energy available for breakage.
In consequence, wear defines the lifespan of the liner and it thus has a significant economical
impact, not only because of the direct relining cost and the progressive production losses but also
due to the downtime of the mill during relining. At production outputs of around 300 tons/hour,
it is easily understandable that the downtime has to be reduced as much as possible.

In ball mills, liner wear arises from the interactions between the balls, the feed material and
the liner, which implies that it is necessary to model the charge motion inside of the mill, for
instance by the discrete element method. Such a model should make it possible to predict the
kinematic, dynamic and energetic behavior of the ball charge, and specifically in the context of
wear, the normal force, the impact velocity, the sliding distance and so on.

To estimate the liner wear, material wear models are the connection between the mechanical
data obtained from ball charge simulations, and the liner profile transformation. This transforma-
tion can be divided into two stages. First, the local loss of material has to be determined on the
basis of the charge motion. Once the lost volume of material is known, the liner profile geometry
is updated.

The goal of this section is therefore to review the charge motion simulation, the wear model-
ing and geometry modification strategies suitable for predicting the liner wear evolution in ball
mills. These three elements will be explained in a general way. Afterwards, particular principles
will be highlighted in the context of the major case studies related to liner wear simulations found
in the literature.

Previous reviews of liner wear simulations can be found in [Arekar, 2004], [Kalala, 2008]
and more recently in [Sawley, 2014].

1.4.1 Charge motion simulation

Different models can be used to predict the charge motion in tumbling mills. In order to transform
this motion into a volume loss due to wear, it is necessary to extract some data of the charge
motion model. For this reason, this section explains the charge motion models and the data
extraction strategies necessary to numerically simulate the liner wear evolution.

Charge motion models

Wear models express the relation between the volume loss of material due to wear and the kine-
matic, dynamics and energetic characteristics of the charge motion. For instance, if the impact



Ball Mill Liner Wear Modeling 46

velocity between a ball and a liner is higher, the wear is expected to be higher, too. Hence, it is
necessary to extract sufficiently accurate interaction data between the liner and the balls from a
charge motion model.

In the literature, mainly three charge motion models in relation to wear modeling have been
developed. These models can be sorted by increasing complexity, computation time and accu-
racy:

• a simplified ball charge model: this method is based on empirical relations, the analytic
calculation of characteristics of the ball charge, like the point of flight and the toe stabil-
ity, and a discretization of space to assign the ball positions [Arekar, 2004, Radziszewski &
Tarasiewicz, 1993a, Radziszewski & Tarasiewicz, 1993b, Radziszewski, 1997, Radziszewski
& Morrell, 1998]. It is unclear how the balls move from one position to the next on the
basis of these articles. Despite its expected low computation time, further investigations
of the method are omitted in this review due to the limited physical meaning of its results,
e.g. represented in the figure 1.21.

Figure 1.21: Ball charge motion obtained by the simplified ball charge model in [Radziszewski & Morrell,
1998].

• 2D DEM simulations: discrete element simulations are far ahead of the previous method
in terms of accuracy because the individual motion of each ball, the interactions between
the balls themselves as well as the interactions between the balls and the liner are modeled.
2D DEM simulations with circular discs have the advantage to limit the computation time
and post-processing data but are unable to model the increase in shear strength of the
charge due to the axial effect [Cleary, 2001c]; this effect has been explained earlier in
section 1.2.2. Moreover, 2D liners, with a an axial height variation, and the influence of
the end walls of the mill can not be modeled by 2D DEM simulations. This type of charge
motion model was used in [Cleary, 1998, Glover & De Beer, 1997, Kalala, 2008] to predict
the liner wear.
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• 3D DEM simulations: the shortcomings of the previous methods are solved by the 3D dis-
crete element method which seems currently to be the most accurate method to determine
the charge motion for wear simulation [Cleary, 2001c, Cleary et al., 2009, McBride &
Powell, 2006, Qiu et al., 2001, Rezaeizadeh et al., 2010a, Powell et al., 2011]. To limit the
CPU time and the size of the post-processing data, liner wear simulations might be based
only on the charge motion in a short axially periodic slice of the mill.

The 3D discrete element method eventually seems to be the most promising charge motion
model. Nevertheless, the computation time is significantly longer than the simulated time, e.g. 1
second of simulated time requires on average 1 hour of CPU time (rough estimation). For this
reason, it is simply impossible to simulate the entire collision history between the balls and the
liner in real time. The goal is therefore to determine kinematic, dynamic and energetic average
data from several simulated rotations of the mill which should be sufficiently representative
of the long-term stress27 on the liner. As ball mill DEM simulations generally start with having
their charge at rest, around two rotations are usually necessary to reach the pseudo steady state28.
Once this state has been reached, the charge motion data is sampled over around two additional
rotations.

Data extraction

DEM simulations produce large amounts of data as the motion of each particle is tracked. The
typical size of the post-processing data is measured in gigabytes. Data extraction techniques
have therefore to be well though out. Essentially two strategies were used in previous liner wear
studies: the explicit and the synthesized data extraction.

On the one hand, the data related to each collision with the liner, like the impact force or the
sliding distance, as well as the contact position29 on the liner could be stored at each time step
or at a reduced sampling frequency. This technique would allow a very flexible post-processing
since the collision data is explicitly stored and it could thus be applied to various wear models
during the post-processing. The unwanted side-effect is obviously the large amount of informa-
tion which has to be stored, e.g. 40,000 collisions in 0.5 s [McBride & Powell, 2006].

On the other hand, this information could be synthesized during the simulation. The base
element of the data synthesis is a binning structure. More precisely, the lifters are discretized
into geometrical regions, called bins. In DEM simulations, the definition of bins is a natural
consequence of the surface mesh used to represent the geometry of the liner, i.e. the elements
of the mesh could be the bins. These facets are, however, not required to be bins. For instance,
the liner could be approximated by line segments in 2D DEM simulation in order to reduce
the computational cost of the contact detection. Each segment is then discretized into bins to

27The word stress denotes here not only the mechanical stress representing a force to area ratio, but any kind of
mechanical factor leading to wear.

28This state is not simply called steady state since the balls are still moving, i.e. it is a pseudo steady state.
29The contact position is necessary to map the collision data onto the liner geometry afterwards.
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extract the data for wear predictions (figure 1.22). These bins are used to accumulate or average
the local collision data, like the impact velocity or the normal force, during the simulation. By
accumulating for instance the local impact energy or the relative volume loss due to wear, which
are additive quantities, only one value per quantity and per bin is necessary to be stored at the
end of the simulation. This strategy thus reduces significantly the amount of stored information
in contrast to the first strategy where the information is stored for each or almost each time step.
Nevertheless, the post-processing becomes less flexible as only the synthesized, i.e. accumulated
or averaged, data is available at the end of the simulation.

Figure 1.22: Discretized lifters into line segments which are themselves discretized into bins [Cleary,
2001c].

The binning structure is necessary to synthesize the collision data during the DEM simula-
tion. It will, however, also be used for the post-processing of the data extracted by the explicit
strategy. More precisely, the modification of the liner geometry due to wear, implies the dis-
cretization of the liner surface in any case since a mesh seems to be the simplest geometrical
representation of the liner, which can be modified. To take advantage of this discretization and
the periodic positioning of identical lifters on the circumference of the mill, the binning struc-
ture should be symmetric30, too. The statistical representativity of the sampling could then by
increased by its mapping (average) on a representative master lifter. For instance, if a mill has
22 identical lifters and if it is simulated for one second of simulated time in the pseudo steady
state, the data accumulated in the bins could be averaged over the 22 lifters which would lead
to a result having a statistical value equivalent to 22 seconds of simulated time for one lifter.
In addition, if the liner is a 1D liner, i.e. a curve extruded along the axial direction, and if the
binning structure, or simply the discretization, was well chosen, it is also possible to calculate an
average along the axial direction. This axial and azimuthal averaging will be called the master
lifter mapping technique hereinafter.

1.4.2 Material wear models and calibration

As explained earlier, the charge motion data is usually associated to spatial regions of the liner
called bins. For each bin, the relative volume loss due to wear can either be calculated during

30In other words, each lifter should be represented by the same mesh which is simply duplicated and rotated by
an angular increment to obtain the full mill liner, which is assembled of identical lifters.
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(synthesized data extraction) or after the DEM simulation (explicit data extraction) by material
wear models. These models were extensively described in the section 1.3.

The next step is to predict the absolute volume loss by the calibration of the wear constants.
Calibration is based on the geometry of real worn liners after a given operation duration. In prac-
tice, two techniques are used to measure this geometry besides weighting the worn lifters. The
first technique uses a mechanical profiling gauge composed of rods (figure 1.23) [Powell et al.,
2006]. These rods are displaced when an imprint of the liner profile is taken. By measuring their
displacement, the profile of the worn liner is obtained. In the case of more complex geometries,
like 2D liners, a more sophisticated measuring technique is used, i.e. laser scanning of the mill
[Cleary et al., 2009].

(a) Measurement with a mechanical profiling
gauge [Powell et al., 2006].

(b) Graphical data obtained from liner measure-
ments [McBride & Powell, 2006].

Figure 1.23: Liner profile measurement.

In addition to the geometrical data of the worn liner, it is also necessary to record its operating
duration when the measurements are taken. Otherwise, it would be impossible to estimate the
absolute wear rates, e.g. mm/year of liner height loss.

Two steps are then necessary to transform the wear data determined in a simulation, like the
normal damping energy for each facet, into a real volume loss: relative/absolute wear conversion
and time amplification. On the one hand, the relative wear volume determined by the model has
to be divided by the simulated time to obtain the relative wear rate. Similarly, the real wear
volume is divided by the number of operating hours to compute the real wear rate. According to
the previous explanation about the wear models, the proportionality constant between both wear
rates is the wear constant, or more precisely, the wear constant divided by the hardness of the
material. The wear constants can be determined by usual data fitting techniques, like a linear
regression analysis of the real wear rate versus the simulated wear rate, over all the bins.

On the other hand, the liner wear in real ball mills is accumulated over several million rota-
tions, which would simply be impossible to reproduce on a personal computer. This is why the
wear rate was previously estimated by multiplying the relative wear rate by the wear constant.
Finally, by multiplying the wear rate by a certain number of operating hours, we obtain the ab-
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solute volume loss of each facet, i.e. bin, after these hours. Hence, the next step is to modify the
geometry of the liner to account for the volume loss.

Notice also that recently some effort was put into developing a tumbling mill steel media
abrasion wear test (abrasion wheel) by [Radziszewski et al., 2005] to calibrate the wear constants
for wear simulations based on the discrete element method. Currently, calibration with real wear
profiles has, however, been preferred despite this seemingly more predictive test.

1.4.3 Liner geometry modification

Due to the discrete bin size and the relatively short simulation time to reduce the computation
time, the binned data tends to be rather discontinuous along the geometry. Real liner surfaces
are, however, smooth. Spatial smoothing of the data is therefore a necessity in any liner geom-
etry modification. Several techniques were proposed in the literature. For instance, a moving
average filter or a cubic spline smoothing can be applied. Kalala even formulated the geometry
modification as an optimization problem [Kalala, 2008]. Once the data has been smoothed, the
liner profile is displaced normally to itself to satisfy approximately the volume loss constraint.
This finally leads to a new liner profile. Older studies of liner wear simulations end their analysis
at this point. More recent studies, however, push things a little further.

More precisely, while more and more material is removed in a real mill due to wear, the
charge motion changes over time due to this modification of the lining geometry. A multi-step
procedure was introduced to account for this strong coupling between the charge motion and the
geometry. This procedure is an iterative method which progressively updates the liner profile.
In fact, it starts from the initial geometry. Then, a DEM simulation and the associated wear
model lead to the first geometry update. The simulation continues with the new geometry and
the charge flow adapts to its new boundary conditions. Because the charge motion is different,
the liner wear will most likely be different, too. In consequence, a new liner geometry is obtained
and so on.

Besides accounting for the coupling between the charge motion and the wear, this approach
has the additional benefit of simply continuing the simulation. Usually, when a new geometry
is used, the charge motion starts from rest and thus needs several rotations until reaching the
pseudo steady state. In a multi-step procedure, it would be possible to restart a simulation for the
updated liner from the state of the particles just before the liner update. The tedious simulation
time necessary to reach the pseudo steady state could thus be reduced. It is also important to
notice that this advantageous strategy is premised on the enlargement of the mean radius of the
mill as a result of wear, i.e. there is no risk of having a ball being outside of the liner after its
update. Cleary suggests that it is, however, necessary to wait for around 1 to 2 revolutions until
the new pseudo steady state of the charge motion is reestablished [Cleary et al., 2009]. He also
assumes that around 4 to 10 steps are sufficient to capture the feedback of charge motion due to
the change in geometry.
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1.4.4 Review of ball mill linear wear modeling

Previously, we presented the charge motion simulation, the wear modeling and liner geometry
modification strategies necessary to predict liner wear in general. In this section, we will explain
these methods and some results found in the literature31 from their particular point of view. This
presentation in two stages (general/particular) was chosen since some principles only make sense
for some simulation strategies. Trying to fit all these principles in a general explanation may have
been detrimental to the understanding. This section will be structured according to the charge
motion model which was used in the respective article.

Nevertheless, this section is not absolutely necessary to understand the methods of the fol-
lowing chapters. Moreover, the data found in the literature was sometimes relatively vague and
not always clear. To optimize the information exchange, the following section can therefore be
skipped, if the reader is in a hurry. The most interesting section is certainly Cleary et al. (2009).

Simplified ball charge model

Radziszewski and Tarasiewicz (1993, 1997) Using the simplified charge motion model de-
scribed in [Radziszewski & Morrell, 1998], Radziszewski and Tarasiewicz predicted the wear
evolution of a wave and a bevel liner [Radziszewski & Tarasiewicz, 1993a, Radziszewski &
Tarasiewicz, 1993b, Radziszewski, 1997]. The wear was calculated with the Archard and the
abrasion equations (equation 1.35 and 1.38) for the balls and only with the abrasion equation
for the liner. At each time step, small elements of the liner discretization (figure 1.24a) were
removed from the initial surface depending on the predicted volume loss. As shown in the fig-
ure 1.24b, the simulated profiles are qualitatively realistic. Unfortunately, these profiles were not
compared with real validation measurements.

(a) Discretization. (b) Liner wear evolution.

Figure 1.24: Wave liner in a 2.6 m diameter mill simulated by [Radziszewski & Tarasiewicz, 1993b].

Arekar (2004) Using a simplified 2D ball charge model based on Radziszewski’s theory, the
same liner profile of a 10 m diameter SAG mill as in [Qiu et al., 2001] was analyzed in [Arekar,

31The articles, which will be summarized and commented are the major articles in the field of liner wear simula-
tion, i.e. this review is essentially complete.
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2004]. The wear was calculate by the abrasion wear equation (equation 1.38) and Bitter’s ero-
sion wear equation, which is similar to Finnie’s law but containing more material parameters.
The results of the material wear laws were amplified to simulate the liner wear in reasonable
time. Then, the liner was discretized by 2D square elements but it is unclear how this discretiza-
tion is updated by means of the volume loss due to wear. It was observed that the liner profiles
were not always smooth after running a simulation. Therefore, a cubic spline smoothing was
combined with a Tukey smoothing technique. The numerical results, which are shown in the fig-
ure 1.25, are coherent with the experimental measurements; it remains, however, unclear if the
method is predictive after the calibration of the parameter i.e. able to predict the wear profiles
of a similar mill without any artificial fine-tuning of the parameters for each new scenario. The
charge motion in the figure 1.25 is in any case physically questionable.

Figure 1.25: Comparison of the simulated and measured evolution of the liner profile due to wear with
the corresponding charge motion [Arekar, 2004].

2D DEM

Glover and de Beer (1997) The article was not accessible. This summary is thus based on
[Arekar, 2004, Kalala, 2008, Sawley, 2014]

A two-dimensional DEM ball charge model was used to predict the wear of a double wave
liner. The liner was discretized by line segments. During the contact of a ball with the liner, the
normal force and the sliding distance were combined by the Archard equation to predict the local
volume loss. In consequence, the line segments are displaced by an amount proportional to the
wear and the profile is smoothed using a three point moving average. The figure 1.26 shows the
simulated evolution of the liner profile which is obviously non realistic since the profile shape
becomes sharper.
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Figure 1.26: Simulated wear evolution of a double wave liner [Glover & De Beer, 1997].

Figure 1.27: Illustration of the geometry and
charge motion of the 5 m diameter ball mill
[Cleary, 1998].

Figure 1.28: Binning structure for the wear data
collection on a ball mill liner with the resulting
wear profile [Cleary, 1998].

Cleary (1998) Cleary simulated the charge motion by a 2D DEM simulation of a 5 m diameter
ball mill (figure 1.27) to estimate the liner wear [Cleary, 1998]. The DEM contact law is the
spring-slider-damper model with the normal stiffness coefficient kn = 106−107 N/m, the normal
damping ratio εn = 0.3 and the coefficient of friction µ = 0.75. The definition of the tangential
parameters is not provided but they were probably given by kt = kn and ct = cn.

The charge motion data used for the wear prediction was collected by a binning strategy. The
figure 1.28 shows a typical set of bins for a part of a ball mill liner. Cleary smoothed the data in
the bins with a Demmler-Reinsch formulation of the cubic spline smoothing algorithm.

The wear was predicted by Finnie’s law on the basis of the binned impact velocity. As the
data was collected along the entire mill and as the binning distribution was identical for each
lifter, the wear for each bin of the first lifter was averaged with the matching bins of the other
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22 lifters. By choosing the cutting constant c in Finnie’s law equal to 0.1, by amplifying the
wear rate by the ratio of the real time to the simulated time, by moving the center point of each
bin inward according to the respective volume loss and by smoothing the data, Cleary obtained
the wear profile, which is shown in the figure 1.28. This profile is not as smooth as it would in
practice be expected.

Kalala (2008) Kalala’s work in the field of ball mill liner wear simulation is probably the most
extensive one because of his PhD thesis [Kalala, 2008], under the guidance of M.H. Moys [Moys
et al., 2000], and the related publications [Kalala & Moys, 2004, Kalala et al., 2005a, Kalala et al.,
2005b, Kalala et al., 2008].

Kalala simulated the ball charge motion with the 2D discrete element method and the spring-
slider-damper contact law in the Itasca PFC software (particle flow code) originated by Cundall.
The material parameters are kt = 3/4kn = 4 ·105 N/m and ct = 3/4cn, where cn is calculated by
means of the coefficient of normal restitution. The coefficients of normal restitution and friction
were different for ball-ball and ball-wall interactions. Their values were calibrated by means of
experimental data (power, charge motion and force on lifter) and have a value between 0.2 - 0.4
(restitution) and 0.4 - 0.7 (friction), respectively.

To record the impact data and to modify the liner profile geometrically, two liner discretiza-
tion strategies were implemented: the vertical and the radial discretization of 1D liners; the first
method was also generalized to 2D liners. More specifically, this discretization includes two
concepts: first, the discretization of the liner profile curve into discrete segments and second, the
determination of the directions along which the end points of the segments will be displaced due
to wear. Both geometrical strategies are illustrated in the figure 1.29. This figure also shows
the reason why a radial discretization is sometimes necessary. In fact, the points of the vertical
discretisation can only be displaced vertically, which would lead to no wear at all in the case
represented in the figure 1.29a.

(a) Vertical discretization. (b) Radial discretization.

Figure 1.29: Discretization strategies applied to a rectangular lifter [Kalala, 2008].
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The relation between the charge motion and the removed volume was determined by Kalala’s
wear model, which was explained earlier. The charge motion data related to wear was therefore
accumulated for each segment of the discretized liner during the simulation. The wear constants
K, aadh/abr and aadh/abr were determined recursively to match the measured worn profiles; it is
unclear how this was exactly done.

Figure 1.30: Vertical discretization of a trapezoidal lifter and the worn profile to illustrate the geometry
updating strategy [Kalala, 2008].

Once the volume loss Vi per discretized segment was known, Kalala introduced an original
method to update the geometry while preserving a smooth liner, i.e. an optimization problem.
The objective function S, which had to be minimized, was the weighted sum of fours components,
which will be expressed here in mathematical terms for the vertical discretization based on the
notations given in the figure 1.30:

• S1 is associated to the predicted volume loss Vi and the volume, which is actually removed
after the update of the geometry:

S1 =
n

∑
i=1

[(
(yi− y′i)+(yi+1− y′i+1)

2
∆xi L

)
−Vi

]2

(1.58)

where ∆xi and L are the width, i.e. the horizontal distance, of a vertical discretization and
the length of the mill (in its axial direction), respectively. The other variables are defined
in the figure 1.30.

• S2 is a smoothing term which tries to minimize the difference between the slope of neigh-
boring discretized segments in the updated liner geometry:

S2 =
n−1

∑
i=1

(
y′i+2− y′i+1

∆xi+1
− y′i+1− y′i

∆xi

)2

(1.59)
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• S3 minimizes the difference in slope of the current and the updated geometry to prevent
any dramatic change in the profile:

S3 =
n

∑
i=1

(
y′i+1− y′i

∆xi
− y′i+1− y′i

∆xi

)2

(1.60)

• S4 ensures that the profile is strictly decreasing and strongly penalizes increasing profile
heights:

S4 =
n+1

∑
i=1

eβ (y′i−yi) (1.61)

where β is a large number.

Finally, the components are combined in the global objective function S:

S = S1 +λ S2 +α S3 +S4 (1.62)

where λ and α are weighting factors influencing the smoothing. The objective function is then
minimized and the coefficients adjusted to obtain the necessary smoothing of the result.

Finally, a multi-step procedure was introduced to account for the modification of the charge
motion due to the geometry modification. Relatively good results were obtained and the models
seems to posses some predictive potential, i.e. three industrial coal mill liners were apparently
analyzed (figure 1.31) with the same values of the material and smoothing parameters.

3D DEM

Qiu et al. (2001) Based on the Archard equation, the liner wear of a 10 m diameter SAG
mill was predicted [Qiu et al., 2001]. The wear profiles were compared with real measurements
and a good agreement was found (figure 1.32). The exact way, in which the wear model was
implemented, is not explained in the article; therefore, it is unknown why Qiu et al. obtained
smooth results with the Archard equation and Glover and de Beer did not. It is only reported that
1.5 rotations of the mill were sufficient to gather enough charge motion data to extract the volume
loss. This loss was amplified to account for the limited simulated time. It was observed that the
wear rate W = Kadh/H in the Archard equation was not constant. Hence, Qiu et al. supposed that
this variation was due to a change in the hardness of the feed material. By applying a correction
factor C = a Hb

ore to the wear rate, they obtained seemingly better results; it is, however, unclear
how this factor was introduced in the model.

Cleary (2001) Cleary simulated the profile wear of a 10 m diameter SAG mill [Cleary, 2001c].
The DEM spring-slider-damper contact law was used with Cleary’s usual parameters, i.e. normal
stiffness kn = 106 N/m, normal damping ratio εn = 0.3 and coefficient of friction µ = 0.75. The
filling degree of the mill was 30 % and it rotated at 78% of its critical speed (10 rpm). A 0.5
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Figure 1.31: Simulation results of three lifters in coal grinding ball mills. For the last lifter only the first
stage of its usage was simulated. In practice, these lifters are reversed once they reach a critical profile
from one side [Kalala, 2008].

Figure 1.32: Simulated and measured evolution of a lifter in a 10 m diameter SAG mill [Qiu et al., 2001].
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m axial slice of the mill with a periodic boundary condition and a minimum particle diameter
size of 25 mm was used to predict the wear distribution on the liner (balls and feed material); a
total of 185,000 particles were simulated. Around 31 CPU hours were necessary per second of
simulated time on a 500 MHz EV6 alpha workstation. The liner was tessellated by triangular
elements having an average length of 20 mm, which is smaller than the smallest particle in the
simulation. The stress and wear data were accumulated (averaged) for each triangular facet
during around two rotations of the mill. Due to the 1D liner configuration (axially extruded
curve), it was possible to aggregate the data across the depth of the mill slice to obtain better
statistical estimates of them. Nevertheless, the data was also smoothed (no information about the
particular technique was provided) to eliminate the noise at the particle size level.

The figure 1.33 shows the resulting stress distribution. It illustrates how important the fluc-
tuations of the stresses along the liner can be, even after smoothing their values; the same is true
for the numerical wear measures, which are not represented here. It is also interesting to notice
that the normal stress is around 3 times higher than the shear stress for an average impact; the
general distribution of the stresses is, however, similar in both cases. By applying Cleary’s four
component wear model, the relative wear of each component was determined along the lifter.
In particular, the normal work was around two times higher than the shear work. This implies,
however, not necessarily that the dominant wear mechanism is impact instead of tangential col-
lision wear, which some might call abrasion wear. Indeed, it might be expected that the liner
steel is very resistant to impact and erodes mainly by tangential abrasion/adhesion wear. No
experimental data was available and the contribution of each wear component could therefore
not be determined. The model calibration and validation was performed in Cleary’s future work
[Cleary et al., 2009] for another type of mill.

Cleary et al. (2009) Cleary et al. quantitatively predicted and validated the wear evolution in
a Hicom nutation mill [Cleary et al., 2009]. The mill was simulated with the 3D discrete element
method and the spring-slider-damper contact law. Cleary’s standard material parameter values
were used, i.e. kn = 106 N/m, εn = 0.3 and µ = 0.75. Only the grinding media was represented
in the model, i.e. around 50,000 spherical balls. The charge motion data related to wear was
accumulated on a triangular surface mesh during the simulation. This data was transformed into
wear by Cleary’s four component wear model. In contrast to Cleary’s previous studies, a multi-
step procedure and the calibration of the wear constants was introduced in this article; spatial
smoothing was, however, not mentioned.

The calibration of the four wear constants was rendered possible by high-quality measure-
ments. A 3D laser scanned digitization of the real worn liner was used to obtain the real absolute
wear rates. These rates represent the material loss of the liner per unit of time, e.g. mm/day.
Without this calibration data, the relative importance of the wear components in the model could
not be determined. Furthermore, it would also be impossible to obtain estimates of the liner
wear as a function of time. In this latter case, only patterns of the wear could be explored but no
estimation of the liner profile at a given time could be obtained by simulation. The wear rates, or
simply the wear of the real mill at the moment of the measurement, i.e. after a specified number
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(a) Stress distribution on the liner:
normal stress (top), shear stress (bot-
tom).

(b) Stress distribution along the liner. The
regions (lifter front, top, rear and plate) are
separated by vertical lines.

Figure 1.33: Rather strongly fluctuating stress distribution on the 10 m diameter SAG liner [Cleary,
2001c] (adapted).

of working hours, was calculated by taking the difference between the worn and new liner and
by mapping it on the new liner (figure 1.34a); the exact way of doing this was not explained. By
visual inspection, it was then observed that the wear component related to the Finnie model (one
of the four numerical wear components in Cleary’s wear model) delivered the best qualitative
matching with the real wear distribution (figure 1.34b).

To quantify this observation, a multiple linear regression analysis of the real wear data versus
the DEM results was performed and the Finnie-based abrasion component was eventually the
best fitting wear model. One of the most interesting discoveries in this study was its capability
of predicting that the floor of the liner was made of a much harder abrasion resistant material
(figure 1.35), which was actually confirmed by the manufacturer.

Finally, the progressive wear of the liner was simulated by a multi-step procedure in five
steps. The data of each step is collected over 2.5 revolutions. It is important to notice that the
wear rate of one simulation was chosen such that it leads to one fifth of the total wear. Ultimately,
a strong correlation between the predicted and actual worn liner displacements was found.

McBride and Powell (2006) An 8 m diameter SAG mill reduced to a 0.25 m axial slice with a
periodic boundary condition was simulated by the 3D discrete element method. The real charge
was truncated at 22 mm to obtain the simulated charge, which consisted in 38,000 particles. The
simulation of 4 rotations (two rotations to mix the charge and to reach the pseudo steady-state,
and two additional rotations to acquire the data for the wear prediction) at 75% of the critical
velocity (11.4 rpm) with the commercial DEM software EDEM took approximately 3 weeks
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(a) Real liner wear mapped on the new liner sur-
face.

(b) Relative predicted liner wear by the Finnie-
based abrasion wear component.

Figure 1.34: Choice of the wear model based on the qualitative comparison between the real liner wear
mapped on the new liner surface and the predicted liner wear by the Finnie-based abrasion wear compo-
nent of Cleary’s wear model [Cleary et al., 2009].

Figure 1.35: Regression lines of the measured real wear versus the Finnie-based abrasion wear [Cleary
et al., 2009]. The smaller point cloud is associated to the floor of the mill, which was made of a more
abrasion resistant material.
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Figure 1.36: (a) Mill with the new lifters, (b) DEM
mesh of the mill with new lifters, (c) Mill with the
worn lifters, (d) DEM mesh of the worn lifters.

Figure 1.37: Original and worn (smoothed and
non-smoothed) master lifter profiles. The dots of
the worn profile, which were seemingly associated
to the center of each bin give an idea of the small
bin size.

on a 3.6 GHz processor. The Hertz-Mindlin contact law was used to model the interactions
between particles. Different contact parameters for the contact between different materials were
chosen, i.e. different parameters for steel-steel, steel-rock and rock-rock interactions. Neither
the validation of these parameters nor a reference to the validation study is provided in the paper.
The figure 1.36 shows the new liner and the worn liner with their meshes as used in the DEM
simulations; it seems that quadrangular elements were used to model the 1D liner, i.e. its height
does not change along the axial direction. Only the new liner is used for the wear prediction.

To estimate the worn liner profile, each collision event during the DEM simulation was
recorded and mapped to a master lifter thanks to the azimuthal symmetry. This master lifter was
then divided into 100 equally spaced and rather small 1D bins, as the liner is 1D (figure 1.37).
Notice that the geometry was not binned a priori but only once the collisions are known; thus
the binning structure is not identical to the discretisation of the geometry in the DEM simulation.
The material loss was determined by the Archard equation on the basis of the charge motion
data; no information about the model calibration was provided in the article. The non-smooth
numerical wear data along the lifter was smoothed in two steps. First, a cubic spline was used
to smooth the collision data before applying the Archard equation. After applying this equation,
a least squares smoothing spline was applied to predict the resulting worn liner profile. It is un-
clear why the data was smoothed two times. Finally, a multi-step procedure was used to estimate
the liner wear by taking the charge motion modification into account. More precisely, the liner
profile was updated after some simulated time but the simulation was not restarted. Update after
update, the worn profile was finally obtained, when a specified volume loss was attained. The re-
sults in the figure 1.37 show only a very small change in the geometry, which was not compared
with the validation data illustrated in the article.
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Powell (2011) In the most recent liner wear study, Powell simulated a slice of a 8 m diameter
ball mill containing 110,000 spherical particles (feed material and balls) with the Hertz-Mindlin
contact law (EDEM software) [Powell et al., 2011]. The liner was carefully meshed to form
meaningful elements for wear modeling, i.e. the collision data is stored per mesh element (bin-
ning strategy) and more elements were used where higher wear was expected. The volume loss
was calculated by means of Powell’s wear model with diameter, which was explained earlier.
Knowing the volume loss per element, its thickness loss perpendicular to its surface was then
calculated by dividing the volume loss by the area of the element. Without any specific smooth-
ing technique (at least it was not mentioned), the new relative liner profile was then determined.
On the basis of the measurement of the real liner wear profiles of the mill, the wear parameter
Kd/H was estimated to be equal to 6.08 ·10−12 s2/kg on average. This value changed, however,
locally between the front and the rear faces of the lifter in a systematic way, indicating that some
kind of wear mechanism was not accounted for in the wear model. It was not clear why a single
constant did not fit the wear equation but Powell suggests that he did not incorporate the angle
of impact in the model, i.e. the total impact energy was used in the wear model instead of the
energy in the sliding plane.

Figure 1.38: Measured (solid lines) and predicted (dashed lines) wear profiles. The mill rotates anti-
clockwise, i.e. from the left to the right with respect to the lifter. The predicted wear profiles were always
estimated on the basis of a DEM simulation with a liner profile of the closest measured profile.

The figure 1.38 shows four measured wear profiles and the predicted profiles. The predicted
profiles were restarted from each measured profile, i.e. the predicted profiles are based on a DEM
simulation with the measured profile. The wear is then simply amplified by a constant factor for
the different time intervals following a measured profile.



Chapter 2

DEM Ball Mill Simulation

In the previous chapter, we explained that the discrete element method is currently the most
promising method to model the charge motion in ball mills. Nevertheless, different types of DEM
models and a large spectrum of parameter values were used in the literature. In consequence, it
seems absolutely necessary to calibrate the DEM model and to validate the numerical results
before using this model as a predictive tool. In other words, the objective of this chapter is to
determine the values of the simulation parameters, to assess the capability of the discrete element
method to model the charge motion and to analyze the influence of the parameters on the results.

Therefore, this chapter starts with the description of the experimental data obtained in a 0.8 m
diameter laboratory ball mill at the company Magotteaux International S.A. [Prignon & Lepoint,
2001]. To simulate the charge motion in this mill, a DEM software will be chosen in the second
section of this chapter. In the third section, the DEM model and in particular, the modeling
hypotheses and procedure will be explained by following the structure of the simulation control
script. Finally, the numerical results will be presented in three stages: the elementary collision,
the laboratory mill and the extension to the industrial mill.

2.1 Experimental Data

Experimental data is a fundamental requirement of computational engineering to calibrate the
numerical parameters and to validate the results of the simulations. It was explained in the
section 1.2.2, that the experimental data available for DEM simulations of ball mills are mainly
power draw measurements, charge motion photographs and force on lifter measurements. In this
section, we will focus on power draw measurements and charge motion photographs taken by
[Prignon & Lepoint, 2001] at Magotteaux International S.A. .

First, the experimental setup will be described before selecting some of the experimental
results for the model calibration and validation.

63
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2.1.1 Experimental setup

The experimental setup is illustrated in the figure 2.1. It consists of a laboratory mill with re-
movable liners which is closed at one end by a window of tempered glass. The mill is driven by
an electric motor which is connected to the mill by a torquemeter.

(a) Laboratory mill supported on driving shafts
with a Duolift liner and closed by an end wall of
tempered glass.

(b) Torquemeter between the electric motor and the
mill shell.

Figure 2.1: Experimental setup for the power draw measurement and the charge motion determination in
a laboratory mill [Prignon & Lepoint, 2001].

The characteristics of the setup are the following ones:

• shell diameter: D = 800 mm

• mill length: L = 400 mm, with flat end walls

• liner: 1D liner, i.e. no variation of the liner height along the axial direction, with 7 different
profiles of a 4 m diameter mill reduced by a factor 1/5 (geometrical similarity). Each liner
is characterized by its exact geometry and its average diameter D. This diameter is equal
to the diameter of the circle which delimits the same area than the liner profile curve
(figure 2.2). The liner plates in the laboratory mill are made of steel with a slightly rougher
surface condition (striation due to metal cutting) than that of the real liner plates.

• filling: almost spherical steel balls having a diameter d≈ 15 mm, a material density ρballs =
7640 kg/m3 and a bulk density ρbulk = 4580 kg/m3. The filling ratio (with respect to the
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Figure 2.2: Illustration of the mill cross-section with the shell diameter D and the average diameter D of
the 1D liner profile.

average liner diameter D and the bulk density) is equal to one of the following values: 20,
25, 30, 35 and 40 %. Only balls, i.e. no feed material, are inside of the mill.

• rotation speed: the rotation speed is deduced from the percentage of critical velocity with
respect to the average diameter D. It is equal to one of the following values: 60, 65, 70, 75
or 80 %.

For each of the 7 profiles and for each combination of the filling ratio and the rotation speed,
photographs of the charge motion were taken with different shutter speeds (1/12, 1/25, 1/50 s and
almost instantaneous photographs1). Moreover, the power draw was measured for each testing
case with the torquemeter.

In the following section, we will justify our choice of the specific liner profiles, filling ratios
and rotations speeds chosen for the parameter calibration and validation.

2.1.2 Experimental results

Concerning the liner, two different profiles will be chosen. Thus, the material parameters can
be calibrated based on one liner profile and validated with the other profile. In this way, we
can demonstrate that the model is able to simulate the charge motion in mills with different
liners. Magotteaux’s Perfecto ABAB liner (figure 2.3) will be used to calibrate the model as it
was already used in a similar study [Sawley, 2003]. Therefore, the choice of this liner allows us
to compare our results with the DEM results in this previous study. To obtain similar simulation

1The shutter speed of these photographs is not known but it is sufficiently high to instantaneously capture the
balls which are seemingly at rest.
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conditions, we also choose a filling ratio of 30% and a percentage of critical velocity equal to
70% or 80%; these values correspond to typical operating conditions. To capture the influence
of the filling ratio, we will also consider the Perfecto ABAB liner with an increased filling ratio
of 40 %.

Figure 2.3: Perfecto ABAB liner profile in the 0.8 m diameter laboratory mill [Prignon & Lepoint, 2001].

In addition to the Perfecto ABAB liner, the Duolift (EU) liner (figure 2.4) will be examined
to check if the DEM results are still valid for another liner geometry. This liner type was chosen
due to its similarity to the liner, which will be used to calibrate the wear model in the following
chapter.

The different calibration and validation cases considered in this study are summarized in the
table 2.1. This table also contains the average net power draw2 of the mill, i.e. the difference
between the average power consumed by the charged mill in the pseudo steady state3 and the
average power consumed by the empty mill4. One may notice that the power increases with the

2The average net power draw has previously simply been called the power draw. Hereinafter, we will continue
to use this shorter designation.

3As will be explained afterwards, the pseudo steady state is the state reached by the charge motion when its
average characteristics do not change anymore, if the rotation speed of the mill remains constant.

4In fact, the power consumed by the rotation of the empty mill is negligible.
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Figure 2.4: Duolift (EU) liner profile in the 0.8 m diameter laboratory mill [Prignon & Lepoint, 2001].

filling ratio and the rotation speed; this is generally true for sub-critical rotation speeds [Cleary,
2001a]. The power draw for the Duolift liner is approximately equal to the power draw for the
Perfecto ABAB liner with the same operating conditions.

The photographs of the charge motion in the different cases are represented in the figure 2.5.
To focus on the general characteristics of the charge motion, we chose only the pictures obtained
with a 1/12 s exposure time. Due to this relatively long exposure time, the pathlines of the balls
are visible. In consequence, these pictures give a better idea about the average charge motion
than the instantaneous photographs. Obviously, it is difficult to extract quantitative data of these
photographs due to the variable density of the balls in space, especially in the cataracting region,
and the quality of the pictures, in particular the finite depth-of-field.

We tried, however, to draw the contour of the charge in each mill and superimposed them in
the figure 2.6. Hence, the charge is far more dispersed, i.e. the void ratio increases, at higher
rotation speed (e.g. figures 2.5a and 2.5b). In other words, the rotation speed increases the
number of cataracting balls and the shoulder angle. This is also true for the filling ratio, which
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 2.5: Photographs of the charge motion for the different testing cases in the pseudo steady state
with an exposure time of 1/12 s [Prignon & Lepoint, 2001].
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Name Liner Filling ratio [%] Percentage of critical
velocity [%]

Power [W]

Case 1 Perfecto ABAB 30 70 1,449
Case 2 Perfecto ABAB 30 80 1,656
Case 3 Perfecto ABAB 40 80 1,893
Case 4 Duolift 30 70 1,429

Table 2.1: Experimental cases used to calibrate (case 1) and validate (cases 2, 3 and 4) the numerical
model.

increases these characteristics even more. While the rotation speed has only a negligible influ-
ence on the toe angle in our testing cases, the filling ratio clearly increases the toe angle. Finally,
the difference in the charge motion resulting from changing the liner profile is relatively small.
Nevertheless, the charge cloud for the Duolift liner seems to be pushed slightly inward, i.e. closer
to the center of the mill, with respect to the Perfecto ABAB liner rotating with the same operating
conditions. This might also explain why the power draw of the Duolift liner is marginally lower
than the power draw of the Perfecto ABAB liner (for the same operating conditions). In fact, the
power draw can be calculated on the basis of the position of the center of gravity of the charge.
If this point is closer to the center of the mill along the horizontal direction, the torque necessary
to rotate the mill is lower. Hence, the power draw for the Duolift profile is lower than the power
draw of the Perfecto ABAB profile.

Figure 2.6: Superimposed charge contours for the cases 1 (green), 2 (blue), 3 (red) and 4 (yellow) with the
background being the case 3. This contour is not uniquely defined due to the decreasing position density
of cataracting balls and the quality of the pictures.

For the sake of completeness, the table 2.2 contains the mean diameter of the liner profiles
from which the number of balls and the rotation speed for each testing case were deduced. The
lower mean diameter of the Duolift liner might explain why the charge seems to be pushed more
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to the center of the mill with respect to the Perfecto ABAB liner.

Name Mean diameter [mm] Number of balls [-] Rotation speed [rpm]
Case 1 772 19,054 33.70
Case 2 772 19,054 38.51
Case 3 772 25,406 38.51
Case 4 763.6 18,642 33.88

Table 2.2: Mean liner diameter, number of balls and rotation speed of each testing case.
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2.2 DEM Software

Even though DEM simulations might initially seem to be rather simple and more intuitive than
Eulerian methods, like classical FEM or CFD, their complexity, however, rises from the typical
problem size, which requires not only sophisticated algorithms but also efficient programming
techniques. Instead of implementing a new DEM solver from scratch, it seems therefore to
be more reasonable to choose an existing software and to modify it in order to meet our re-
quirements. In this section, we will explain for what reasons, the YADE (Yet Another Dynamic
Engine) software was chosen to simulate the ball mill.

Currently, a large number of DEM solvers exist5. Some of these programs have successfully
been used to model the charge motion in ball mills:

• EDEM6 (DEM Solutions Ltd.) is one of the leading commercial DEM solvers.

• PFC7 (Particle Flow Code, Itasca Consulting Group Inc.), initiated by P.A. Cundall, is a
commercial alternative to the EDEM solver.

• LIGGGHTS8 (LAMMPS Improved for General Granular and Granular Heat Transfer Simu-
lations) is an extensive open source discrete element solver based on LAMMPS, a classical
molecular dynamics code, which adds moving geometry meshes and classical granular
contact laws, like the spring-slider-damper law or the Hertz-Mindlin law. LIGGGHTS is
programmed in C++ and uses an MPI parallelization with dynamic load balancing (grid
collision detection algorithm) to reach high performance. Simulations are controlled by a
scripting language particular to the software or by a quite limited PYTHON wrapper.

• YADE [Šmilauer et al., 2014] is a very versatile open source software mainly focused on
DEM simulations. The program is written in C++ with an OpenMP parallelization (axis-
aligned bounding box collision detection algorithm) controlled by PYTHON scripts.

The requirements related to the choice of the software can be grouped into two categories:
versatility and performance. We consider versatility to be the ability of the software to solve
our problem, i.e. its ability to adapt its general functionality to our particular case. Versatility
is therefore not only defined by the existing features of the software but also by the potential
simplicity of adding new features. Especially due to the wear modeling in the next section, it
is necessary to have a good low-level control of the code, e.g. for the synthetic data extraction.
For this reason and their cost, open source software seems to be a better choice than commercial
software. Its drawback is usually the more complex usage, which is compensated by a better
understanding of the underlying principles in the long run. Considering again the main programs

5http://en.wikipedia.org/wiki/Discrete_element_method
6http://www.dem-solutions.com/
7http://www.itascacg.com/software/pfc
8http://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-

simulation-code

http://en.wikipedia.org/wiki/Discrete_element_method
http://www.dem-solutions.com/
http://www.itascacg.com/software/pfc
http://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code
http://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code
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used for DEM ball mill modeling, EDEM and PFC can be eliminated as they are commercial
software.

Furthermore, YADE was designed with the objective of being extremely versatile [Kozicki
& Donzé, 2009]. In fact, it is build on a very general base structure which assembles packages.
Thus, adding a new feature to the software, like an element shape or a material law, does not
require to change the entire program but only requires implementing and loading a new pack-
age into the base structure. Moreover, this structure is designed in such a way that the scene
construction, the simulation and the post-processing can be managed by PYTHON scripts. These
scripts are able to read and modify the data, e.g. the velocity of a particle, during the simulation,
while the C++ code assures the performance. Such a structure turns the software into a very
flexible tool. In LIGGGHTS, the PYTHON wrapper is far less developed and less connected to the
underlying C++ code than in YADE, which makes their interaction more difficult. In terms of
versatility, it should also be mentioned that LIGGGHTS is a relatively large software with respect
to Yade, i.e. it contains around 8 times more source code files (around 8000) than YADE. As a
result, adding or modify the source code is potentially more time-consuming in LIGGGHTS.

Nonetheless, LIGGGHTS has a better performance than YADE with respect to the computa-
tion time, probably due to the spatial decomposition of the domain for the collision detection
combined with the MPI parallelization [Cleary & Sawley, 2002]. In fact, we carried out a short
benchmark study to compare their relative performance. The study was premised on exactly the
same simulation which will be explained afterwards, but the liner mesh was generated differ-
ently9. Nevertheless the same data was used in both programs, i.e. the same mesh of the mill,
the same number of balls, the same material parameters, the same time step, the same simulated
time, . . . For a 10 s simulation of a ball mill meshed with 20,224 facets and containing 20,000
balls with a time step equal to 5 ·10−6 s, the calculations took 3.46 hours in LIGGGHTS and 8.65
hours in YADE. On average, LIGGGHTS is thus around 2.5 times faster than YADE.

In conclusion, LIGGGHTS and YADE are versatile enough to simulate the charge motion in
ball mills. Despite LIGGGHTS’ superior performance, we are, however, constrained to use YADE

because of its higher versatility (PYTHON interface and straightforwardness of the C++ source
code) and the limited time span of this project10.

9Instead of extruding the mesh and closing its ends by infinite planes, a surface mesh of the entire mill was
created. Therefore, it contains more elements and the computation time is longer than for the mesh, which will be
used in the following calibration and validation study.

10This last reason is especially true for the wear simulations in the third chapter, which require to have a very deep
knowledge of the low-level source code in order to implement the wear models and to retrieve the resulting wear
values. Due to YADE’s extremely flexible programming structure and its reduced size with respect to LIGGGHTS,
it allows acquiring this knowledge quicker than with LIGGGHTS. In the long term, it might, however, be more
interesting in terms of performance to adapt the principles introduced in YADE to LIGGGHTS.
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2.3 DEM Model

To predict the charge motion and the power draw of the laboratory mill, a standard procedure was
developed by combining CAD (FREECAD and/or CATIA), meshing (GMSH), DEM (YADE),
data analysis (MATLAB, OCTAVE or PYTHON) and visualization (PARAVIEW) software. This
procedure is obviously centered on the DEM solver YADE. A simulation in YADE is controlled
by a PYTHON script. To simplify the explanations, we will therefore follow the structure of this
control script, which is included11 in the appendix B.

The modeling hypotheses and procedure will be described by starting with the definition of
the material (contact law) and the geometry (mill and filling), followed by the description of the
simulation and the post-processing.

2.3.1 Material

In DEM charge motion simulations of ball mills, the material characteristics are the density of
the filling material, the contact model and the contact parameters.

Density

As the laboratory mill is only filled with steel balls having a high mass percentage of chromium
(around 20 %), their density can simply be measured; it is equal to around 7640 kg/m3.

Contact law

According to our explanation in the section 1.2.2, the soft-particle linear spring-slider-damper
contact law seems to be the least sophisticated law able to model the collisions with suffi-
cient accuracy, while, however, remaining an idealization. To ensure that this law is imple-
mented in line with our expectations, we added our own contact law (SprSldDmpPM.hpp and
SprSldDmpPM.cpp) to YADE by creating a new material package. It is based on the theoretical
definition in the section 1.2.1 and the existing viscoelastic law in YADE (ViscoElasticPM.hpp
and ViscoElasticPM.cpp). To offer the reader full insight into our contact model, it was
added in the appendix C. The critical points will, however, be summarized hereinafter.

Tangential spring The tangential spring component of the force is the most complex compo-
nent of the model since it depends on the history of the interaction (see the integral in equa-
tion 1.9).

11It is questionable whether this script should be included in this report. In contrast to numerous articles about
DEM validation, we want, however, give the reader the opportunity to understand the slightest detail of this valida-
tion study.
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On the one hand, the spring stores or loses energy due to the relative motion between the ele-
ments. In consequence, the tangential velocity can not simply be integrated in global coordinates
in order to determine the strain of the spring. This problem is solved by rotating the spring force
simultaneously with the colliding elements [Šmilauer et al., 2014, p. 133].

On the other hand, this force has to be changed properly, when two elements slide over each
other. In the existing implementation of the viscoelastic contact law (ViscoElasticPM.hpp
and ViscoElasticPM.cpp), this interaction was handled in an incoherent way. In fact, ele-
ments started to slide, when the spring component of the tangential force exceeded the friction
limit independently of the viscous component12. In the new material law, we added this tangential
viscous force component to the friction limit test and ensured that the history of the tangential
spring component is adapted appropriately.

Power dissipation Besides the forces, the power dissipated during the collisions is calculated
in the material law. Essentially three different mechanisms dissipate power: normal damping,
tangential damping and sliding by Coulomb friction. Nonetheless, there also exist two other
sources of power dissipation.

On the one hand, the tangential spring stores energy during the collision of two bodies. If,
however, these bodies are not overlapping anymore, the energy stored in the spring is simply lost,
i.e. dissipated.

On the other hand, the tangential spring force has to be rotated, as explained earlier, since its
energy is not modified, when the relative position (and orientation) between the two contacting
bodies is unchanged. This rotation is an approximate rotation, which may lead to the artificial
creation of numerical energy. Fortunately, only small quantities of energy are created numeri-
cally, i.e. at most around 5% (for the material parameters used hereinafter). Due to the general
acceptance of the rotation algorithm [Šmilauer et al., 2014] (where other authors are cited) and
the moderated quantities of numerical energy, the rotation algorithm was not improved.

Hence, the total power dissipated in the system can be calculated by the following formulas,
which are written by using the notations of the section 1.2.1:

• power dissipated along the normal direction by the normal damper, called normal power:

Pnormal = cn v2
n (2.1)

• power dissipated along the tangential13 direction (when the friction limit has not been
reached), called tangential power:

Ptangential = Ft ·vt if Ft < µ Fn (2.2)

12This problem was already partially pointed out but not entirely fixed: http://www.mail-archive.com/
yade-users@lists.launchpad.net/msg01391.html

13Notice that this attribute (i.e. tangential) might be ambiguous since the sliding force also acts in the tangential
direction. Nevertheless, we did not find an adjective, which describes more accurately the power dissipated along
the tangential direction by tangential damping, lost contact and approximate rotation of the tangential spring force.

http://www.mail-archive.com/yade-users@lists.launchpad.net/msg01391.html
http://www.mail-archive.com/yade-users@lists.launchpad.net/msg01391.html
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• power dissipated by sliding (when the friction limit has been reached), called sliding
power:

Psliding = Ft ·vt if Ft ≥ µ Fn (2.3)

In addition to the tangential damping power, it is important to notice that Ptangential also includes
the power transferred to and from the tangential springs, which is not dissipated because of the
elasticity of the spring. As a result, this power component Ptangential includes the artificial creation
of numerical energy by the approximate rotation of the spring force as well as the power which
is lost, when the contact between bodies ceases even though the tangential spring is still stressed.
This explains why, the tangential power dissipation is not simply equal to ct v2

t , the tangential
damping power. In the pseudo steady state, the power Ptangential becomes, however, equal to
the total power dissipated along the tangential direction (without sliding) since the total energy
stored by all the tangential springs in the simulation does not change on average (by definition
of the pseudo steady state).

Defining the previous components is finally a way of controlling the artificial creation of
energy in the system. Since the rotation power14 accounts for the power injected into the system
and since the sum of the previous power components accounts for the power dissipated in the
system, their difference directly gives the artificial power.

Wear Different wear models were also added to the material law in order to calculate the wear
accumulated during the interactions. These models will be explained in the next chapter.

Contact parameters

The spring-slider-damper contact law contains 5 parameters: the normal stiffness kn, the tan-
gential stiffness kt , the normal damping coefficient cn, the tangential damping coefficient ct and
the coefficient of friction µ . Due to this important number of parameters, it would be delusional
to use different values for ball/ball and ball/mill interactions at the current stage of the ball mill
modeling. The remaining 5 parameters will be determined in the section 2.4 by following the
below-mentioned steps:

• initially, we will adopt the material parameters, which were used in a previous DEM study
of the charge motion in the laboratory mill, i.e. kn = kt = 105 N/m, εn = 0.3 (coefficient
of normal restitution for a sphere/sphere collision, i.e. cn = 18.6 Ns/m according to the
appendix A.1), ct = cn, µ = 0.75 [Sawley, 2003]. These values were also used in numerous
studies by Cleary, i.a. [Cleary et al., 2003], who, however, chose a higher value for the
stiffness in general, i.a. around 106 N/m, which is certainly related to the analysis of larger
mills (overlap limitation of heavier balls).

14The definition of the rotation power will be provided in the section 2.3.4. In simple words, it is the power
necessary to rotate the mill.
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• based on the order of magnitude of these values, we will first validate the material law
by existing analytic solutions of elementary collisions to ensure the correctness of the
implementation (trajectory and dissipated power).

• the next step is to understand the influence of the material parameters on the interaction
of the balls, in particular to limit the overlap of the colliding bodies and to choose a time
step, which allows us to recover the coefficient of restitution.

• after the elementary collision analysis, we will study the influence of the material law on
the global charge motion and the power draw of the mill to achieve the best correlation
between the model and the reality.

2.3.2 Geometry

The laboratory ball mill will be modeled by a full-scale 3D model in order to take into account
the influence of the end walls and the increased shear strength of the charge in 3D.

The mill will be represented geometrically by three elements: two flat end walls and the shell
liner. On the one hand, the end walls are modeled by infinite planes to reduce the computation
time. These planes rotate at the same speed than the mill. On the other hand, the shell liners are
modeled by surface meshes. The Perfecto ABAB liner and the Duolift liner have 1D profiles, i.e.
there is no variation of the liner profile along the axial direction. As a result, the computation time
can be reduced by choosing an efficient surface meshing technique, which reduces the number
of facets.

More precisely, the profile of a liner plate15 is first drawn by a conventional CAD software
(FREECAD or CATIA), and exported into the standard exchange file format .step (figure 2.7).

This profile curve is then discretized into line segments. In DEM simulations, the surface
mesh simply approximates the geometry and has no significant influence on the results like in
the classical finite element method, where the mesh is also the basis of the displacement field
interpolation. For this reason, the necessary mesh refinement depends on the production and
assembly tolerances of the liner plates, which are equal to around 1 mm (deviation of the liner
profile curve from the theoretical curve). The objective of the profile curve discretisation is there-
fore to obtain the best approximation with the smallest number of points. To reach this objective,
we implemented a 1D curvature meshing algorithm in MATLAB (or OCTAVE). In contrast to
standard mesh generators, in which the average element size is prescribed, this algorithm adds
more elements where the curvature of the shape is high. In this way, the geometry can be better
approximated with less elements. To convert the .step geometry file into data points, we used
GMSH. A very fine mesh (around 1000 vertices) was creates in this software and exported in

15Strictly speaking, the Perfecto ABAB liner is composed of two different plates, i.e. the A and the B plates.
Nevertheless, we designate by liner plate the (unique) entity which is periodically repeated in space around the
rotation axis of the mill. For the Perfecto ABAB liner, a liner plate is thus the combination of an A and a B plate.
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Figure 2.7: Profile curve of the Perfecto ABAB liner plate. The curve is plotted in such a way that the
rotation axis (aligned with the y-axis) of the mill passes through the point (0, 0, 400) mm, i.e. the circle
of the mill shell (800 mm diameter) passes through the origin. Moreover, the profile curve is contained in
the lower 9◦ sector of this circle, whose bisector is aligned with the z-axis.

the .mesh format. This file was then read in MATLAB and a restricted number of vertices was
selected on the basis of the curvature criteria.

Although we mentioned that the mesh has only a geometrical influence, its fineness might
also have a dynamical consequence. As a matter of fact, typical surface meshes are by definition
discrete, i.e. different facets are assembled along edges and vertices. In DEM simulations with
spheres and surface meshes, it might happen that a sphere does not collide with the facet as such
but rather with one of its edges or vertices, i.e. the normal projection of the center the sphere onto
the plane of the facet is not located on this facet. In YADE, this regularization problem is simply
solved by allowing multiple collisions. Hence, if a sphere collides with the edge between two
neighboring facets, the program handles this case as if the sphere collides with the edge of the
first facet and then with the edge of the second facet, even though these edges are geometrically
identical. The same is true for the collision with a vertex, where the sphere might, however,
be in potential contact with more than 2 facets (usually 6 in 3D meshes with triangular facets).
In conclusion, the contact locally stiffens since more than one spring and one damper (along
the normal or tangential direction) determine the interaction forces. To check whether the mesh
refinement has an influence on the results or not, we created three discretizations of the Perfecto
ABAB liner plate profile curve (figure 2.8). Only a medium refined mesh was generated for
the Duolift liner plate profile curve (figure 2.9). Interestingly, less vertices were necessary to
discretize the Duolift liner (for a same circular sector) with a specified accuracy due to its lower
average curvature.

These curves were then extruded along the axial direction to obtain the surface mesh of one
liner plate. As YADE contains only triangular boundary elements and as the mesh has only a
geometrical importance (except for the regularization), the initial liner profile curve was simply
duplicated, translated and connected to the initial curve by triangular facets (figure 2.10). For
2D liners, whose height changes along the axial direction, the surface mesh of the liner plate
can simply be obtained by classical average element size meshing, even though the number of
elements rises quickly with the refinement.
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(a) Coarse mesh: 15 vertices.
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(b) Medium mesh: 30 vertices.
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(c) Fine mesh: 45 vertices.

Figure 2.8: Profile curve of the Perfecto ABAB liner plate and its discretization based on curvature with
increasing refinement. The curve is plotted in such a way that the rotation axis (aligned with the y-axis) of
the mill passes through the point (0, 0, 400) mm, i.e. the circle of the mill shell (800 mm diameter) passes
through the origin. Moreover, the profile curve is contained in the lower 9◦ sector of this circle, whose
bisector is aligned with the z-axis.
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Figure 2.9: Profile curve of the Duolift liner plate and its medium discretization based on curvature (30
vertices). The curve is plotted in such a way that the rotation axis (aligned with the y-axis) of the mill
passes through the point (0, 0, 400) mm, i.e. the circle of the mill shell (800 mm diameter) passes through
the origin. Moreover, the profile curve is contained in the lower 18◦ sector of this circle, whose bisector is
aligned with the z-axis.
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Figure 2.10: Axial extrusion of the coarse Per-
fecto ABAB liner profile curve discretization (fig-
ure 2.8a) to illustrate the generation of the liner
plate mesh composed of triangular facets.
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Figure 2.11: Assembly of the coarse liner plate
meshes of the Perfecto ABAB liner to obtain the en-
tire shell liner mesh represented in the coordinate
system which will be used throughout the calibra-
tion and validation study.
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Finally, the surface mesh of the liner plate is reproduced 40 times for the Perfecto ABAB liner
and 20 times for the Duolift liner before being rotated16 to assemble the mesh of the entire shell
liner (figure 2.11). This mesh is then saved again in the .mesh format, which is imported into
YADE. The coarse, medium and fine meshes of the Perfecto ABAB liner contain 1120, 2320 and
3520 triangular facets. The equivalent number of quadrangular elements in the medium mesh is
thus almost identical to the 1200 quadrangular elements, which were used in a previous study
[Sawley, 2003]. The Duolift liner mesh contains only 1120 triangular facets (same number of
facets than in the coarse Perfecto ABAB liner mesh) due to its reduced average curvature.

Concerning the filling material, the balls are the only mobile elements inside of the mill.
Geometrically, they will be modeled by spherical discrete elements having a diameter of 15 mm.
Their initial positions are defined by filling the mill from the bottom to the top along horizontal
planes while avoiding any initial contact between the balls and the liner (figure 2.12). In conse-
quence, the balls will first fall during a fraction of a second under the influence of gravity before
colliding with the liner.

Figure 2.12: Initial positions of the balls based on the simulation script in the appendix B with the medium
Perfecto ABAB liner mesh.

16Instead of creating each unique liner plate, it is also possible to draw the complete liner profile curve (i.e. not the
liner plate profile curve), to discretize it and to extrude it along the axial direction. We did not choose this method,
since it does not necessarily allow us to map all the lifters on one master lifter since the relative position of each
vertex in each liner plate mesh might be different. This technique will, however, only be used in the next chapter to
achieve a better statistical representativity of the wear data during the liner wear analysis.
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2.3.3 Simulation

When the material and the geometry have been defined, the interaction between the bodies can be
calculated by starting the simulation. In YADE, a simulation takes the form of different engines,
which are called periodically at each time step until the total simulated time is reached. There-
fore, it is necessary to define the different simulation engines, the time step, the total simulated
time and the computational requirements of the simulation.

The simulation engines are for instance used to detect the collisions, to apply the contact law,
to perform the time integration, . . . Since the underlying principles of these engines have already
been explained17, we will only focus on two particular engine features, which are the reasons
for the ball collisions: gravity and the rotation of the mill. On the one hand, gravity is simply
introduced in the model by applying a constant acceleration equal to -9.81 m/s2 along the z-axis.
On the other hand, the rotation engine is responsible for rotating the mill at the constant rotation
speed, which was defined in the section related to the experimental data. Looking along the
y-direction in the figure 2.11, the liner will rotate anticlockwise, i.e. the less aggressive side of
the liner profile lifts the charge, which is typical for liner profiles in cement mills. The rotation
will start immediately with simulation. In other words, no simulation time will be wasted on
simulating the resting phase18 of the charge under the influence of gravity since we are interested
in the pseudo steady state characteristics of the ball charge motion.

As we explained earlier, the time step will be chosen by finding the compromise between
the computation time and the recovery of the restitution coefficient to integrate the individual
collisions as best as possible (section 2.4.1). In the earlier study of the laboratory mill [Sawley,
2003], the time step ∆t was equal to 10−5 s, which ensured that each collision lasted for at least
50 time steps according to the author.

The total simulated time should be sufficient to reach the pseudo steady state of the charge
motion and to sample enough data to obtain representative averages of the charge motion and
the power draw. The necessary simulated time has thus to be determined by the simulation itself
(section 2.4.2). In the previous study [Sawley, 2003], a total simulated time of 10 s was used and
the charge motion started to stabilize after around 2.5 s, i.e. after around 1.5 rotations.

In terms of the computational requirements, it is important to notice that DEM simulations
are usually run in parallel on several processors to reduce the computation time. YADE solves
this problem by an OpenMP shared memory parallelization. Due to the splitting of the problem
in sub-problems and their recombination, the computation time on several computation cores is
not simply equal to the computation time on one core divided by the total number of cores used
for the simulation. To minimize the computation time, we studied the evolution of this time as a
function of the number of cores. The reference simulation is based on the PYTHON control script
in the appendix B used with the medium mesh of the Perfecto ABAB liner. The simulations were

17Some additional explanations can, however, be found in the comments of the PYTHON control script in the
appendix B.

18The resting phase describes the evolution of the ball positions from their unstable initial positions to their stable
position after colliding with the liner (at rest) under the influence of gravity.
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run on a single Intel Core i7-4790 processor clocked at 3.6 GHz with 4 cores virtually divided
into 8 cores by hyper-threading, i.e. Intel’s simultaneous multithreading implementation. During
a simulation only around 250 MB of RAM were required. The figure 2.13 shows that using two
cores leads to the highest decrease in calculation time with respect to previous calculation time
(one core less), while using more than 4 cores has no real advantage. It seems that running
simultaneously 4 simulations in parallel on 2 cores each or running 2 simulations in parallel on
4 cores each are the best strategies to run a large number of simulations in a minimum amount
of time. Nevertheless, this conclusion neglects the processor load of the operating system and
the other processes, as well as the influence of the hardware. In particular, since hyper-threading
is the virtual duplication of parts of the hardware (loosely speaking), it is questionable whether
running simultaneously 2 simulations in parallel on 4 cores each is actually two times faster than
running these simulations successively on 4 cores and having 4 (virtually) idle cores; this would
explain why running the simulation on more than 4 cores led to no significant improvement (in
addition to the problem splitting/combination overhead). A compromise19 is therefore to run
3 simulations simultaneously on 2 cores each, which leaves 2 cores idle to work with other
programs.
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Figure 2.13: Computation time (real time, i.e. not
CPU time) required to run the script, which is pro-
vided in the appendix B, with the medium Perfecto
ABAB liner mesh as a function of the number of
cores. The other cores were idle during the simula-
tion except for the execution of the operating sys-
tem and the background processes. The expected
ideal time, which is equal to the simulation time
on one core divided by the respective number of
cores, has also been represented.
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Figure 2.14: Illustration of the nondeterminism,
when large scale DEM simulations are executed in
parallel on several processing cores. The rotation
power was calculated with the control script in the
appendix B and the medium Perfecto ABAB liner
mesh on 1 or 8 cores. Initially both results are the
same but their difference increases gradually.

Finally, it is interesting to notice that DEM simulations, which are executed in parallel, are
nondeterministic [Šmilauer et al., 2014]. Because of the finite precision arithmetic of floating

19It is certainly possible to analyze this problem more in detail but it is not critical for this study, which is why
we will not continue its analysis.
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point numbers, which are combined pseudo-randomly on different computation cores, the exact
same simulation input might lead to different results. The figure 2.14 shows the power draw of
the mill (rotation power20) obtained by the simulations on 1 core and on 8 cores of the previous
study of the computation time. It is clearly visible that the results are initially identical but
diverge progressively. Fortunately, their mean values in the pseudo steady state, i.e. the averages
of the recorded rotation power from 2.5 to 5 s (simulated time), remain almost identical: P1 core =
1399.8 W and P8 cores = 1396.8 W.

2.3.4 Post-processing

Since the experimental data consists of photographs of the charge motion and power draw mea-
surements, the same data should be exported from the simulation. This data, which will be
defined more precisely hereinafter, is recorded at a reduced sampling frequency, i.e. not at each
time step, due to the large data creation in DEM simulations. The sampling frequency should
therefore be sufficiently low to reduce the storage requirements while being sufficiently high to
obtain representative data of the simulation. The most stringent criteria rises from the creation
of an animation of the simulation. In fact, if the sampling frequency is too high, it might be im-
possible to determine the rotation direction based on the profile movement alone. This behavior
is known as the reverse rotation effect, e.g. of filmed car wheels. For the experimental data, the
critical sampling period is slightly larger than 0.01 s. Hence, a reasonable choice21 seems to be
a recording period equal to ∆trec = 0.01 s.

Concerning the charge motion, the position and the velocity of the balls and facets are saved
in the .vtu VTK format for unstructured meshes. These files can be post-treated in the PAR-
AVIEW visualization application to create expressive illustrations of the charge motion by ren-
dering the spheres and the facets (figure 2.15). Moreover, the coordinates of the spheres are also
saved explicitly to perform some data analysis in MATLAB. For instance, it is possible to de-
termine if the pseudo steady state has been reached by analyzing the global center of gravity of
the spheres over time. Once the steady state has been reached, the general charge motion can be
analyzed by a more sophisticated method, i.e. by position density plots [Kalala, 2008]. Position
density plots show the number of occurrences of balls at a specific position in the mill. More
precisely, the space taken up by the mill in the xz-plane is discretized by a rectangular plane grid.
For each cell, the number of balls having their center projection in this specific cell is accumu-
lated for all the time steps. After dividing this number by the total number of recorded time steps,

20The rotation power will defined in the next section. In simple words, it is the power necessary to rotate the mill.
21Notice that it might be tempting to use an even smaller sampling period to increase the representativity of the

results, which would then allow to reduce the total simulated time. More precisely, this strategy can be explained as
follows. Hereinafter, the duration, over which the data will be sampled and averaged, will be equal to 2.5 s. Since
the transient component of the charge motion disappears after around 2.5 s, the total simulated time will be equal to
5 s. To reduce this simulated time, one may try to reduce the sampling duration to 2 s and the sampling period ∆trec
to 8 · 10−3 s, hence, obtaining the same number of sampling points. Nevertheless, this strategy focuses more and
more on the local behavior of the charge motion instead of its global average motion. Therefore, it is impossible to
reduced the sampling period and the simulated time while maintaining the representativity of the results unchanged.
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we obtain the position density plot (figure 2.16). The cell size will be equal to the shell diame-
ter divided by 150; this value leads to a sufficiently detailed representation (more cells) with a
medium density (less cells). The position density plot has the additional benefit of introducing a
relatively objective way to determine the influence of the charge motion to different parameters,
like the material parameters or the operating conditions. In fact, it is possible to plot the contour
curve (represented in red in the figure 2.16), which separates the main charge zone from the zone
where the balls are less likely to occur. This curve will be called the position density limit. The
limiting value has been chosen equal to the average of the average number of balls per cell over
all the non-zero occurrence cells22 divided by 10. For instance, in the figure 2.16, the average of
the average number of balls per cell over all the non-zero occurrence cells is equal to around 2.5.
Hence, the limiting value in the contour plot is 0.25.

Figure 2.15: Illustration of the visual capabilities
of PARAVIEW. The charge motion was represented
with a color code depicting the translation velocity
of the balls.
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Figure 2.16: Position density plot of the charge
motion in the pseudo steady state (simulated time:
2.5 s to 5 s) obtained with the control script in the
appendix B and the medium Perfecto ABAB liner
mesh. The underlying grid is divided into 150 cells
along each direction. The red line is the position
density limit.

Besides the charge motion, the power draw of the mill is the second category of experimental
validation data. As explained in the previous chapter, the power draw can numerically be esti-
mated either on the basis of the torque exerted by each ball on the liner (rotation power) or by
the power dissipated during the interactions, i.e. by damping and sliding23. Only in the pseudo

22It is important to calculate the average over the cells in which ball occurrences have actually been accumulated
to take into account the average degree of dispersion of the charge cloud. Indeed, if the average would be calculated
over all the cells it would be constant, if the filling ratio and the geometry of the mill are unchanged. For instance,
the charge cloud is more expanded at a higher rotation speed than at a lower one. Hence, the limiting value would be
too restrictive for expanded charge clouds where the average number of balls per cell is smaller than at low angular
speeds.

23The normal, tangential and sliding dissipation power measures were defined in the section 2.3.1. Their actual
implementation can be found in the appendix C. The implementation of the rotation power calculation is provided in
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steady state, these different measures take on average identical values due to the conservation of
energy. Their comparison might give an idea about the influence of the material (contact) pa-
rameters on the different types of power dissipation, like increased sliding dissipation, when the
friction coefficient decreases. For this reason, the rotation power Protation (torque times rotation
speed), the power dissipated along the normal direction Pnormal, the power dissipated along the
tangential direction Ptangential and the power dissipated by sliding Psliding will be saved for each
∆trec = 0.01 s.

the appendix B. Notice that there also exists a third way of numerically calculating the rotation power in the pseudo
steady state. More precisely, if the center of gravity of the balls is determined, its horizontal distance to the rotation
axis gives the lever arm of the charge. By multiplying this lever arm by the mass of the charge and the acceleration
of gravity, the torque applied to the mill is known. Finally, multiplying the torque by the angular speed leads to the
rotation power in the pseudo steady state.
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2.4 Numerical Results

In this section, the numerical results of the DEM model will be analyzed to judge its capability
of predicting the charge motion and the power draw of ball mills. First, the elementary collisions
between spheres, facets and walls will be studied, then the results of the laboratory mill will be
discussed, and finally, the influence of the size of the industrial mill with respect to the laboratory
mill will be examined.

2.4.1 Elementary collision

In this first section about the numerical results, the elementary collision between the discrete
bodies will be studied to analytically validate the new contact law in YADE, to understand the
influence of the material parameters on the normal overlap of the spheres during their collision
and to determine the time step of the integration.

Analytic validation

To ensure that the new linear spring-slider-damper contact model implemented in YADE (ap-
pendix C) delivers correct results, some elementary interactions were simulated. Since these
interactions are sufficiently simple, it was possible to derive their analytic solutions. The fig-
ure 2.17 summarizes the different scenarios for which the displacement (or rotation) and the
respective power dissipation (normal, tangential and sliding power) were calculated numerically
and analytically. Due to the lengthy derivation of the analytic laws and the pass-fail comparison,
the entire study will not be described here but in the appendix A.

In conclusion, the new contact model deliveres correct results with respect to the normal and
tangential components (with and without sliding) of the contact law for sphere, facet (triangular
surface) and wall (infinite place) elements in YADE.

Overlap limitation

As explained in the section 1.2.2, a common technique used to choose the value of the normal
stiffness kn is to limit the overlap between colliding spheres. In this section, we will therefore
write the percentage of overlap as a function of the contact parameters, i.e. the normal stiffness
kn and the coefficient of normal restitution εn. The percentage of overlap p∆x is defined with
respect to the diameter d of the colliding spheres:

p∆x =
∆x
d

(2.4)

In the case of the laboratory mill, d = 15 mm. According to the explanation in the ap-
pendix A, the maximum overlap ∆x during a collision (with the linear spring-slider-damper con-
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(a) Normal collision between two spheres moving
at the velocities v1 and v2.

b
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x

(b) Normal collision of a sphere on a facet with an
initial velocity v0.
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θ

do

(c) Tangential collision of a sphere on a wall with
an initial velocity v0. The overlap was imposed
to be equal to do in order to ensure the tangential
interaction. The friction coefficient was increased
sufficiently to study the interaction without sliding.

b
v0

x

do

b

(d) Tangential collision of a sphere on a wall with
an initial velocity v0. The overlap was imposed
to be equal to do in order to ensure the tangential
interaction. The tangential stiffness was increased
sufficiently and the rotation blocked to study the
sliding component of the contact law solely.

Figure 2.17: Interaction scenarios, which were used in the appendix C to analytically validate the imple-
mentation of the new spring-slider-damper contact law in YADE.
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tact law) is defined by the following formula:

∆x =
vr

ωd
e−ζ ω0 t∗ sin(ωd t∗) with t∗ =

1
ωd

arctan

(√
1−ζ 2

ζ

)
(2.5)

where the natural frequency ω0, the damping ratio ζ and the damped frequency ωd are de-
fined by:

ω0 =

√
kn

meff
ζ =

cn

2
√

kn meff
ωd = ω0

√
1−ζ 2 (2.6)

The definition of the effective mass depends on the type of the interaction. If a sphere collides
with another sphere (freely moving), meff =m1m2/(m1+m2), where m1 and m2 are the respective
masses of the spheres. For spheres of identical mass, meff = m/2, where m is the mass of one
sphere. If a sphere collides with a rigid facet, meff = m. The material density of the spheres is
again equal to 7640 kg/m3.

The last variable, which has to be defined to calculate the percentage of overlap, is the relative
velocity vr. This velocity can either be estimated by the lifting height of the charge (velocity by
energy conservation) or its peripheral rotation speed:

vr =
√

2 g h vr = rmeanω (2.7)

where g, h, rmean and ω are the gravitational acceleration 9.81 m/s2, the average lifting height h,
which can be approximated by the average liner diameter (around 770 mm, worst case scenario),
the mean radius of the liner profile (around 385 mm) and the rotation speed of the mill (around
40 rpm). The maximum relative speed is therefore equal to around 4 m/s by selecting the greater
value of the previous estimates, i.e. the velocity reached due to gravity.

Moreover, we will write the normal damping coefficient cn as a function of the coefficient of
normal restitution εn, which represents the ratio of the relative separation speed to the relative
speed of approach (appendix A):

cn =−2 ln(εn)

√
meff kn

π2 + ln2(εn)
(2.8)

Finally, it is possible to calculate the maximum percentage of overlap as a function of the
normal stiffness kn and the coefficient of normal restitution εn. The results are shown in the
figure 2.18 for common values of kn and εn. This figure highlights the fundamental fact that a
stiffer spring is harder to strain, i.e. the overlap decreases mainly with the stiffness of the normal
spring.

In conclusion, it seems reasonable to chose the lower limit of the normal stiffness equal to
105 N/m because the percentage of overlap is then roughly limited to 10%; it should be noticed
that the previous reasoning is based on the maximum overlap, i.e. on the maximum velocity.
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(a) Collision between two (freely moving) spheres. (b) Impact of a sphere on a rigid facet.

Figure 2.18: Maximum percentage of overlap with respect to the diameter (of one sphere) for the linear
spring-slider-damper contact law. The spheres have a 15 mm diameter and a density equal to 7640 kg/m3.
The relative normal impact velocity is equal to 4 m/s. The frontiers in the contour diagrams are associated
to the following percentages: 1, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 %.

On average, the impact velocities are, however, far below 4 m/s as will be shown hereinafter.
Concerning the upper limit of the normal stiffness, a greater value than 107 N/m seems to lead
to no significant reduction of the overlap, which is anyways below 1% for this value. The in-
fluence of the stiffness on the global charge motion and the power draw will be analyzed in the
section 2.4.2.

It is also interesting to notice that the overlap resulting from the static stress applied to the
balls by gravity is negligible with respect to the impacts. In fact, if one supposes that a column
of balls as high as the mill shell diameter rests on one balls, the resulting overlap due to gravity
is only equal to around 7 · 10−5 m for a normal stiffness kn = 105. This value correspond to a
percentage of overlap smaller than 0.5%. In comparison, the maximum percentage of overlap
due to an impact is far greater, i.e. 4% - 6% for a sphere/sphere impact at v0 = 4 m/s (depending
on εn).

Time step

It was previously explained (section 1.2.2) that the time step has to be sufficiently small to in-
tegrate accurately the equations of motion. On the one hand, it is necessary that the explicit
integration scheme is stable, i.e. approximation errors are not amplified. For a linear spring con-
tact law, this condition is the following one [O’Sullivan & Bray, 2004], where k = min(kn, kt)
and m is the mass of the sphere elements:

∆tcr ≤ 0.22
√

m
kn

(2.9)
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Therefore, the time step ∆t should at maximum be equal to 8.08 · 10−5 s, 2.56 · 10−5 s or
8.08 · 10−6 s for kn = 105, 106 or 107 N/m, supposing that kt ≤ kn and that the damping is
sufficiently small24. The mass of the balls in the laboratory mill (around 13.5 g) was obviously
used to determine these values.

On the other hand, the time step can be determined by trying to recover the coefficient of
normal restitution, when a sphere collides with another sphere (identical speed with opposite di-
rections). The sphere-sphere collision is considered since the contact time between two spheres is
smaller than the contact time between a sphere and a facet for the same parameters (appendix A),
i.e. it is the worst case scenario25. Moreover, the normal collision is studied since the contact
parameters in the tangential direction have the same order of magnitude. Hence, it seems reason-
able to suppose that the results in the normal direction can be extrapolated to the behavior in the
tangential direction.

The coefficient of normal restitution is influenced by the time step as follows. Due to the
explicit time integration, the force at the current position of the sphere is used to update its
velocity and its position. If the time step increases, the sphere travels further before being slowed
down, when approaching the other sphere. As a consequence, the impacting spheres get closer
to each other (figure 2.19a). Since the overlap is directly proportional26 to the force created by
the normal spring component of the contact law, greater forces are created when the impacting
particles separate. Hence, the velocity of the spheres after the impact increases with the time
step. In other words, when the number of time steps per collision increases, the error of the
coefficient of restitution decreases. This phenomenon can be observed in the figure 2.19b, which
illustrates the coefficient of restitution as a function of the number of time steps per collision.
It might be surprising to see that the coefficient of restitution in this figure does not converge to
the imposed theoretical coefficient, which is equal to 0.3. In fact, this is a consequence of the
particular implementation of the contact law, which prohibits attractive forces (created by the
damper) between separating elements.

To complete this first part of the explanation, which will be extended by energetic consider-
ations, it is important to define the relation between the number of time steps per collision and
the time step per se, as well as the relation between the imposed theoretical coefficient of normal
restitution εn and the effective coefficient of restitution εn. The time step ∆t can be defined based
on the number of time steps per collision by dividing the theoretical contact time tc = π/ωd
(appendix A) by the number of time steps per collision. This contact time is represented in

24Since our contact law contains a viscous component, the critical time step should also be dependent on the
damping coefficient. Nevertheless, no conclusive results were found in the literature; the result in [O’Sullivan &
Bray, 2004] seems to contain an error. Due to the complexity of determining the critical time step of discrete spring-
slider-damper systems, we will rather develop a simplified strategy for choosing the time step hereinafter and control
the results by the different power measures (rotation power, normal power, tangential power and sliding power) in
the simulation of the charge motion.

25Multi-sphere collisions might lead to an even worse scenario. Because of their complexity, we will rather try to
generalize the results of the elementary collision to the multi-collision scenario instead of analyzing this scenario as
such.

26The damping component of the force is not mentioned here to simplify the explanation.
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(a) Increasing overlap when the number of time
steps per collision decreases.
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(b) Decreasing coefficient of normal restitution
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Figure 2.19: Influence of the time step on the normal collision of two spheres (density ρ = 7640 kg/m3,
diameter d = 15 mm) with an impact velocity v0 = 4 m/s, i.e. 2 m/s each (opposite directions). The
stiffness and the coefficient of restitution of the normal component of the spring-slider-damper contact
law are equal to kn = 105 N/m and εn = 0.3. The time step was calculated by dividing the theoretical
contact time (tc = π/ωd) by the respective number of time steps. These results were obtained by the DEM
solver YADE.

the figure 2.20 for the sphere/sphere collision. In a typical DEM simulation, the contact time
therefore varies between 10−3 s and 10−4 s.

As explained earlier, the effective coefficient of normal restitution εn, i.e. the coefficient of
restitution in the simulation for a large number of times steps per collision in order to neglect
the influence of the explicit integration, e.g. 10,000, is different from the theoretical coefficient
of normal restitution εn since the normal force between impacting bodies (in the contact law
implementation) is equal to zero, when it becomes attractive. This is usually the case when the
separating normal velocity is relatively high so that the normal damper creates an attractive force
which is stronger than the repulsive force of the spring. The relation between the theoretical co-
efficient of restitution εn and the effective coefficient of restitution εn is shown in the figure 2.21
for the sphere/sphere collision. The effective coefficient of restitution εn is greater than the theo-
retical coefficient of restitution εn especially for low values of εn. This is the consequence of the
higher normal damping coefficient cn for these values of εn.

A more rigorous but equivalent way of choosing the time step is the recovery of energy in-
stead of the coefficient of restitution. Since the resulting coefficient of restitution increases with
the time step, the separation velocity of the particles increases as well, i.e. less energy is dissi-
pated. Instead of loosing less energy, the reverse argument states that artificial energy is created
numerically. According to this reasoning, minimizing the time step minimizes the creation of
numerical energy. The figure 2.22 shows the percentage of numerical energy with respect to the
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Figure 2.20: Logarithm (basis 10) of the theoret-
ical contact time tc between two identical spheres
(density ρ = 7640 kg/m3, diameter d = 15 mm).
This contact time is independent of the impact ve-
locity v0 and therefore depends only on the mass
of the spheres m, the normal stiffness kn and the
coefficient of normal restitution εn. The frontiers
on the contour plot are associate to the following
values: -4.4, -4.2, -4, -3.8, -3.6, -3.4, -3.2, -3, -2.8
and -2.6 (from the right to the left).
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Figure 2.21: Relation between the theoretical and
the effective coefficient of normal restitution, i.e.
εn and εn. The figure was created for two spheres
(density ρ = 7640 kg/m3, diameter d = 15 mm)
colliding with an impact velocity v0 = 4 m/s, i.e.
2 m/s each (opposite directions). The normal stiff-
ness was equal to kn = 105 N/m. Nevertheless, the
result is independent of the particle mass m, the im-
pact velocity v0 and the normal stiffness kn, i.e. it
depends only on the theoretical coefficient of resti-
tution εn and the number of time steps per colli-
sion, which was equal to 10,000 in order to neglect
the influence of the time step.

non-artificial energy after the collision as a function of the number of time steps per collision.
A very important conclusion drawn during the creation of this figure is its independence27 of
the normal stiffness kn, the impact velocity v0 and the mass of the sphere m. In other words,
the percentage of numerical energy created during a normal collision between two spheres only
depends on the theoretical coefficient of normal restitution εn and the number of time steps used
to integrate the collision.

The figure 2.22 shows only the percentage of numerical energy created in a single collision
of two spheres. The objective is, however, to obtain numerical results, which are sufficiently
independent of the time step, by limiting the percentage of the total numerical energy. For

27The underlying results of this conclusion, i.e. the curves for different values of kn, m and v0, were not represented
since they are identical to the curves in the figure 2.22. Nevertheless, we can try to understand the reason behind
this independence. For the analytic solution of the contact law, it is clear that the normal stiffness kn and the mass m
have no influence on the speed of the sphere after the impact since the coefficient of restitution defines this speed on
the basis of the impact velocity. Hence, the stiffness kn does not change the remaining energy after the impact (in
the analytic solution). Moreover, the mass has no influence on the percentage of numerical energy, since it cancels
out by calculating this percentage (fraction with m in the numerator and denominator). It is, however, unclear why
the numerical result is not dependent on the stiffness and the impact velocity v0 because of the time discretization.
More detailed investigations would be necessary to understand this behavior of the explicit time integration.
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Figure 2.22: Decreasing percentage pn of the numerical energy created during the normal impact of two
spheres (density ρ = 7640 kg/m3, diameter d = 15 mm) with a velocity v0 = 4 m/s, i.e. 2 m/s each (oppo-
site directions) for different theoretical coefficients of normal restitution εn. The normal stiffness is equal
to kn = 105 N/m. The results depend, however, only on the theoretical coefficient of normal restitution
εn and the number of time steps per collision. The percentage of numerical energy was calculated with
respect to the remaining energy after the collision obtained by a simulation with 10,000 time steps (per
collision). For this number of time steps, the creation of numerical energy is negligible.

instance, the percentage of numerical energy might be lower for a single collision of a particle
with a higher coefficient of restitution. Nevertheless, this particle might collide more often than a
particle with a lower coefficient of restitution since less energy is lost per collision. Hence, more
artificial energy could be created in the long run. A formula for the worst case scenario will be
derived hereinafter to finally determine the time step ∆t as a function of the normal stiffness kn,
the theoretical coefficient of normal restitution εn and the percentage of the admissible creation
of numerical energy (in the worst case).

Let E be the total energy initially in the system and pn the percentage of numerical energy
created during a single impact of two spheres. This percentage is defined with respect to the
energy after the single impact simulated with 10,000 time steps (per collision) like in the fig-
ure 2.22, i.e. ε

2
n E. For this number of time steps, the creation of numerical energy is negligible.

Consequently, when all the particles in the system collide once with a relatively large time step,
the total energy after the impact is equal to (1+ pn) ε

2
n E of which pn ε

2
n E is the artificially

created energy. In the worst case, the particles collide an infinite number of times. Hence, the
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total artificial energy Ea created during all these collisions is equal to28:

Ea =
[

pn ε
2
n + pn (1+ pn) ε

4
n + pn (1+ pn)

2
ε

6
n + . . .

]
E (2.10)

= pn ε
2
n E

+∞

∑
i=0

(1+ pn)
i
ε

2i
n (2.11)

=
pn ε

2
n

1− (1+ pn)ε
2
n

E (2.12)

In the worst case, the percentage pntot of the total numerical energy with respect to the to-
tal energy injected in the system, is given by the following equation according to the previous
reasoning:

pntot =
pn ε

2
n

1− (1+ pn)ε
2
n

(2.13)

To understand the influence of the effective coefficient of normal restitution on the total per-
centage of numerical energy, the previous equation was plotted in the figure 2.23. As expected,
this figures shows that the percentage of total numerical energy increases strongly for high effec-
tive coefficients of normal restitution εn since the corresponding particles do not loose as much
energy in a single collision and can collide more often, thus, creating more numerical energy.

In conclusion, the previous explanation can be used as a strategy to choose the time step.
For instance, we will try to determine the time step ∆t necessary to integrate interactions with a
normal stiffness kn = 105 N/m and a theoretical coefficient of normal restitution εn = 0.3 while
allowing a maximum percentage of numerical energy pntot = 1%. The figure 2.21 shows that the
theoretical coefficient of normal restitution εn = 0.3 is equivalent to the effective coefficient of
normal restitution εn ≈ 0.4. The formula 2.13 or the figure 2.23 can then be used to determine
the corresponding percentage of numerical energy for one collision pn ≈ 5.2%. This percentage
can be converted in a number of time steps per collision by the figure 2.22: around 27 time steps.
Finally, the figure 2.20 shows us that the theoretical contact time for kn = 105 N/m and εn = 0.3
is equal to approximately 10−3.1 s. Hence, the time step ∆t, which satisfies our requirements, is
equal to more or less 2.94 ·10−5 s. This time step is smaller than the critical time step calculated
previously, provided that the damping is relatively low.

2.4.2 Laboratory mill

By combining the DEM model of the laboratory mill (section 2.3) with the results of the previous
section, it is finally possible to simulate the charge motion and the power draw of the mill. It is,
however, still necessary to determine when starts the pseudo steady state of the charge motion
and for how long it should be recorded to obtain sufficiently representative prediction of this
motion and the power draw. Accordingly, some general results of the mill simulation, will first

28The line over the εn is a line and not a minus sign.
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Figure 2.23: Percentage of the total numerical energy pntot with respect to the total energy injected in the
system as a function of the percentage of numerical energy created during one collision pn with respect
to the real remaining energy after the collision, i.e. the remaining energy after the collision obtained by a
simulation with 10,000 time steps. This figures was created by means of the formula 2.13. The effective
coefficients of normal restitution εn = 0.4, 0.63 and 0.9 correspond to the theoretical coefficients of normal
restitution εn = 0.3, 0.6 and 0.9 according to the figure 2.21.

be described. Then, the liner mesh and the material parameters will be studied to understand
their influence on the results and to ultimately calibrate these latter parameters on the basis
of the experimental data summarized previously (case 1, section 2.1.2). Finally, the calibrated
model will be validated to ensure its predictive capability in different milling scenarios (case 2,
3 and 4, section 2.1.2).

General results

The numerical results in this section were obtained by simulating the case 1 of the experimental
data (section 2.1.2): Perfecto ABAB liner (medium mesh), filling ratio 30% and percentage of
critical velocity 70%. The material parameters are identical to those used in a previous study of
the laboratory mill [Sawley, 2003]: equivalent normal stiffness kn = 105 N/m, equivalent tan-
gential stiffness kt = 105 N/m, (theoretical) coefficient of normal restitution (for a sphere/sphere
collision) εn = 0.3 (cn ≈ 18.6 Ns/m, appendix A.1), equivalent tangential damping coefficient
ct = cn and the friction coefficient µ = 0.75. If 1% of numerical power with respect to the to-
tal power is allowed to be created in the system, the time step ∆t should be equal to around
3 ·10−5 s at most (according to the strategy explained in the section 2.4.1). We choose, however,
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∆t = 10−5 s to keep the recording period equal to ∆trec = 0.01 s (multiple of 10−5 s) and for
reasons of simplifying standardization29. The total simulated time is chosen to be equal to 10 s,
which is equivalent to almost 6 full rotations of the mill. This value was chosen by supposing
that one rotation is necessary to allow the charge to be lifted up and fall down. One additional
rotation is then necessary to leave the transient state. And finally, one more rotation is needed to
record the characteristics in the pseudo steady state. Hence, three rotations seem to be necessary
to extract the data, which is needed in this analysis. Nevertheless, this number of rotations was
doubled to check whether the pseudo steady state is actually reached after 2 rotations or in other
words, to check whether the data recorded during the last rotation is sufficiently representative
of the characteristics (mainly the power draw) in the pseudo steady state.

Concerning the general charge motion, the figure 2.24 shows the charge, which falls onto the
liner, which is then lifted up and which finally, cascades and cataracts down to the toe. After
around 2.5 s, the transient motion seems to disappear and the pseudo steady state has been
reached. The maximum amplitude of the translation velocity is 3 m/s. This value is relatively
close to the 4 m/s, which was determined previously by considering the full diameter of the mill
as drop height. The figure 2.25 clearly illustrates the influence of the end walls, which enhance
the lifting capability of the liner due to the friction between the walls and the balls.

To determine more objectively, when the pseudo steady state has been reached, the figure 2.26
shows the center of gravity of the balls as a function of time along x and z, x being the horizontal
axis and z being the vertical axis (e.g. figure 2.11). The center of gravity reaches the pseudo
steady state in the lower front quadrant of the mill after approximately 2.5 s. Hence, the charac-
teristics in the pseudo steady state (average charge position and power draw prediction) should
only be based on the recorded data after 2.5 s of simulated time.

Besides the charge motion, some general conclusions about the power can be drawn. The
figure 2.27 represents the rotation power Prot, i.e. the power necessary to rotate the mill, and the
dissipated power in collisions Pdissip = Pnormal +Ptangential +Psliding, along the normal direction,
along the tangential direction (without sliding) and by sliding. The first peak is due to the artificial
impact of the balls, when they fall onto the liner. Then, the charge is lifted up, which explains
the high rotation power, before avalanching down to the toe and leading to a significant amount
of energy, which is dissipated in damping and sliding collisions. Since the balls are moving in
a relatively chaotic way, the power oscillates randomly around a medium value in the pseudo
steady state. Most importantly, the rotation power is on average equal to the power dissipated
in collisions in this state, i.e. the same amount of energy which is injected into the system is
dissipated by it. For instance, by calculating the mean of both power measures from 7.5 s to 10 s,
we obtain Prot = 1392.3 W and Pdissip = 1395.2 W; these values are thus almost identical.

To reduce the computation time in future simulations, it is questionable whether the system
has already reached the steady state after 2.5 s and if 2.5 additional seconds are sufficiently
representative of the average power. Hence, we calculated the mean of both power variations

29As will be pointed out in the section about the influence of the material parameters, choosing this smaller time
step makes it also possible to use the same time step for all the simulations with a normal stiffness equal to 105 N/m.
For reasons of standardization, we thus prefer to use a single value of the time step for a specific normal stiffness.



Numerical Results 97

(a) Charge falling onto the liner (t = 0.2 s) (b) Lifted up charge (t = 0.5 s)

(c) Cascading and cataracting charge (t = 0.75 s) (d) Charge in the pseudo steady state (t = 2.5 s)

Figure 2.24: General charge motion in the laboratory mill. The color code indicates the amplitude of the
translation velocity: 0 m/s (blue) to 3 m/s (red).
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Figure 2.25: Parallel projection of the charge along the x-direction (t = 3 s). The influence of the end
walls is shown by the enhanced lifting at the left and the right sides. The color code indicates the amplitude
of the translation velocity: 0 m/s (blue) to 3 m/s (red).
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Figure 2.26: Position of the center of gravity of the balls during the first 5 s of the simulation. After
around 2.5 s, the pseudo steady state seems to have been reached.
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from 2.5 s to 5 s: Prot = 1398.8 W and Pdissip = 1390.2 W. Since the relative difference between
the different averages from 2.5 s to 5 s, and from 7.5 s to 10 s remains below 1%, it seems
reasonable to reduced the total simulated time to 5 s. Therefore, the characteristics of the pseudo
steady state will be determined by averages over the period from 2.5 to 5 s.

Finally, the figure 2.28 gives an idea about the importance of the mechanisms by which power
is dissipated in the ball mill30. On average, the sliding power accounts for 52%, while the normal
and tangential power only account for 40% and 8%. This power distribution emphasizes why
the major comminution mechanism in ball mills is the abrasion of a relatively soft feed material
by harder steel balls.
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Figure 2.27: Rotation power Prot and the dis-
sipated power in collisions Pdissip = Pnormal +
Ptangential + Psliding during the first 5 s of the sim-
ulation.
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Figure 2.28: Dissipated power in the collisions
Pdissip and its components, the power dissipated
by normal damping Pnormal, by tangential damping
Ptangential and by sliding Psliding during the first 5 s
of the simulation.

Experimental calibration

To predict the reality, the parameters of a model are calibrated on the basis of experimental data.
In this section, the parameters of the charge motion simulation will be adjusted by means of the
first experimental data set described previously (case 1, section 2.1.2).

In order to choose the appropriate simulation parameters, it is essential to understand which
is their influence on the results. For this reason, the effect of the geometry on the results will first
be analyzed by focusing on the mesh refinement. Afterwards, we will try to comprehend how the
material (contact) parameters affect the charge motion and the power draw of the mill. Finally,
the material parameters, which best fit the experimental observations, will be determined.

30The following percentages will change after the calibration of the contact parameters. The sliding dissipation
will, however, remain the major dissipation mechanism.
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The parameters of the simulation31 used throughout this section are identical to those used in
the previous section except for the meshes of the geometry and the material (contact) parameters
in the subsections related to their respective study.

Influence of the mesh refinement The influence of the mesh refinement was studied for the
coarse, medium and fine meshes illustrated previously by the discretization of their profile curve
in the figure 2.8. The charge motion was analyzed by plotting the position density limit (sim-
ilar to the red curve in the figure 2.16) of the charge for each mesh. Due to the almost exact
superposition of theses curves in the same plot, their representation was not included here. The
conclusion is that the mesh refinement has no apparent influence on the average charge motion
(at the considered level of the facet element size).

The average rotation power for the coarse, medium and fine meshes were respectively equal
to 1388.1 W, 1392.3 W and 1394.4 W. This increasing power with the refinement could be
the consequence of the increasing average roughness (integral of the squared distance between
the discretized profile and the circle with the mean profile diameter) of the meshes. In other
words, the geometrical approximation by the coarser meshes are less accurate with respect to
the real profile curve of the liner. Nevertheless, the power obtained by the different meshes
are roughly identical, which leads to the conclusion that the simplified regularization strategy
(stiffening effect due to multiple collisions on edges) has no visible kinematic influence. Further
studies would, however, be required to check if the change in the geometry approximation is
the predominant factor leading to the change in power instead of the simplified regularization
strategy; such a study seems, however, not to be necessary in the framework of this analysis due
to the negligible difference between the different power predictions.

It is also interesting to notice that the average rotation power obtained with the medium mesh
is 6 W lower than the average rotation power obtained in the previous section for the exact
same simulation input and averaging period. This difference illustrates the non-determinism of
DEM simulations, which are run in parallel on several processors. Fortunately, the difference is
insignificant. Moreover, this illustrates that the ascending order of the previous power predictions
might only be caused by chance, or more precisely, the pseudo-random combination of numbers
with a finite precision on multiple cores.

In conclusion, the mesh refinement has essentially no influence on the results if the geometry
of the liner is sufficiently well approximated. Due to the better approximation of the geometry

31In short (recapitulation), the mill is filled up to 30% by 15 mm diameter spherical balls having a density equal
to 7640 kg/m3. The medium Perfecto ABAB liner mesh (except for the study of the refinement) rotates at 70%
of its critical speed. The material contact parameters are the following (except for the material study): equivalent
normal stiffness kn = 105 N/m, equivalent tangential stiffness kt = 105 N/m, (theoretical) coefficient of normal
restitution εn = 0.3 (with respect to the sphere/sphere collision, hence the equivalent normal damping coefficient
cn ≈ 18.6 Ns/m), equivalent tangential damping coefficient ct = cn and the coefficient of friction µ = 0.75. In this
case, the time step is equal to ∆t = 10−5 s. In all cases, the total simulated time is equal to 5 s and the pseudo steady
state characteristics are averaged over the period from 2.5 to 5 s. The sampling period of the post-processing data is
equal to ∆trec = 0.01 s.
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(with respect to the coarse mesh) and the smaller computation overhead (with respect to the fine
mesh), the medium mesh will be used in the following analysis.

Influence of the material While the density of the balls is a material property, which is easily
quantifiable, the contact parameters are far more difficult to determine either because of their
intrinsic variability (e.g. coefficient of friction) or the complexity of the experimental measure-
ments (e.g. by strain waves [Mishra & Rajamani, 1992] or high-speed photography [Thornton
et al., 2013]). Therefore, these parameters are commonly calibrated by means of global results,
like the average charge motion or the power draw of the ball mill.

In this section, the importance of the tangential component of the contact law and the influ-
ence of the different contact mechanisms, i.e. the spring, damping and sliding mechanisms, will
be studied.

Tangential component Using different values for the normal and tangential stiffness and
damping coefficients, i.e. kn 6= kt and cn 6= ct , requires a very detailed validation study due to
the large number of parameters: kn, kt , cn, ct and µ . In the previous study of the laboratory
mill [Sawley, 2003], as well as in Cleary’s significant work in this field, i.a. [Cleary, 2009],
identical values for the stiffness and the damping coefficients along the normal and tangential
directions were used, probably for this reason. Therefore, it seems unreasonable to try calibrating
these parameters independently in this study. Nevertheless, we will attempt to understand their
influence on the results, first by eliminating the sliding mechanism and then by adjusting the
relative importance of the tangential spring and damper with respect to the normal components.

The figure 2.29 and the table 2.3 respectively show the position density limit and the power
draw for the contact law with and without Coulomb sliding. The simulation parameters are iden-
tical to those used previously except for the friction coefficient of the model without sliding,
which was set equal to 1000, thus preventing almost any sliding motion. As expected, the shoul-
der of the charge rises since it can not slide anymore. The global power draw is almost unchanged
but increases slightly due to the increased lifting of the charge (without sliding). Moreover, the
dissipation by sliding has roughly been replaced by the tangential dissipation.

Notice that the sum of the power percentages is not necessarily equal to 100% for three
reasons. First, the percentages of dissipated power are calculated with respect to the rotation
power and rounded half down. Second, energy might be created or destroyed artificially mainly
due to the explicit integration with a finite time step and the approximate rotation of the tangential
spring force. Third, the power estimations are averages over a finite sample of stochastic data.
As long as the difference between the rotation power and the dissipated power remains as small
as a few percents, the results seem to be acceptable from a numerical point of view.

Concerning the relative importance of the normal component with respect to the tangential
component, we explained earlier that different parameter values for each direction were only
used very rarely in the literature. For instance, [Kalala, 2008] used a tangential stiffness which
is 1/4 smaller than the normal stiffness. Similarly, [Mishra, 2003a] explains that the tangential
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Figure 2.29: Increased shoulder angle when the sliding mechanism is virtually removed from the contact
law illustrated on the basis of the position density limit plot. The conditions of the simulations are defined
at the beginning of this section except for the coefficient of friction µ , which is equal to 0.75 and 1000 in
the cases with and without sliding, respectively.

Coefficient of
friction [-]

Rotation
power [W]

Percentage of normal
damping dissipation

[%]

Percentage of
tangential dissipation

[%]

Percentage of sliding
dissipation [%]

0.75 1395 40 8 51

1000 1389 47 54 0

Table 2.3: Influence of the sliding component of the contact law on the power dissipation. The conditions
of the simulations are defined at the beginning of this section except for the coefficient of friction µ , which
is defined in this table.
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stiffness should have a value between 2/3 and 1 of the normal stiffness according to the Hertz-
Mindlin contact theory. To determine whether this difference actually has an influence on the
global charge motion and the power draw, the ball mill was simulated for different normal and
tangential stiffness and damping values, i.e the combinations of kt = 2/3 kn, kn and 4/3 kn, and
ct = 2/3 cn, cn and 4/3 cn.

The resulting position density limit curves were not represented since they are completely
superposed. Hence, the change in the importance of the tangential stiffness and damping has
no significant influence on the global charge motion32. The power draw and its components are
summarized in the table 2.4. The most important consequence is certainly that the difference
of the global power draw remains below 1% for the different cases. Consequently, it seems
reasonable to use the same stiffness and damping coefficient along the normal and tangential
direction. Moreover, it can be concluded that the percentage of power dissipated by normal
damping is almost insensitive to the change in the importance of the tangential component, i.e.
it increases very slightly with the tangential stiffness, while the percentage of power dissipated
by sliding increases with kt and ct , at the disadvantage for the tangential dissipation. In simple
words, this response of the model can be explained by noticing that the friction limit is reached
quicker for higher values of kt and ct .

Stiffness kt
[N/m]

Tangential
damping

coefficient ct
[Ns/m]

Rotation
power [W]

Percentage of
normal

damping
dissipation

[%]

Percentage of
tangential
dissipation

[%]

Percentage of
sliding

dissipation
[%]

2/3 kn 2/3 cn 1392 39 13 48

kn 2/3 cn 1398 40 9 51

4/3 kn 2/3 cn 1397 41 6 53

2/3 kn cn 1393 39 11 50

kn cn 1395 40 8 51

4/3 kn cn 1393 41 6 53

2/3 kn 4/3 cn 1394 39 10 52

kn 4/3 cn 1397 40 6 54

4/3 kn 4/3 cn 1397 40 6 54

Table 2.4: Influence of the tangential stiffness and damping on the estimated average power draw of
the mill. The simulation conditions are defined at the beginning of this section except for the tangential
stiffness and the tangential damping coefficient, which are defined in this table. The power percentages
are calculated with respect to the rotation power and rounded half down.

Stiffness, damping and friction If identical values are chosen for the normal and tangen-
tial stiffness and damping coefficients, i.e. kt = kn and ct = cc, three independent contact param-

32It might for instance have some influence on the spin of the particles. Nevertheless, only the average contour of
the ball charge can be experimentally validated by the photographs.
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eters remain: the normal stiffness kn, the normal coefficient of restitution εn (with regard to the
sphere/sphere collision) and the coefficient of friction µ . In this section, their influence on the
charge motion and the power draw will be analyzed by a parameter study. First, the choice of the
values of theses parameters will be explained and then their results will be examined carefully.

According to the figure 2.18, the normal stiffness kn should be greater than 105 N/m and
smaller than 107 N/m in order to limit the overlap during a collision roughly from 1 to 10 %
with respect to the diameter of a ball for an impact velocity equal to 4 m/s. Such percentages
of overlap are certainly unrealistic but necessary to keep the computation time small enough.
Moreover, this interval corresponds to the interval of the typical values of the stiffness used in
the literature as mentioned earlier (section 1.2.2). Hence, the charge motion and the power draw
will be determined for kn = 105 N/m, 106 N/m and 107 N/m.

With regard to the normal coefficient of restitution, which is required to determine the normal
damping coefficient cn (sphere/sphere collision), three different values were chosen, too: εn =
0.3, 0.6 and 0.9. The first value was used in the previous validation study of the charge motion
in the laboratory mill [Sawley, 2003], as well as in almost any simulation published by Cleary33,
i.a. [Cleary, 1998]. Since the coefficient of restitution takes a value between 0 and 1, the choice
of these three values seems to be sufficient to draw a conclusion for the entire interval.

Three different values were also chosen for the coefficient of friction. Considering that this
coefficient varies between 0 and 1 (except for some particular materials, like rubber), too, we
could use the same values as for the normal coefficient of restitution. Nonetheless, the values
µ = 0.25, 0.5 and 0.75 were chosen since Cleary and Sawley mainly used the last value, i.e.
0.75, in their studies.

Finally, the time step, which is necessary to accurately integrate the collisions, was deter-
mined based on the explanation in the section 2.4.1 by limiting the creation of numerical energy
to 1%. The table 2.5 gives some indications about how the time step can be calculated. De-
spite the generally larger admissible time step in this table, we decided to use the same time step
for the same normal stiffness to standardize our approach. Hence, the time steps are equal to
∆t = 10−5, 2.5 ·10−6 and 10−6 s respectively for kn = 105, 106 and 107 N/m. In other words, the
simulations take about 4 and 10 times more time for the higher values of stiffness with respect
to the smallest stiffness. Altogether, the 27 simulations resulting from the combination of the
different parameters took around 5 full days of computation time.

The results of the parametric study are shown in the figures 2.30, 2.31 and 2.32 as well as in
the table 2.6.

Concerning the stiffness of the normal and tangential springs, the global charge motion in the
pseudo steady state is almost independent of this parameter as shown in the figure 2.30; only
the toe angle slightly decreases when the stiffness increases34. As a consequence, the power

33Cleary, however, uses this value only in simulations of comminution devices containing also a feed material
(usually rocks). Therefore, it is questionable why Sawley used this value to model the laboratory mill, which
contained only steel balls.

34We could not explain why the increase in stiffness actually results in this response of the charge motion. In fact,
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kn [N/m] εn [-] εn [-] pn [%] n [-] tc [s] ∆t [s]
105 0.3 0.4 5.2 28 10−3.06 3.1 ·10−5

105 0.6 0.63 1.5 52 10−3.08 1.6 ·10−5

105 0.9 0.9 0.23 85 10−3.09 9.6 ·10−6

106 0.3 0.4 5.2 28 10−3.56 9.8 ·10−6

106 0.6 0.63 1.5 52 10−3.59 4.9 ·10−6

106 0.9 0.9 0.23 85 10−3.59 3.0 ·10−6

107 0.3 0.4 5.2 28 10−4.06 3.0 ·10−6

107 0.6 0.63 1.5 52 10−4.09 1.6 ·10−6

107 0.9 0.9 0.23 85 10−3.1 9.3 ·10−7

Table 2.5: Detailed calculation of the time step on the basis of the strategy explained in the section 2.4.1.
The variables kn, εn, εn, pn, n, tc and ∆t respectively represent the normal stiffness, the theoretical coef-
ficient of normal restitution (sphere/sphere collision), the effective coefficient of normal restitution, the
percentage of numerical energy created during one collision with respect to the non-numerical energy
after the collision, the number of time steps per collision, the contact time and the resulting time step.

draw increases in general for greater values of the stiffness (and identical values of εn and µ).
Nevertheless, the maximum power variation (for identical values of εn and µ) is smaller than 3%,
which illustrates again the relative independence of the results from the stiffness. This conclusion
is very important due to the strong connection between the time step and the stiffness. Hence,
choosing a lower stiffness has no significant impact on the results but considerably decreases
the computation time. With respect to the dissipation mechanisms, it can be stated that they are
also rather independent of the stiffness; on average, the normal damping dissipation increases
very slightly, while the tangential dissipation decrease. The reason behind this observation is
probably the reduction of the contact time with the increasing stiffness, which in turn reduces the
importance of tangential interactions.

The figure 2.31 illustrates that the coefficient of restitution becomes important for high values,
i.e. close to 1. This behavior can simply be explained by the fact that if a ball loses less energy
in a collision, it is able to rebound more powerfully. Therefore, the charge cloud expands with
the coefficient of restitution. This expansion is particularly important in the toe region, where
the liner profile reenters into the charge and thus transfers a significant amount of energy to it.
Since the charge is on average displaced to the left, when the coefficient of restitution increases,
its center of gravity comes closer to the horizontal center of the mill. Thus, the power draw
decreases with εn. With regard to the power dissipation mechanisms35, the normal damping

the opposite change seems to be more realistic since the overlap increases when the stiffness decreases; hence, the
size of the charge cloud would be reduced. The variation remains, however, relatively negligible, which is why this
phenomenon was not further investigated.

35As explained earlier, the sum of the different dissipation percentages might be a few percentages smaller or
greater than 100%. In particular, the sum of these percentage, i.e. the power created artificially, increases with εn.
This strong dependence in the coefficient of restitution is a clear evidence of the artificial creation of energy by the
rotation of the tangential spring force. In fact, the greater the coefficient of restitution, the greater the amount of
energy which has to be stored during the interaction. Since this energy is stored under the form of a force, which is
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(a) εn = 0.3, µ = 0.25.
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(b) εn = 0.3, µ = 0.5.
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(c) εn = 0.3, µ = 0.75.
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(d) εn = 0.6, µ = 0.25.
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(f) εn = 0.6, µ = 0.75.
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(g) εn = 0.9, µ = 0.25.
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(h) εn = 0.9, µ = 0.5.
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(i) εn = 0.9, µ = 0.75.

Figure 2.30: Influence of the stiffness kn on the global charge motion, for kn = 105 N/m, 106 N/m and
107 N/m. This figure shows the outline of the mill shell (diameter 0.8 m) and the position density limits
for different values of the stiffness and identical values of the coefficient of normal restitution εn and the
friction coefficient µ for each plot. The simulation parameters are defined at the beginning of this section,
except for the contact parameters kn, kt , cn, ct , µ , which are defined in the labels and legends of the figures
(kt = kn, cn is deduced from εn for a sphere/sphere collision, ct = cn) and the time step ∆t, which was
defined in the text section.
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dissipation logically decreases considerably while the sliding dissipation increases, when the
coefficient of restitution increases. The maximum power variation for a specific stiffness and a
specific coefficient of friction, however, remains still quite low, i.e. below 3%, even though the
coefficient of restitution almost takes its extremal values.

While the stiffness and the coefficient of restitution only had a relatively small impact on the
rotation power, it varies strongly with the coefficient of friction (the stiffness and the coefficient
of restitution being constant), i.e. at most by 7.7%. The reason behind this important influence is
simply the supplementary sliding and the resultant reduction of the lifting of the charge, when the
friction coefficient decreases. Hence, the shoulder angle decreases and the toe angle increases
at the same time (figure 2.32). In terms of the power dissipation mechanisms, the tangential
dissipation obviously rises while the sliding is reduced, when µ increases.

Comparison with the experimental data In this section, the DEM model will finally be cal-
ibrated on the basis of the experimental data (case 1, section 2.1.2). First, it is inefficient and
unnecessary to use unreasonably large values of the stiffness, like 106 N/m and 107 N/m, even
though the predicted power might be slightly lower. Simultaneously, choosing a low stiffness
does not mean choosing a very low stiffness. The figure 2.18 showed that when the stiffness kn
drops below 105 N/m, the overlap quickly rises to non negligible values. Hence, kn = 105 N/m
is an acceptable limit, which minimizes the computation time.

In terms of the power draw, the laboratory mill consumes approximately 1,449 W. Since the
ball charge weights around 250 kg, it can be expected that around 1 to 5% of this power are
dissipated by the bearings of the mill, by damped vibrations, . . . , which are obviously inexistent
in the simulation. Therefore, the predicted rotation power should have a value between 1376 W
and 1434 W. In consequence, the table 2.6 shows that the coefficient of friction should at least be
equal to roughly 0.75 so that the rotation power is inside of this interval. It is interesting to notice
that the previous DEM results concerning the laboratory mill [Sawley, 2003], are very close to
our results. For instance, Sawley predicted 1,401 W and 1,314 W, if kn = 105, εn = 0.3 and
µ = 0.75 or µ = 0.25 respectively36, while we found 1,394 W and 1,312 W. Consequently, the
influence of the implementation of the DEM solver remains negligible (at least from this point
of view).

To select a set of material parameter with kn = 105 N/m and at least µ = 0.75, we superim-
posed the position density limits for these parameters (obtained in the previous section, except
for εn = 0.8) on the photograph of the charge in the figure 2.33. Due to the pronounced per-
spective of the picture and the parallel projection of the charge in the position density plot, it
is necessary that the contour only delimits the charge in contact with the transparent end wall.
Since the camera focuses mainly on this area, the picture taken with the higher shutter speed was
also represented to distinguish more clearly the depth of the balls in this picture.

rotated by an approximate transformation, the amount of energy created during the rotation increases. More details
can be found in [Šmilauer et al., 2014].

36The only major difference between Sawley’s and our model are the density of the balls (here, 7640 kg/m3,
instead of 7611 kg/m3, but the total mass of balls is the same) and the surface mesh of the liner.
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(a) kn = 105 N/m, µ = 0.25.
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(b) kn = 105 N/m, µ = 0.5.
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(c) kn = 105 N/m, µ = 0.75.
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(d) kn = 106 N/m, µ = 0.25.

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
0n = 0:3
0n = 0:6
0n = 0:9

(e) kn = 106 N/m, µ = 0.5.
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(f) kn = 106 N/m, µ = 0.75.
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(g) kn = 107 N/m, µ = 0.25.

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
0n = 0:3
0n = 0:6
0n = 0:9

(h) kn = 107 N/m, µ = 0.5.
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(i) kn = 107 N/m, µ = 0.75

Figure 2.31: Influence of the restitution εn on the global charge motion, for εn = 0.3, 0.6 and 0.9. This
figure shows the outline of the mill shell (diameter 0.8 m) and the position density limits for different
values of the coefficient of restitution and identical values of the normal stiffness kn and the friction
coefficient µ for each plot. The simulation parameters are defined at the beginning of this section, except
for the contact parameters kn, kt , cn, ct , µ , which are defined in the labels and legends of the figures
(kt = kn, cn is deduced from εn for a sphere/sphere collision, ct = cn) and the time step ∆t, which was
defined in the text section.
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(a) kn = 105 N/m, εn = 0.3.
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(b) kn = 105 N/m, εn = 0.6.

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
7 = 0:25
7 = 0:50
7 = 0:75

(c) kn = 105 N/m, εn = 0.9.
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(d) kn = 106 N/m, εn = 0.3.
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(e) kn = 106 N/m, εn = 0.6.
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(f) kn = 106 N/m, εn = 0.9.
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(g) kn = 107 N/m, εn = 0.3.
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(h) kn = 107 N/m, εn = 0.6.
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(i) kn = 107 N/m, εn = 0.9.

Figure 2.32: Influence of the friction coefficient µ on the global charge motion, for µ = 0.25, 0.5 and
0.75. This figure shows the outline of the mill shell (diameter 0.8 m) and the position density limits for
different values of the friction coefficient and identical values of the normal stiffness kn and the coefficient
of normal restitution εn for each plot. The simulation parameters are defined at the beginning of this
section, except for the contact parameters kn, kt , cn, ct , µ , which are defined in the labels and legends of
the figures (kt = kn, cn is deduced from εn for a sphere/sphere collision, ct = cn) and the time step ∆t,
which was defined in the text section.
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Stiffness
[N/m]

Normal
coefficient of
restitution [-]

Coefficient
of friction

[-]

Rotation
power [W]

Percentage of
normal power

[%]

Percentage of
tangential
power [%]

Percentage of
sliding power

[%]

105 0.3 0.25 1311 38 1 60

105 0.3 0.50 1382 38 4 58

105 0.3 0.75 1391 40 8 52

105 0.6 0.25 1300 34 1 65

105 0.6 0.50 1373 33 4 64

105 0.6 0.75 1393 34 9 57

105 0.9 0.25 1281 20 0 82

105 0.9 0.50 1365 17 0 84

105 0.9 0.75 1379 18 5 81

106 0.3 0.25 1322 39 1 60

106 0.3 0.50 1394 38 3 58

106 0.3 0.75 1414 40 7 53

106 0.6 0.25 1336 35 1 62

106 0.6 0.50 1386 34 3 63

106 0.6 0.75 1417 35 8 58

106 0.9 0.25 1299 22 -1 79

106 0.9 0.50 1382 19 -1 84

106 0.9 0.75 1396 20 4 80

107 0.3 0.25 1327 39 1 59

107 0.3 0.50 1391 39 3 60

107 0.3 0.75 1410 40 6 54

107 0.6 0.25 1329 37 0 62

107 0.6 0.50 1396 34 3 63

107 0.6 0.75 1416 35 7 59

107 0.9 0.25 1302 23 -1 78

107 0.9 0.50 1373 20 -1 83

107 0.9 0.75 1388 21 4 81

Table 2.6: Average power draw of the laboratory mill and the percentages of power dissipated by the
specific mechanisms (with respect to the rotation power, rounded half down) calculated for the 27 combi-
nations of the material parameters in the parametric study. The simulation parameters are defined at the
beginning of this section, except for the contact parameters kn, kt , cn, ct , µ , which are defined in this table
(kt = kn, cn is deduced from εn for a sphere/sphere collision, ct = cn) and the time step ∆t, which was
defined in the text section.
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(a) Shutter speed equal to 1/12 s - trajectories.
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Figure 2.33: Ball charge photograph with the superimposed position density limit curves for different
coefficients of normal restitution εn (sphere/sphere collision). The simulation parameters are defined at
the beginning of this section, except for the contact parameters kn, kt , cn, ct , µ . The normal stiffness kn

and the coefficient of friction µ are equal to 105 N/m and 0.75, respectively. The other parameter values
can be deduced from these values (kt = kn, cn is deduced from εn for a sphere/sphere collision, ct = cn and
∆t = 10−5 s).

For all four coefficients of restitution, the figure 2.33 shows a very good correlation between
the experimental and the numerical charge motions. For εn = 0.3 and 0.6, the toe angle seems,
however, to be slightly too small, while it is too high for εn = 0.9. At the same time, the charge
cloud is not expanded enough for εn = 0.3 and 0.6. Hence, the contour curve for εn = 0.8 was
added to find a better compromise. The same coefficient of restitution was used by Cleary to
simulate the balls in a cement tube mill without feed material [Cleary, 2009]. This choice is
also more reasonable than εn = 0.3 (used in the previous study) for balls and liner plates made
from steel, which probably remain fairly elastic and thus energy-preserving during a collision.
The predicted power draw in this case is equal to 1,384 W. Hence, the predicted power is 4.5%
lower than the real power, which might be explained by the non-existence of some real dissipation
mechanisms in the model, like the viscous dissipation in the bearings or damped vibrations of the
structure. Since determining this power loss accurately is quite complex and since a 4.5% error
remains negligible with respect to the stochastic fluctuations of the power draw in the pseudo
steady state, this last set of material parameters is as close as we can get to the precise prediction
of the charge motion and the power draw in the laboratory mill.
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Experimental validation

To prove that the model is truly predictive, our choice of the simulation parameters will first be
summarized in this section. Then, this model will be used to predict the general charge motion
and the power draw of the different experimental scenarios presented in the section 2.1.2.

The mill is filled with 15 mm diameter spherical balls having a material density equal to 7640
kg/m3. The medium Perfecto ABAB and the Duolift meshes geometrically approximate the shell
liner. The material contact parameters are the following:

• equivalent normal stiffness: kn = 105 N/m

• equivalent tangential stiffness: kt = 105 N/m

• theoretical coefficient of normal restitution εn = 0.8 (with respect to the sphere/sphere
collision, to deduce the equivalent normal damping coefficient cn)

• equivalent tangential damping coefficient ct = cn

• coefficient of friction µ = 0.75

The time step is equal to ∆t = 10−5 s. The total simulated time is equal to 5 s and the pseudo
steady state characteristics are averaged over the period37 from 2.5 s to 5 s. The sampling period
of the post-processing data is equal to ∆trec = 0.01 s. To create the position density plots and its
contour curves the space (0.8 m × 0.8 m) was divided into 150×150 cells.

The results are finally summarized in the figures 2.34 and 2.35, as well as in the table 2.7. The
first figure shows the real trajectories of the charge (low shutter speed) and the position density
plots for each validation case. The position density limits (based on the respective simulations)
were also added in the sub-figures in order to simplify their comparison; it is obviously the same
in the two respective figures since it was determined by the simulation. Two conclusions can be
drawn. The most important conclusion is certainly that the DEM model is truly predictive with
respect to the global charge motion. It is difficult to see any systematic difference between the
ball charge and the position density limit. One may think that the balls move into the liner for the
Duolift profile. Nevertheless, this is only due to the large average roughness (distance between
peaks and valleys) of this profile and the long exposure time. The second conclusion is that the
position density limit is a perfect tool to determine the global charge motion and in particular, the
shoulder and toe angles based on the DEM model.

To emphasis how accurate the predictions of the charge motion are, the figure 2.35 illustrates
the real and simulated positions of the charge. Since the perspective is included in both repre-
sentations (real and numerical), i.e. it is not a parallel projection, a clear agreement between the
reality and the simulation can also be observed more deeply inside of the mill.

37It was checked if the pseudo steady state was reached after 2.5 s for the different filling ratios and percentages
of critical velocity. Mainly for the case 3 (greater filling ratio), the transient response is still visible after 2.5 s.
The averaging period was, however, not adapted since its seems reasonable that the influence of the oscillations is
annihilated after calculating the average, i.e. the influence of the transient state is assumed to be negligible.
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Concerning the average power draw, the table 2.7 shows that the real power draw is very
close to the predicted rotation power. This latter power is, however, systematically lower than
the real power by 1.6 to 4.9 %. This difference seems to be acceptable since the increased friction
losses in the bearings due to the additional mass and the damped vibrations of the structure were
not quantified in the simulation. In terms of the dissipation mechanisms, at most 3% of artificial
power are created by the explicit integration and the approximate rotation of the tangential spring
force, while the sliding of the charge remains the major dissipation mechanism accounting for
around 70%.

In conclusion, the DEM model is able to predict the global charge motion and the power draw
of the laboratory mill for different filling ratios, percentages of critical velocity and liner profiles
within the limits of their validity (photographs of the charge motion and variation of the power
draw by around 5 %). Hence, the DEM model renders future experimental tests unnecessary.

Name Real power
draw [W]

Rotation
power [W]

Percentage of
normal power

[%]

Percentage of
tangential
power [%]

Percentage of
sliding power

[%]

Case 1 1,449 1,394 26 7 68
Case 2 1,656 1,630 28 8 67
Case 3 1,893 1,864 27 8 68
Case 4 1,429 1,365 26 7 69

Table 2.7: Average power draw of the laboratory mill and the percentages of power dissipated by the spe-
cific mechanisms (with respect to the rotation power, rounded half down) calculated for the 4 calibration
and validation cases.

2.4.3 Extension to the industrial mill

While the DEM model provides quite accurate predictions of the charge motion and the power
draw of the laboratory mill, the question arises whether this model is also able to directly estimate
these characteristics for an industrial mill. In this section, we will try to answer this question by
rescaling the DEM model of the laboratory mill to the equivalent full-scale mill and by comparing
the charge motion and the power draw in both cases.

In terms of the geometry, the laboratory mill is the spatial reduction of a 4 m diameter ball
mill. Hence, the dimensions of the shell liner mesh and the diameter of the balls simply have to
be multiplied by 5 in order to obtain their real sizes in the industrial mill. In consequence, the
rotation speed has to be reduced to keep the percentage of critical velocity unchanged. Hence,
the total ball charge weights 32,156 kg and the mill rotates at 15.07 rpm in the first scenario (case
1, section 2.1.2).

In contrast to the geometry, it is less obvious to determine the material parameters. First,
the stiffness has to be increased due to the increased mass and the increased velocity of the
balls in order to limit the percentage of overlap. If the drop height of a ball is equal to the
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Figure 2.34: Trajectories of the real charge motion (shutter speed equal to 1/12 s) with their respective
position density plots. The position density limits were also represented for each case in both figures
(based on the respective simulation). Cases 1 to 4 from the top to the bottom.
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Figure 2.35: Position of the real charge (high shutter speed) on the left and right with the superposed
simulated charge after 5 s of simulated time on the right. The position density limits were also represented
for each case in the two corresponding figures (based on the simulation). The color code represents the
amplitude of the translation velocity, i.e. blue (at rest) to red (3, 3.2, 3.4 and 3.15 m/s in the cases 1 to 4,
respectively). Cases 1 to 4 from the top to the bottom.
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diameter of the mill, its maximum velocity is almost equal to 9 m/s. In the laboratory mill
(kn = 105 N/m and εn = 0.8), the maximum percentage of overlap (with respect to the diameter of
the ball) during a ball/ball collision at 4 m/s was equal to 6.23%, which corresponds to 0.934 mm.
The same percentage of overlap and the same absolute overlap are approximately reached for
kn = 2.5 ·106 N/m and kn = 6 ·107 N/m in the full-scale model at 9 m/s (with εn = 0.8). Notice
that this strategy, which is used to determine the normal stiffness of the balls in the full-scale mill,
is totally heuristic. In fact, choosing a stiffness, which is based on the physical characteristics of
the balls, would only significantly increase the computation time, while the results38 are almost
independent of this parameter as mentioned above.

With regard to the coefficient of restitution, it seems likely that the percentage of energy dis-
sipated during a collision in the industrial mill with respect to the energy before the collision is
greater than the respective percentage in the laboratory mill because of the greater impact forces.
In fact, if the forces are higher, it can be expected that the material is stressed increasingly in
its plastic zone, which is responsible for the energy dissipation. Moreover, the industrial mill
contains a feed material in contrast to the laboratory mill. Even though the volume occupied by
this material is relatively low in the first chamber of a cement grinding mill (volume of the inter-
stices between the balls), it might have an influence on the coefficient of restitution. Considering
that no validation data of the charge motion in an industrial mill is available, only the influence
of the contact parameters on this charge motion and the power draw can be determined. Hence,
it would be interesting to compare these characteristics for εn = 0.3, i.e. the value which was
extensively used by Cleary and Sawley [Cleary, 1998, Sawley, 2003], and εn = 0.8, i.e. the value
which we determined previously for the laboratory mill.

Finally, the coefficient of friction is in general a parameter, which is independent of the size
of the mill according to its definition in the Coulomb model, e.g. in [Rabinowicz, 1995]. For
this reason, it is supposed that this value is the same for the laboratory and the industrial mills. It
might be criticized that the feed material would change this value. Nonetheless, Cleary used the
same value, which we used without a feed material, i.e. µ = 0.75, to analyze the charge motion
of comminution devices filled with a feed material. Since no additional information is known
about this parameter, it seems reasonable to suppose that it does not change with the size of the
mill.

In a nutshell, it would be interesting to study the charge motion and the power draw in the
full-scale mill for kn = 2.5 · 106, 5 · 107 N/m (instead of 6 · 107 N/m, which is almost identical
to this value), εn = 0.3, 0.8 and µ = 0.75. As explained earlier, we assume that the tangential
parameters of the contact model are equal to the normal parameters, i.e. kn = kt and cn = ct . The
table 2.8 summarizes the simulated cases and their times steps, which were calculated according
the guidelines in the section 2.4.1; since the mass of the balls is larger than in the laboratory
mill, the time step has the same order of magnitude than before despite the larger values of the

38Here the results are only the global charge motion and the power draw. Maybe, the stiffness has a significant
impact on other characteristics, like the individual ball trajectories or the forces. Nevertheless, these characteristics
can not be validated in this thesis since the corresponding experimental data is not available and usually very difficult
to obtain (e.g. instrumenting a lifter with strain gauges and/or radioactive tracing of the balls).
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stiffness. Because the rotation speed has been divided by 2 with respect to the laboratory mill,
the pseudo steady state starts only after 5 s instead of 2.5 s according to the evolution of the
center of gravity of the charge. Hence, the charge motion and the power draw will be averaged
from 5 to 10 s in order to obtain their mean values.

Name kn [N/m] εn [-] µ [-] ∆t [s]
Case 1 2.5 ·106 0.3 0.75 5 ·10−5

Case 2 2.5 ·106 0.8 0.75 2.5 ·10−5

Case 3 5 ·107 0.3 0.75 10−5

Case 4 5 ·107 0.8 0.75 5 ·10−6

Table 2.8: Contact parameters (normal stiffness, normal coefficient of restitution with respect to the
sphere/sphere collision and the coefficient of friction) and time steps used to predict the charge motion
and the power draw in the industrial mill.

The figure 2.36 shows the position density limits for the industrial mill but also the limit
obtained for the laboratory mill (kn = 105 N/m, εn = 0.8 and µ = 0.75), which has been rescaled.
As expected the general charge motion (with regard to the space occupied by the balls) in the
laboratory mill is virtually identical to the charge motion in the full-scale mill for kn = 2.5 ·
106 N/m and εn = 0.8 because of three reasons: the definition of the velocity with respect to the
critical velocity, the geometric similarity of the reduced mill and its charge with respect to the
full-scale mill, as well as the adapted contact parameters.

More precisely, if these three hypotheses are satisfied and if a ball is located at a geometri-
cally similar position in the laboratory mill or the industrial mill, the motion of this ball is defined
by exactly the same equilibrium equation. This statement can be illustrated by writing the equi-
librium equation39 of this ball along the x-axis, which is independent of the size of the mill since
the mass m can be simplified:

m ẍ = c1 m r ω
2 + c2 m g ⇒ ẍ = c1 r ω

2 + c2 g (2.14)

where x, r, ω and g are the position of the ball along the x-axis, the radial distance between
its center and the rotation axis, the angular speed of the mill and the gravitational acceleration,
respectively. The non-dimensional constants c1 and c2 depend on the specific position of the ball
(i.e. sines and cosines to project the forces along the x-axis) in the mill and the friction coefficient.
Hence, if a ball is located at a similar position in both mills (importance of the same filling ratio)
and if the percentages of critical velocity (i.e. r ω2 is constant) and the friction coefficients are
identical (in both mills), the motion of this ball is governed by the same equation. For instance,
this is the reason why the balls diverge from the liner at the same shoulder angle in the reduced
and the full-scale mill.

To obtain numerically the same average charge motion40 in both mills, it is also important to
39The contact with other balls or the liner is implicitly represented by the centrifugal term in this equation, which

is not entirely correct but the only simple explanation of the similarity of the results.
40The charge motion denotes here the place occupied by the balls in the mill. Their velocity is obviously different

in similar regions of both mills due to their different size.
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Figure 2.36: Position density limits of the charge in the industrial mill and the rescaled limit of the
charge in the laboratory mill for the first experimental data set (case 1, section 2.1.2). The simulation and
averaging parameters were explained in this section for the industrial mill and in the section 2.4.2 for the
laboratory mill. The grid used to determine the position density is still composed of 150 horizontal and
150 vertical divisions.

use the same value of coefficient of restitution, since this factor is by definition independent of the
mill size. In reality, it depends, however, on the ball size, as explained earlier. Finally, choosing
the normal stiffness based on the percentage of overlap ensures that the overlap in the full-scale
mill is approximately equal to the overlap in the reduced mill multiplied by the scale factor, such
as any other geometrical characteristic. In conclusion, these reasons give some indications about
why geometrically similar results of the charge motion were found for the laboratory and the
industrial mill.

Concerning the influence of the stiffness and the coefficient of restitution, the charge position
remains almost unchanged (figure 2.36), i.e. the toe angle decreases slightly with the stiffness
and more significantly with the coefficient of restitution. The table 2.9 confirms this observation
by means of the maximum relative power difference, which is equal to only 2.2%. It is interesting
to notice that the power draw of the laboratory mill is not simply multiplied by the scale factor
to obtain the power draw of the industrial mill; in fact, it is rather multiplied by the scale factor
to the power of 3.5, e.g. 1.394 ·53.5 = 389.6 kW. The power draw can actually be calculated by
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the following formula in the pseudo steady state:

Prot = m g xCOG ω (2.15)

where m, g, xCOG and ω are the mass of the charge, the gravitational acceleration, the horizontal
distance of the center of gravity of the mill charge with respect to the rotation axis and the rotation
speed, respectively. Since the average relative position of the charge is almost unchanged by the
scaling of the mill,

Prot ∝ D3 g D
√

g
D

⇒ Prot ∝ D3.5 (2.16)

where D is the diameter of the mill41.

Name Rotation
power [kW]

Percentage of
normal power

[%]

Percentage of
tangential
power [%]

Percentage of
sliding power

[%]

Case 1 390.0 41 7 52
Case 2 387.0 26 7 66
Case 3 395.4 40 5 54
Case 4 393.3 28 6 65

Table 2.9: Average power draw of the industrial mill and the percentages of power dissipated by the spe-
cific mechanisms (with respect to the rotation power, rounded half down) calculated for the experimental
validation case 1 (section 2.1.2) and the 4 material sets summarized in the table 2.8.

In conclusion, it is impossible to prove that the average charge motion and the power draw
of the industrial mill are accurately estimated by the DEM model of the full-scale mill because
no experimental validation data is available. Nevertheless, there is strong evidence that this
prediction strategy actually delivers accurate results provided that the material parameters do
not change significantly (except for the stiffness).

41In practice, the power scaling is rather written as a function of the diameter scale factor sdia and the length scale
factor slength. Hence, the power of the laboratory mill is theoretically multiplied by s2.5

dia slength. A better empirical
approximation is, however, s2.7

dia slength according to [Prignon & Lepoint, 2001].



Chapter 3

Liner Wear Simulation

Wear is one of the reasons why material objects loose their usefulness over time. In the case
of ball mills, the liner profile becomes smoother after each working hour and hence the energy
available for comminution is reduced. Simultaneously, the protection of the mill shell by the liner
decreases. In order to enhance its lifespan, it is necessary to understand how the material is worn
away from the liner. In consequence, a general method to predict the spatial wear distribution
but also the resulting change in the geometry of the mill liner will be explained in this chapter.
The wear distribution could for instance give some advice about where a more abrasion-resistant
insert would be required in the structure while the predicted geometry modification could be used
to develop a shape-preserving liner profile. It is important to notice that the procedure, which will
be explained hereinafter, can also be applied to other systems subjected to stresses by granular
materials, such as vertical shaft impactor mills.

First, experimental data, which consists of several wear profiles measured in a full-scale
industrial mill, will be described. In the same way as in the second chapter, this data will later
be used to calibrate and validate the wear model. Based on the guidelines of the second chapter,
the charge motion simulation, which is necessary to sample the load leading to wear, will then
be specified. Finally, by combining the charge motion simulation with the wear model, we will
simulate the wear evolution of the mill liner in the third part of this chapter. In contrast to the
second chapter, the explanation of the method will be less separated from the numerical results
in order to use these results directly as an illustration of the theoretical principles.

3.1 Experimental Data

As explained earlier, experimental data is necessary to build the bridge between computational
engineering and the reality. In the case of liner wear simulations, detailed experimental data is
usually rare because of the preponderant complexity of the measurements (mechanical profil-
ing gauge, section 1.4.2) with respect to the little need of such measurements in the past. Only

120
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recently, more sophisticated devices, like the Outotecr-MillMapper1, a 3D laser scanner con-
nected to a specific post-processing program, have become available.

In this study, we will analyze the liner wear evolution of Magotteaux’s Duolift liner in the
first compartment of a 5.8 m diameter cement tube mill. The total length of the mill is equal to
17.14 m, while the length of the first compartment is only equal to 5.1 m.

In terms of the operating conditions, the mill rotates at 13.48 rpm, which is equivalent to
76.75% of its critical speed. The ball charge distribution in the first compartment is provided in
the table 3.1.

Average diameter
[mm]

Mass [t] Number

82.3 22.7 10180
79.0 27.2 13761
72.4 44.3 29181
63.0 51.0 50987

Table 3.1: Ball charge distribution in the first compartment. The density used to calculate the number of
balls is equal to 7640 kg/m3.

The Duolift liner plate spans a 500 mm arc of the shell circle and it has an axial width equal
to 250 mm. In consequence, the entire liner is assembled of 20 rows of which each is composed
of 36 liner plates. A new liner plate weights around 85 kg and is made of 12% chromium cast
iron, which is a popular abrasion-resistant alloy reaching a hardness of around 50 HRC, i.e. 500
HV. The liner profile curve consists of a smaller and a larger wave as illustrated in the figure 3.1.
This design is known for its shape-preserving profile over time. In fact, to obtain some tangible
evidence of this characteristic, the wear evolution of this liner was monitored carefully during a
decade. Hence, the figure 3.1 also shows a limited number of its wear profiles measured on a
plate of the fourth row (with respect to the head liner) from 1996 to 2006. The full data set can
be found in the appendix D.

Even though the liner is a 1D liner, i.e. its height does initially not change along the axial
direction, it is characterized by a significant difference between the maximum and minimum
height after several thousand operating hours. The reason behind this difference is the creation
of grooves in the liner due to the organized flow patter of the balls. The figure 3.2 illustrates this
phenomenon. Next to the head liner, the grooves seem to follow a helicoidal trajectory while the
trajectories further away seem to be located in vertical planes having a constant axial offset. This
offset was measured for a plate of the fifth row (figure 3.3). Unfortunately, the exact azimuthal
position of the measurement and the respective number of operating hours are not known. The
offset is on average equal to 62.5 mm (four grooves per plate), which is slightly smaller than the
weighted2 average diameter of the balls (around 70 mm).

1http://www.outotec.com/en/Products--services/Process-equipment/Grinding-
mills/Liner-condition-monitoring/MillMapper/

2The weight is the number of balls.

http://www.outotec.com/en/Products--services/Process-equipment/Grinding-mills/Liner-condition-monitoring/MillMapper/
http://www.outotec.com/en/Products--services/Process-equipment/Grinding-mills/Liner-condition-monitoring/MillMapper/
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Figure 3.1: Outline of the Duolift liner plate with a limited number of its wear profiles measured on a
plate of the fourth row (with respect to the head liner) from 1996 to 2006. The full data set is provided in
the appendix D. The solid lines represent the average height while the dashed lines represent the respective
minimum and maximum height of the plate, if these are known. The last line is, however, not the average
but the minimum height of the profile, when it was changed. The mill rotates (negatively) around the
y-axis, i.e. from the left to the right with respect to the pictured plate. The legend indicates the number of
operating hours after which the profiles were measured.

(a) Liner plates with grooves next to the head liner.
The fourth row is the last visible row in this picture.

(b) Liner plates along the first compartment.

Figure 3.2: Worn liner plates after around 20,000 h [Magotteaux S.A., 2015].
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Figure 3.3: Axial profile of a liner plate of the fifth row. The corresponding azimuthal position and the
number of operating hours, after which the measurements were taken, are not known. According to the
height, this measurement seems, however, to have been taken, when the liner was changed.

Supposing that the radial segregation of the balls due to their different diameters remains non-
discernible for a percentage of critical velocity close to 70% [Cleary, 1998], the smaller offset of
the grooves with respect to the weighted average diameter of the balls can be explained by taking
into account the structural organization of the balls, which is illustrated in the figure 3.4. In this
case, the offset would be equal to about 61 mm. Since the heavier balls are located more at the
outside of the charge (radial segregation by the centrifugal force), its is understandable why the
offset between the grooves is a little larger than 61 mm in the reality, i.e. around 62.5 mm.

Figure 3.4: Simplified structural organization of the balls, which is the reason for the offset between the
grooves being smaller than the weighted average diameter of the balls. The bold rectangle and the dashed
lines represent the plate (viewed from above) and the valleys of the grooves, respectively.

The experimental data described in this section will be used in order to calibrate and val-
idate the wear model in the third section of this chapter (section 3.3). Notice that calibrating
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and validating a model with the same data obviously begs the question (circular reasoning). In
consequence, further studies will be necessary to clearly assess the predictive capabilities of the
model for different operating conditions, materials and geometries.



Charge Motion Simulation 125

3.2 Charge Motion Simulation

Since wear in dry ball milling is the consequence of mechanical interactions between the balls
and the liner, it is essential to determine the characteristic values of these interactions, like the
normal forces or sliding distances, before deducing the resulting wear from them. According to
the findings in the previous chapter, the discrete element method is the most promising method
to predict the interactions between the balls and the liner despite the idealized contact model.

For this reason, we will explain the different DEM models, which will be used to compute the
interaction data, in this section. In a similar way than in the previous chapters, the explanation
will be divided into three sections: the material, the geometry and boundary conditions, and the
simulation as such.

3.2.1 Material

Concerning the material, the linear spring-slider-damper contact law will obviously be used with
the following parameters as a result of the previous chapter (section 2.4.3):

• density: ρ = 7640 kg/m3

• normal stiffness: kn = 2.5 ·106 N/m.

• coefficient of normal damping cn derived from the coefficient of normal restitution εn = 0.3
for the collision of two spheres with the same diameter.

• tangential stiffness: kt = kn.

• coefficient of tangential damping: ct = cn.

• coefficient of friction: µ = 0.75.

Even though the normal stiffness could be slightly greater than 2.5 ·106 N/m, since the mill
diameter is slightly larger than the diameter of the full-scale laboratory mill (in the section 2.4.3),
i.e. 5.8 m vs. 4 m, we will continue to use the previous value since it has a negligible influence
on the charge motion as well as on the power draw3. At the same time, it renders possible to use
a larger time step. Notice also, that the lower coefficient of restitution was used, i.e. 0.3 instead
of 0.8, to account for the seemingly higher dissipation of collisions in the presence of the clinker
in the cement mill.

The previous material parameters will be used throughout the whole third chapter. Changing
them or trying to study their influence on the wear is relatively difficult because it would add an
important number of degrees of freedom to the study.

3This material parameter might have an influence on other characteristics of the interactions, like the impact
time. Nevertheless, these characteristics are very difficult to validate on the basis of experimental results. Hence, we
have no argument in favor or against the change in the stiffness except for the charge motion (outline of the charge
cloud) and the power draw.
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3.2.2 Geometry and boundary conditions

As mentioned previously, the geometry modification by wear in ball mills is essentially a 3D
phenomenon since grooves are created in a liner, which initially had no height variation along
the axial direction. To fully capture the wear data in the charge motion simulation, the underlying
binning structure (section 1.4.1), which accumulates the local wear data, has therefore not only
to be discretized along the azimuthal direction but also along the axial direction. In DEM simu-
lations, the most direct definition of a binning structure of the liner is obviously the surface mesh,
which represents this liner. The previous reasoning therefore implies that a surface mesh similar
to the one used in the previous chapter (for instance, in figure 2.10) is not sufficient anymore to
predict the full geometry modification of the liner. In fact, the surface mesh has to be much finer.

Since the axial length of the grooves is on average equal to 62.5 mm, a good estimate of the
average element size in the triangular surface mesh seems to be 15 mm. Hence, each groove
could be geometrically approximated by 4 segments along the axial direction. One plate would
then require around 1,200 elements, which would lead to almost 900,000 facet elements in addi-
tion to around 100,000 spherical elements, if the entire first compartment of the mill was simu-
lated. This number of elements is obviously far too large considering that the simulations in the
second chapter took already around 2 h for a total of almost 22,000 elements and a simulated
time of 5 s. Instead of simulating the entire first compartment, it is therefore more reasonable
to simulate only an axial slice of the mill (figure 3.5). Here, we will focus on a 250 mm and a
500 mm slice, which are equivalent to 1 or 2 rows, in order to understand the influence of their
length on the results.

Figure 3.5: Axial slice of the mill.

Simulating only a slice of the mill brings up the question of how to axially close this slice
so that the balls do not simply fall out of the liner. One answer to this question is to define a
periodic boundary condition, i.e. the balls leaving the slice on one side reenter it from the other
side (figure 3.6a). Because of the relatively long distance between the analyzed plate (forth row)
and the head liner, the influence of this head liner seems to be negligible at the forth row. Hence,
this boundary condition seems to be consistent with the reality. It has, however, the serious
drawback of not axially restraining the charge motion. Theoretically, grooves can therefore not
be created with the periodic boundary condition. This is why a second answer to the previous
question can be considered.
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(a) Periodic boundary condition, i.e. a ball, which
leaves the slice on one side, reenters by the other
side.

(b) Wall without tangential interaction, i.e. only
the normal spring and damper remain.

Figure 3.6: Schematic representation of the boundary conditions applied to the slice of the mill.

In fact, at the fourth row of the shell liner, it is reasonable to suppose that the influence of the
lifting of the charge by the tangential interaction with the end wall is negligible. Nevertheless, the
axial motion near the shell liner is restrained by the head liners and the important weight of the
balls, which forces them to take up as little space as possible. For these reasons, the intermediate
boundary condition between the periodic boundary condition and the solid wall condition, are
two walls without tangential interaction on both sides of the slice (figure 3.6b). These walls thus
simply prevent the balls from leaving the slice while inducing no additional lifting. Such a wall
can be created in the simulation by setting the tangential stiffness and damping coefficient of a
ball/wall interaction equal to 0. This second solution, however, has the drawback of increasing
the wear near the end walls of the slice for two reasons. First, the balls in contact with the end
walls will most likely always stress the shell liner at the same offset with respect to the wall4.
This reason is absolutely no problem in the case of a mill with real walls, i.e. walls, which
tangentially interact with the balls. More precisely, in the case of a mill with real walls, the
balls near the wall slide less due to their interaction with the wall. This is obviously not true for
the simulated mill with frictionless5 walls, where the wear near the walls can be supposed to be
relatively high. Other boundary conditions can certainly be considered but in this study, we will
limit the analysis to the previous conditions since these seem to be the best compromise between
the computation time and the representation of the reality by the model.

Having already introduced a 250 mm and a 500 mm slice as well as a periodic boundary
condition and walls without tangential interaction, we will introduce an additional geometrical

4This argument is only valid, if the balls in contact with the shell liner and the end walls have the same diameter.
Hereinafter, we will explain why balls with the same diameter were chosen in this study.

5The term frictionless might be a little ambiguous since the whole tangential interaction is nonexistent for these
walls, i.e. the Coulomb friction as well as the tangential spring and damper.
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feature. The figures 3.1 and 3.3 previously showed that the height of the grooves is relatively
small with respect to the average height of the profile after a given number of operating hours.
Thus, before trying to simulate the more complex phenomenon, i.e. the grooves, it would be
interesting to predict the predominant geometrical modification, i.e. the average azimuthal height
loss, first. For this reason, we will try to develop an algorithm which is sufficiently general to
estimate the wear of 1D and 2D liners. Hence, we will have to use a fine 2D surface mesh and a
rather coarse 1D extruded mesh6 similar to the one used in the previous chapter.

More precisely, the height of 1D liners initially changes only along the azimuthal direction.
Neglecting any variation of the profile due to wear along the axial direction, therefore implies
that a discretization along this specific direction is sufficient to capture the average height loss.
While the surface mesh in the second chapter had only the function of simulating the interactions
with the balls, it has the additional function of being able to record the local wear data in this
chapter. Thus, instead of discretizing the liner profile curve based on its curvature, it is more
reasonable to discretize it into elements having the same size. Setting the average size equal
to 15 mm, as explained earlier, for the fine and the coarse mesh, we obtain the profile curve
discretization7 of the coarse 1D mesh as shown in the figure 3.7.
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Figure 3.7: Profile curve discretization of a Duolift liner plate in the 5.8 m diameter ball mill (forth row,
after 2383 h). Each element has an average size of 15 mm, which results in 36 vertices.

The previous profile curve discretization could then be extruded along the axial direction as
shown in the second chapter (figure 2.10) in order to obtain the mesh of a liner plate. Unfor-
tunately, the periodic boundary condition in YADE, and in particular, the implementation of its
collision detection algorithm, does not allow discrete elements to have their size being equal to
half of the periodic length. In fact, if their size would be greater than half of the periodic length,
two bodies could interact multiple times. And since YADE identifies the contact by the identifiers
of the contacting bodies, these different contacts would not be distinguishable. For this reason,

6While a 1D liner was previously defined as a liner without variation of its height along the axial direction,
we will continue to use this attribute for liner meshes which can not represent a height variation along the axial
direction due to the volume loss by wear. By analogy, a 2D liner mesh can represent this variation, i.e. for instance
the creation of grooves.

7The profile was first drawn with the spline tool in CATIA. It was then discretized in GMSH. And finally, the
specific vertices of the curve discretization were selected in MATLAB.
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the 250 mm and the 500 mm 1D meshes were divided into 3 rows8 along the axial direction as
illustrated in the figure 3.8a, instead of one row.
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(a) Coarse 1D mesh.
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(b) Fine 2D mesh.

Figure 3.8: Surface meshes of the Duolift liner plate in the 5.8 m diameter ball mill (forth row, after
2383 h).

In contrast to the 1D plate mesh, the 2D mesh is a usual unstructured surface mesh with trian-
gular elements (figure 3.8b). The average element size is still equal to 15 mm. Consequently, it
contains 1408 triangles while the 1D mesh of the plate contains only 210 elements. An important
characteristic of these meshes is that the distribution of the vertices is identical on each opposite
edge of the surface. This feature will be important for calculating the normals of the surface
at the vertices (section 3.3.3) and for regularizing the surface during the geometry modification
(section 3.3.5).

The entire shell liner mesh of the slice is then assembled after duplicating and rotating the
mesh of one plate. While this technique had no advantage in the previous chapter, it will de-
cisively increase the representativity of the wear data in this chapter. In fact, because of the
periodicity of each elementary facet, the wear data accumulated on this facet (section 3.3.2) can
be averaged over all the similar facets. This master lifter mapping technique was previously
explained in the section 1.4.1. Moreover, the wear data can also be averaged axially over the
6 facets, which correspond to the extrusion of a segment in the discretized profile curve, of the
coarse 1D meshes. Hence, the data is not only averaged along the azimuthal direction but also
along the axial direction9.

8We also tried to use only two axial divisions and to slightly increase the length of the periodic slice, for instance,
251 mm instead of 250 mm. The software, however, still ran into a problem, i.e. some spheres simply left the liner
as if it would not exist. To fix this bug, it is necessary to analyze the implementation of the periodic insertion sort
collision detection algorithm more in detail. Since the problem could be bypassed by adding an additional axial
division, which did not excessively increase the number of elements, this problem was not further examined.

9Axial averaging is also possible for 2D liners if they are axially periodic, like the New Duostep liner produced
by Magotteaux S.A. (wave along the azimuthal and axial direction), and if the charge motion is also periodic (or
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In conclusion, 4 different liner mesh types (combinations of coarse 1D, fine 2D, 250 mm
length and 500 mm length), as well as two different boundary conditions (periodic and walls
without tangential interaction) were introduced.

Finally, the geometrical approximation of the balls remains to be defined. Despite their pro-
gressive grinding, they will be represented by spheres with a constant 70 mm diameter, which
is almost equal to the weighted average diameter of the balls. In order to keep the total mass of
the balls constant, 5187 and 10375 spheres are simulated in the 250 mm slice and the 500 mm
slice, respectively. Alternatively, it is obviously possible to use a more realistic diameter distri-
bution based on the data provided in the table 3.1. Reaching the pseudo steady state would then,
however, be far more complex since the segregation of the balls, i.e. the distribution of balls as a
function of their diameter in the mill, would have to be studied10. Because of the chaotic motion
and the relatively small difference in diameter of the real ball charge, it seems, therefore, to be
reasonable to simply neglect the segregation by using only balls with an identical diameter.

3.2.3 Simulation

The simulation as such is very similar to the simulation in the previous chapter. Hence, the liner
rotates at 13.48 rpm (negatively around the y-axis) and the gravitational acceleration is applied
along the vertical z-axis. Moreover, the time step is equal to 5 ·10−5 s (section 2.4.3).

There are, however, two major differences with respect to the previous chapter. On the one
hand, the total simulated time will usually be much longer since it takes more time to record
sufficiently representative data of the wear than of the charge motion or of the power draw. This
characteristic will be studied rigorously in the section 3.3.2.

On the other hand, the implementation of a multi-step procedure will be studied in the sec-
tion 3.3.7. As explained in the section 1.4.3, it consists in a progressive update of the geometry in
order to account for the changing load on the liner during its wear. The iterative process therefore
consists in a simulation, which is followed by the modification of the geometry. This modifica-
tion is then again followed by a simulation with the updated liner and so on. In order to decrease
the total computation time, it would thus be beneficial to restart a simulation with the state of
the balls from the previous simulation but with the updated liner geometry. Hence, this proce-
dure would not require to restart the simulation from the initial position of the balls (similar to
figure 2.12). Consequently, the subsequent pseudo steady state could be reached quicker. Except
for the first simulation of the multi-step procedure, the position, the translation velocity and the
angular velocity will therefore be loaded from the previous iteration of the multi-step procedure.

unchanged) along the axial direction, which is only true for the periodic boundary condition. In the case of the 2D
mesh of the Duolift liner, it makes, however, no sense to create an axially periodic mesh since the liner has initially
no variation of its height along the axial direction. Hence, the 1D coarse mesh is already sufficient.

10More specifically, it is possible that the pseudo steady state would be reached only after a relatively long time.
This time would be the time necessary for the balls to organize themselves in the mill. For instance, the balls with a
greater diameter would preferentially be in contact with the liner due to their higher mass and the centrifugal force.
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3.3 Wear Simulation

Having defined the charge motion model in the previous section and even more extensively in
the second chapter, we will finally combine this model with a wear model and a geometry mod-
ification strategy in order to predict the wear distribution but also the resulting change in the
geometry of the shell liner due to wear.

In this section, seven stages, which are necessary to achieve the previous objective, will be
defined. To understand why these stages are necessary, we will briefly sketch out the general
method from a bird’s eye perspective.

While DEM simulations usually start with their ball charge at rest, industrial mills rotate at a
constant angular speed during several ten thousand hours before changing the liner. The initial
step in wear modeling is therefore to determine when starts the first pseudo steady state. Once
this state has been reached, sufficiently representative wear data, like the tangential damping
energy, has to be recorded for each facet during the following rotations. This data indicates the
relative wear level of each facet after the simulation. The relative wear rate is then determined
by dividing the accumulated wear data by the time during which it was recorded. In order to
transform the numerical result into a real absolute volume loss rate, the real wear data has to be
extracted from the measured wear profiles. The correlation of the relative and absolute wear rates
finally provides the wear constant, which is the connection between the model and the reality. On
the basis of the wear constant and the relative wear rate, the absolute wear rate can be calculated.
The absolute volume loss of each element of the liner mesh after a specific number of operating
hours is then predicted by multiplying the wear rate by this number of operating hours. Since the
average volume loss of each facet is known, the geometry of the liner can be modified to account
for this volume loss. As explained earlier, one single update of this geometry is generally not
accurate enough because it neglects the variation of the liner load due to the transformation of the
geometry. Thus, a charge motion simulation has to be executed with the updated liner. To reduce
the computation the final state of the balls in the previous simulation is used as the initial state in
the new simulation. Therefore, it is necessary to determine when the second pseudo steady state
is reached. Finally, in the last section, we will study the multi-step procedure more in detail to
determine how many steps are usually necessary with or without spatial smoothing to predict the
liner wear evolution.

3.3.1 First pseudo steady state

Sampling the wear data in the transient state would make no sense since ball mills essentially
always rotate at a constant angular speed. Starting from an initial state similar to the one depicted
in the figure 2.12, the pseudo steady state can be reached after around one to two rotations as
shown in the figure 3.9. Two rotations are a more conservative limit, which is why this number
of rotations will be used in all the following simulations.

In the section 3.2.2, 8 different scenarios were defined, i.e. the combinations of a periodic
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Figure 3.9: Horizontal position of the center of gravity as a function of time for the four scenarios defined
in the section 3.2.2 with the coarse 1D meshes. The horizontal dashed lines indicate when a full rotation
has been completed.

boundary condition or walls without tangential interaction, a 250 mm axial slice or a 500 mm
axial slice and a coarse 1D mesh or a fine 2D mesh. Having represented only the cases with
the coarse 1D meshes in the figure 3.9 means that we obtained identical results with the fine 2D
meshes. Hence, no influence of the additional stiffening (section 2.4.2) due to the increased edge
collisions with the fine mesh was observed. Using a coarse 1D and a fine 2D mesh, which almost
equally well approximate the geometry, has therefore no influence on the charge motion.

Concerning the length of the slice and the axial boundary condition, very interesting obser-
vations can be made. For instance, the power draw of the scenario with the periodic boundary
condition is higher than with the frictionless walls as shown in the table 3.2. The difference,
however, decreases with the length of the slice. The same conclusion can be drawn from the
position density limits in the figure 3.10, where the toe is slightly higher for the simulations with
(frictionless) walls. Moreover, its height decreases with the length of the slice. Since the shoul-
der angle is almost identical in the different scenarios, the power draw should be higher for the
simulations with the frictionless walls.

The difference in power can finally be explained by the position density plots of the mill
viewed from above as shown in the figure 3.11. In fact, the increased interlocking of the balls
(by the periodicity) in the scenario with the periodic boundary condition allows them to be lifted
higher, i.e. the toe decreases. Hence, the center of gravity of the balls is further away from the
rotation axis and the power increases. An additional argument confirming this explanation is
probably the fact that the percentage of sliding power is slightly higher for the cases with the
periodic boundary condition since in the case with the frictionless walls, the balls can neither
dissipate their energy by sliding on the walls, nor on their periodic counterpart.
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Case Rotation
power [kW]

Percentage of
normal

damping
dissipation

[%]

Percentage of
tangential
dissipation

[%]

Percentage of
sliding

dissipation
[%]

250 mm, 1D mesh, periodic 112.2 38 8 56

250 mm, 1D mesh, wall 109.3 42 7 53

250 mm, 2D mesh, periodic 111.9 38 8 57

250 mm, 2D mesh, wall 108.0 42 7 53

500 mm, 1D mesh, periodic 224.1 38 8 57

500 mm, 1D mesh, wall 220.6 40 8 54

500 mm, 2D mesh, periodic 223.7 39 8 57

500 mm, 2D mesh, wall 220.1 40 8 55

Table 3.2: Influence of the length of the slice, the mesh, and the boundary condition on the estimated
average power draw of the mill. The power values were calculated by averaging the post-processing data
(sampling period: 0.01 s) over the third rotation of the mill. The power percentages are calculated with
respect to the rotation power and rounded half down.
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Figure 3.10: Position density limits of the four scenarios defined in the section 3.2.2 with the coarse
1D meshes. The density limits were calculated according to the explanation in the section 2.3.4 with a
100× 100 binning grid on the basis of the post-processing data (sampling period: 0.01 s) of the third
rotation of the mill.
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Moreover, the figure 3.11 clearly illustrates that a periodic boundary condition is not able to
induce the creation of grooves if the liner initially has not geometrical feature which restrains
the axial displacement of the balls. The boundary condition with frictionless walls, however, has
the drawback of limiting the motion of the balls at a constant offset with respect to the wall; this
offset is obviously equal to the radius of the balls. To enhance the visibility of the organization
of the charge motion, the color legend was rescaled by setting its maximum value equal to 4
instead of 18. As expected, the number of (potential) grooves per plate is identical to the one
found in the reality for the scenario with the frictionless walls. Since the organization of the balls
decreases with the length of the slice, the charge motion of the previous scenario converges to the
one with the periodic boundary condition. This eventually explains why the relative difference
of the power draw for the two boundary conditions is lower for the 500 mm slice than for the
250 mm slice.

3.3.2 Representative wear data

Once the first pseudo steady state has been reached after around two rotations, the data, which
represents the relative wear level, has to be recorded during several rotations of the mill. In this
section, we will define the wear models and the data extraction technique in order to determine
the relative wear rate on the basis of the simulation. Moreover, we will find out how many
rotations are necessary to sample sufficiently representative wear data and what influence the
boundary conditions and the length of the slice have on the numerical results.

Wear models

In the section 1.3, a detailed overview of different wear models was provided. Instead of choosing
one of these models without any prior knowledge about its accordance with the reality, we will
rather implement the most promising wear models in the field of ball mill liner wear and choose
the best fitting model a posteriori.

An alternative approach would be to record the components of the wear models, like the
sliding distance or the normal force, individually and to try to combine these components on the
basis of the real wear data in order to obtain the best fitting model. This strategy, however, has two
major drawbacks, which render it virtually impossible. On the one hand, each component would
add an additional degree of freedom to a study, which in any case has already a large number
of degrees of freedom (in terms of parameters). To keep the wear model as simple as possible,
it thus seems to be more reasonable to choose only one or two combinations of (entire) wear
models, which have already delivered accurate results in previous studies. On the other hand, a
synthetic data extraction technique (section 1.4.1) is absolutely needed to keep the data creation
during DEM simulations sufficiently low while maintaining a high degree of representativity
of the variables causing wear. Hence, it would be necessary to accumulate the individual wear
components over time, which rises the question about the form of the accumulation, i.e. moving
average, moving squared average, . . . Due to this short-coming, the wear components could loose



Wear Simulation 135

x [m]
-2 -1 0 1 2

y 
[m

]

0

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 n
um

be
r 

of
 b

al
ls

 p
er

 c
el

l [
-]

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Periodic boundary condition, 250 mm slice
(coarse mesh).
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(b) Walls without tangential interaction, 250 mm
slice (coarse mesh).
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(c) Walls without tangential interaction, 500 mm
slice (coarse mesh).

Figure 3.11: Position density plots of the mill viewed from above with a 100×50 (resp. 100×100) bin-
ning grid for the 250 mm (resp. 500 mm) slice created on the basis of the post-processing data (sampling
period: 0.01 s) of the third rotation of the mill. The color legend was rescaled to enhance the visibility of
the organization of the charge motion. In fact, the maximum average value of balls per cell reaches 18 in
the cases with frictionless end walls next to these walls.
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any meaning. For instance, the Archard wear is essentially equal to the normal force multiplied
by the sliding distance. If the normal force would be always equal to zero, when the body slides,
no wear would be accumulated by the model while the combination of the average normal force
and the average sliding distance could not reproduce this result.

Therefore, we will define the most promising wear models in the following paragraphs. As
will be explained in the next section, the relative wear data calculated by these models is accu-
mulated for each facet and each time step dt, i.e. a variable will be created for each facet and for
each wear model. At every time step, the relative wear is calculated and added to this variable.
After the simulation, the variable will thus quantify the relative wear of the facet according to
a specific wear model. To post-process the wear data more easily, the wear models will only
be composed of actual variables of the simulation. In other words, the wear constant and the
hardness have been removed from the models but will be added later on. To leave no place for
ambiguities, the actual implementation11 of the wear models can be found in the appendix B.
The different models were in general already explicitly described in the section 1.3.

Energy dissipated by normal damping The energy dissipated by the normal damper of the
contact law measures the energy dissipated by the normal impact of discrete elements. It is
defined as follows in incremental form:

Wnormal =Wnormal + cn v2
n dt (3.1)

where cn, vn and dt are the normal damping coefficient, the norm of the normal velocity and the
time step, respectively. The product cn vn is the force created by the damper, which is multiplied
by the incremental normal displacement vn dt.

Energy dissipated by tangential damping The energy dissipated by the tangential damper of
the contact law quantifies the energy dissipated by a tangential collision of discrete elements,
without sliding. This wear model puts more emphasis on the energy dissipated by a tangential
collision (a phenomenon with a rather short time scale) while the following wear model focuses
on the sliding (a phenomenon with a rather long time scale). The model is defined in a similar
way to the energy dissipated by normal damping:

Wtangential =Wtangential + ct v2
t dt if Ft < µ Fn (3.2)

where ct , vt , dt, Ft , µ and Fn are the tangential damping coefficient, the norm of the tangential
velocity, the time step, the norm of the tangential interaction force, the coefficient of friction and
the norm of the normal interaction force, respectively.

11In the implementation, the wear is divided by the area of the facet element in order to create consistent results
for the VTK output. Here, the wear model will, however, be defined without dividing the relative wear volume by
this area.
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Energy dissipated by sliding The energy dissipated by sliding quantifies the energy dissipated
along the tangential direction of the collision, when the friction limit has been exceeded:

Wsliding =Wsliding +Ft ·vt dt if Ft ≥ µ Fn (3.3)

where Ft , vt , dt, Ft , µ and Fn are the tangential interaction force, the tangential velocity, the time
step, the norm of the tangential interaction force, the coefficient of friction and the norm of the
normal interaction force, respectively. The dot product is necessary because the sliding force
and the tangential velocity are not necessarily aligned due to the history of the tangential spring
force.

Archard wear The Archard wear equation quantifies the wear created when two objects slide
over each other since it is proportional to the normal contact force and the sliding distance:

WArchard =WArchard +Fn vt dt (3.4)

where Fn, vt and dt are the norm of the normal interaction force, the norm of the tangential
velocity and the time step.

Finnie wear In contrast to the previous wear models, the wear created according to the model
of Finnie is only calculated when a new interaction is created, i.e. not during the interaction.
Hence, if the interaction is new, the Finnie wear is defined as follows:

WFinnie =WFinnie+ f (α)m v2 with f (α)=

{
1/3 cos(α)2 , if tan(α)> 1/3

sin(2α)−3sin(α)2 , otherwise.
(3.5)

where α is the collision angle defined in the figure 1.20, and where m and v are the mass of the
ball, which collides with a facet, and the norm of the relative collision velocity, respectively.

Excess kinetic energy In the same way as for the Finnie wear, the excess kinetic energy is only
calculated when a new interaction is created. It represents the kinetic impact energy of the balls,
which have a normal velocity greater than 0.1 m/s:

Wkinetic =Wkinetic +m v2
n if vn > 0.1 (3.6)

where m and vn are the mass of the ball, which collides with a facet, and the norm of the normal
(impact) velocity, respectively.

Data extraction technique

The next step of the wear simulation is to extract the data, which has been defined by the wear
model, from the DEM solver. In the section 1.4.1, two solutions to this problem were defined:
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the explicit and the synthesized data extraction. To reduced the data creation by the software
and to increase the representativity of the wear data, the synthesized data extraction strategy
was chosen. In contrast to the other strategy, it required, however, to modify the source code of
YADE. The following list, summarizes the changes in the software:

• new linear spring-slider-damper contact model implemented in SprSldDmp.hpp and
SprSldDmp.cpp12. During an interaction, the new spring-slider-damper contact law cal-
culates not only the interaction forces, but also the wear created during this interaction.

• new state properties of the elements implemented13 in State.hpp. A variable for each
wear model was added to the state of the elements in order to account for their progressive
wear. To retrieve the values of the new variables in the PYTHON control script, the wrapper
implemented in yadeWrapper.cpp was also enriched.

• new global scene flag O.trackWear implemented in Scene.hpp similar to the
O.trackEnergy flag. Only if this flag is true, the wear will actually be calculated.

• new global timing variable O.recordingStartTime implemented in Scene.hpp,
which allows to start the recording of the wear only after a given time. This feature makes
it possible to start the recording once the pseudo steady state has been reached, in the same
simulation.

• new wear output recorder in the VTKRecorder class implemented in
VTKRecorder.hpp. This recorder enables the output of the wear data in the .vtu VTK

file format, which can be visualized in the PARAVIEW software. This feature is also the
reason why the wear data is divided by the facet area in YADE. Hence, its representation
is independent of the size of the facet.

These new components of the DEM solver render it possible to accumulate the wear of each
facet for each time step in the pseudo steady state over the whole simulation, and to finally
retrieve and save this data by the PYTHON control script at the end of the simulation. For instance,
the figure 3.12 illustrates the energy dissipated by tangential damping on each facet divided by
the area of this facet, accumulated on the coarse 1D (resp. fine 2D) mesh of the 250 mm long
slice with frictionless walls during 4 rotations (resp. 8 rotations) in the pseudo steady state.

This figure also shows that the corresponding number of rotations is clearly not enough to ob-
tain sufficiently representative wear data; facets, which should have the same wear level because
of their geometrical symmetry, have different values. This is the consequence of the chaotic
charge motion and the reduced sampling time, i.e. around 18 s for the coarse 1D mesh and
around 36 s for the fine 2D mesh versus several ten thousand hours in the reality. For this reason,
the master lifter mapping procedure was explained in the section 3.2.2. Because of the azimuthal

12The source code can be found in the appendix C.
13In the future, the additional properties should better be implemented in a class that inherits from the State

class, like the CpmState class of the concrete particle model in the ConcretePM.hpp file.
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(a) Coarse 1D mesh. (b) Fine 2D mesh.

Figure 3.12: Energy dissipated by tangential damping on each facet divided by the area of this facet,
accumulated on the coarse 1D (resp. fine 2D) mesh of the 250 mm long slice with frictionless walls
during 4 rotations (resp. 8 rotations) in the pseudo steady state. The color legend was not represented,
since the absolute values have no importance here. The color varies, however, from blue to red (rainbow)
and has been scaled from the minimum to the maximum value. The pictures were created in PARAVIEW.

periodicity and the axial periodicity (for the 1D mesh), it is possible to increase the statistical rep-
resentativity of the sampled data by 36 for the fine 2D mesh and by 216, i.e. 36 ·6, for the coarse
1D mesh, if the data of the facets is mapped on one representative master plate.

Numerical results

By means of the previous explanation, it is now possible to extract the data from YADE and
to map it on a representative master plate in MATLAB. In this section, we will analyze the
numerical results in order to determine the number of rotations, which is necessary to obtain
sufficiently representative wear data, and to understand the influence of the boundary condition
and the length of the slice on the wear distribution.

In the section 3.3.4, it will be demonstrated that the energy dissipated by tangential damping
is the most accurate single wear model of the liner wear with respect to the reality. To simplify
this study, the following explanation will therefore be based entirely on this specific wear model.
Nevertheless, it would be surprising to find significantly different results in terms of the number
or rotations and the influence of the boundary conditions for the other models. To obtain re-
sults, which are independent of the area of the facet in the surface mesh and the simulated time,
the energy of the wear model will be divided by the area of the facet and the simulated time.
Consequently, it represents the relative height14 loss rate of the facet in [J/(s.m2)].

14It is the relative height loss rate, since an energy per area per time divided by a hardness gives the units [m/s].
The attribute relative is used to account for the fact that the data has not yet been multiplied by the wear constant
and divided by the hardness.
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Number of rotations In the case of the coarse 1D mesh, the figure 3.13 shows the relative
height loss rate along the liner plate for each segment of the discretized liner profile curve (fig-
ure 3.7) after a given number of rotations of the 250 mm slice with frictionless walls. The profile
curve was discretized by 35 segments. Hence, the figure shows the relative height loss rate of
each segment from the left to the right. The greatest height losses are therefore expected to be
on the right side of the small and the big waves of the profile15. The wear distribution will be
explained in more detail in the section 3.3.4.

According to the figure 3.13, the wear distribution converges relatively quickly so that almost
no difference between the curves can be observed after two rotations. Mathematically, this means
that the difference of the wear data of two successive rotations converges to 0 (figure 3.14a) since
more and more wear data is accumulated, which leads to a more representative sampling of the
variables causing wear. In conclusion, we will use a conservative number of three rotations to
record the wear data16 with a coarse 1D mesh. Two or even one rotation would, however, not
significantly change the results. The previous conclusion is also true for the periodic boundary
condition with a coarse 1D mesh in agreement to the results in the figure 3.14a.
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Figure 3.13: Relative height loss rate along the liner plate for each segment of the discretized liner profile
curve. The results were obtained with the 1D coarse mesh of the 250 mm slice and the end walls without
tangential interaction. Each additional rotation of the slice in the pseudo steady state leads to a better
convergence of the wear distribution.

15The mill rotates from the left to the right with respect to the plate, which is located at the bottom of the mill.
16Three rotations might seem to be a very conservative number of rotations. We want, however, to make sure to

reduce any disturbing factor in the development of the method. Once, the method proves to be sufficiently accurate,
less precautions might be taken to accelerate the computation of the wear evolution of a new liner profile.
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(a) Coarse 1D mesh.
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(b) Fine 2D mesh.

Figure 3.14: Convergence of the average relative absolute difference of the relative height loss rate with
the number of rotations. The relative height loss rate can be calculated for each facet after each rotation.
By computing the absolute difference between the relative height loss rates of the current and the previous
rotation and dividing this difference by the relative height loss rates of the current rotation, we obtain
the relative change of the height loss rate for each facet. The average of these values over all the facets
then illustrates the convergence of the wear data with the number of rotations. In simple terms, the
representativity of the wear sample increases with the number of rotations, i.e. the average absolute
difference of the wear level decreases.

Concerning the fine 2D meshes, the absolute difference of the relative height loss rate between
two rotations following each other is much higher, as shown in the figure 3.14b, due to the
large number of facets. For instance, one facet could be impacted several times in a row, while
another facet is not touched at all during the simulation. Even though the average absolute
relative difference becomes smaller than 5% after 7 rotations (with respect to the 8th rotation), the
individual relative absolute differences at the level of the facets still attain 22% at their maximum
levels (figure 3.15b). This result is, however, far more accurate than the one obtained after the
first two rotations, were the variation of a value of one facet occasionally gets close to 80%
(figure 3.15a). Interestingly, these large variations logically occur in regions, where usually few
collisions take place, i.e. immediately behind the small and the big waves. In the same way as
for the coarse 1D meshes, similar results were found for the scenarios with the periodic boundary
condition and the walls without tangential interaction, in terms of the convergence of the wear
data. Due to the 22% maximum relative difference and the long computation time with the fine
2D meshes (around 10 h for the 250 mm slice and 30 h for the 500 mm slice, depending on
the workload of the processor), 8 rotations seem to be an acceptable compromise to sample the
representative wear data with a fine 2D mesh.

Boundary condition and length of the slice Based on the figures 3.16a and 3.16b, the bound-
ary condition and the length of the slice have a negligible influence on the wear distribution,
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(a) Rotations 1-2. (b) Rotations 7-8.

Figure 3.15: Convergence of the relative absolute difference of the relative height loss rate with the
number of rotations at the level of the facets. The relative height loss rate can be calculated for each facet
after each rotation. By computing the absolute difference between the relative height loss rates of the
current and the previous rotation and dividing this difference by the relative height loss rates of the current
rotation, we obtain the relative change of the height loss rate for each facet. The results were obtained
with the fine 2D mesh of the 250 mm slice and the periodic boundary condition.

which has been accumulated on a coarse 1D mesh. Since the wear data is averaged along the
axial direction for the coarse 1D meshes, these meshes are not able to reproduce the real axial
wear patters, which are much more complex as shown in the figure 3.17 for the fine 2D meshes.
The wear distribution is thus clearly the natural consequence of the organization of the charge
motion as shown in the figure 3.11, i.e. that grooves can only be created if the charge motion is
axially restrained, like in the scenario with the frictionless end walls. In consequence, the length
of the slice has no real influence on the wear calculated with the periodic boundary condition.

As a result of the previous conclusions and due to the extremely long computation time of
simulations containing the fine 2D meshes of a 500 mm slice (30 h versus 10 h for the fine
2D meshes of the 250 mm slice and around 2 h for the coarse 1D meshes17, depending on the
workload of the processor), only the following scenarios will be studied in the next sections:

• coarse 1D mesh, walls without tangential interaction, 250 mm slice

• fine 2D mesh, walls without tangential interaction, 250 mm slice

17Moreover, the periodic insertion sort algorithm in YADE has not yet been parallelized. Choosing the scenario
without the periodic boundary condition therefore reduces the computation time even more.
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(a) Influence of the boundary condition for the
250 mm slice.
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Figure 3.16: Influence of the boundary condition and the length of the slice on the relative height loss
rate computed along the coarse 1D meshes after 4 rotations of the mill.

3.3.3 Real wear data

Before transforming the predicted relative wear into an absolute volume loss for each facet, it is
necessary to determine the real wear data. This data will be correlated with the relative wear in
the next section (section 3.3.4) to determine the best fitting wear model and the corresponding
wear constant. Since the relative wear was previously estimated for each facet, it would be
interesting to extrapolate the real wear data of the wear profiles (figure 3.1 and appendix D) to
each individual facet of the liner mesh, too. In this section, we will therefore explain the volume
extraction technique based on the wear profiles and criticize the evolution of the real liner wear.

In total, measurements of the Duolift liner plate along the azimuthal direction and the radial
direction were taken 11 times in order to determine its maximum and minimum height due to
the creation of grooves over time (appendix D). In the following analysis, we will, however, only
focus on 9 of these measurements because of the following reasons. On the one hand, the wear
from 0 to 2383 operating hours is too uniform to be predicted by a wear model, which assumes
that the material properties of the liner plate are homogeneous18 (see figure 3.1). In fact, the
uniform height loss along the profile from 0 h to 2383 h might be caused by the softening of
the plate, when the carbon in the material leaves the plate at its surface during the cooling phase
after its casting. Hence, the soft surface layer is quickly worn away until reaching the harder
core material. On the other hand, we will only calculate the wear data based on the average
wear profiles, which are equal to the average of the maximum and minimum profile height, for
each of the 9 measurements. Taking into account the grooves would only make the analysis

18It would be relatively easy to take the variation of the hardness (according to the position inside of the plate)
into account at the level of the model. Nevertheless, measuring this variation and calibrating the wear constants
would certainly be extremely complex.
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(a) Periodic boundary con-
dition, 250 mm slice. Identi-
cal results were obtained for
the 500 mm slice with this
boundary condition.

(b) Walls without tangential
interaction, 250 mm slice.

(c) Walls without tangential interaction,
500 mm slice.

Figure 3.17: Influence of the boundary condition and the length of the slice on the relative height loss
rate computed for each facet of the fine 2D meshes after 8 rotations of the mill. The color legend was not
represented, since the absolute values have no importance here. The color varies, however, from dark blue
to yellow and has been scaled from the minimum to the maximum value for each figure individually.

more complicated and not really improve the results. Because the last wear profile, i.e. after
48437 h, was only measured in the valley of the groove, it will not be considered in the analysis.
In conclusion, the 9 average wear profiles19 from 2383 to 41541 operating hours will be used to
determine the real wear data.

Having 9 average wear profiles at one’s disposal renders it possible to define 8 sets of wear
data, i.e. from 2383 h to 7060 h, from 7060 h to 12120 h and so on. Consequently, we can
approximate the volume loss for each of the 8 steps. Since a material body looses its material by
wear normally to its surface, the lost volume related to each facet can be approximated as illus-
trated in the figures 3.18 and 3.19. More precisely, the vertices of the current wear profile mesh
are normally projected on the following mesh. In particular, the vertex normals are calculated
by averaging the normals of the neighboring facets of a vertex as explained in [Jin et al., 2005].
Moreover, the plate is repeated in space around the master plate to increase the independence of
the normals from the mesh at its edges. This explains why the vertices on the edges of the plate
had to be distributed identically on opposite edges (section 3.2.2). Once the projection of each
vertex is known, the volume loss below every facet can be calculated by computing the volume
of each polyhedron, which is delimited by the initial and the projected vertices. The wear rate

19Precisely, the average profiles after 2383 h, 7060 h, 12012 h, 16680 h, 23669 h, 28668 h, 33034 h, 37020 h and
41541 h in the appendix D will be used.
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or the volume loss rate at each facet is then obtained by dividing the volume loss below each
facet by the operating hours separating the current profile from the following profile of the liner
plate in time. The result is represented in the figure 3.20. The previous procedure can finally be
applied to the 9 selected wear profiles in order to extract the 8 real wear rates at each facet.
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Figure 3.18: Normal projection of the vertices of the current wear profile mesh onto the mesh of the
following wear profile. This figure shows the side view of the figure 3.19.

300

y [mm]

200

100

0
200

150
100

50

x [mm]

0
-50

-100
-150

-200

50

100

150

z 
[m

m
]

Figure 3.19: Normal projection of the vertices of
the current wear profile mesh onto the mesh of the
following wear profile. The side view of this figure
is represented in the figure 3.18. The initial ver-
tices of the facet and their projection can be used
to calculate the volume loss below this facet.
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Figure 3.20: Illustration of the real wear rate
which can be calculated on the basis of the results
in the figure 3.19 and the corresponding operating
duration.

Before correlating this data with the predicted relative wear rates in the following section
(section 3.3.4) in order to determine the wear constant, the wear data has to be criticized. In fact,
by computing the sum of the volume loss rate of each facet, it is possible to determine the total
volume loss rate for each of the 8 wear steps. This rate has been plotted in the figure 3.21 to show
the evolution of the wear rate over time. Theoretically, the wear rate should be strictly decreasing
since the liner profile looses its aggressiveness with an increasing level of wear. Hence, less
energy is transferred to the charge, which in turn wears less the liner. The figure 3.21 thus implies
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that one of the modeling hypothesis has been violated. The only reasonable explanation20 is that
the rotation speed of the mill was increased after the first half of the lifespan of the liner to
compensate for the decreasing mill throughput due to the worn profile. Increasing the rotation
speed of the mill is usually not possible but the wear profiles were actually measured in a mill
which can rotate at different speeds. Nevertheless, it was impossible to find the data, which
proves or denies the increase of the rotation speed. Despite this incongruence between the real
wear data and the simulation, it should, however, be possible to determine the best fitting wear
model and its average wear constant. How to reach these objectives will be explained in the next
section.
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Figure 3.21: Wear rate evolution of the Duolift liner plate over time. The time was substituted by the
number of the operating duration step since the measurements are almost equally separated in time by
5000 h. These steps correspond to the profiles from 2383 h to 7060 h, 7060 h to 12120 h and so on.

3.3.4 Wear constant

In this section, we will combine the relative wear data calculated in YADE (section 3.3.2) and
the real wear data of the wear profile measurements (section 3.3.3) in order to choose the most
promising wear model and to calibrate its wear constant.

20We found mainly four alternative explanations, which are, however, less likely because of the strong first order
discontinuity of the wear rate. First, the hardness of the plate might be very non-homogeneous such that the wear
rate increases strongly once a specific depth of the plate has been reached. Second, the wear rate might first decrease
and then increase because initially the profile becomes less aggressive and less energy is available to erode the plates.
Once a certain threshold has been reached, the charge slides more and more and this increased sliding might increase
the wear rate again. The third explanation is that a different clinker type, which is harder, was ground after around
23000 operating hours. The final explanation is the progressive grinding of the balls and the very infrequent refilling
with new balls.
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In the section 3.3.2, it was explained why only the scenarios with the coarse 1D mesh and the
fine 2D mesh of the 250 mm slice with frictionless walls will be further analyzed. Correlating
the relative wear data of the 2D mesh scenario with its real wear data, would, however, not make
much sense because we did not take into account the grooves in the real wear data. Moreover,
if the wear constant can be determined with the wear data of the coarse 1D mesh, it should by
definition be the same for the simulation with the 2D mesh. Hence, the following results were
obtained with the 1D mesh of the 250 mm slice closed by walls without tangential interaction.

Instead of trying to combine multiple wear models, like it has extensively been done in the
literature (section 1.4.4), we will rather check if one model is not sufficient, and only enrich the
solution by another model, if this seems to be necessary. The figure 3.22 shows the predicted
and the real wear rates along the profile curve for each axial stripe defined by the segments in
the figure 3.7. The global wear constant21, K = K/H, which was required to rescale the rela-
tive wear data in this figure, was determined by liner regression using a least-squares approach,
independently for each model (obviously), i.e. K is the solution of the following problem:

K = argmin
K∗

(
n f

∑
i=1

(
K∗ Ẇreli−Ẇreali

)2
)

(3.7)

where n f , Ẇreli and Ẇreali are the number of facets, the relative wear rate of the facet i (for a given
wear model) and the real wear rate of the facet i.

In general, the energy dissipated by normal damping, the energy dissipated by tangential
damping and Archard’s wear model are the best fitting wear models despite the peak on the
leading edge of the small wave according to the figure 3.22. The energy dissipated by sliding is
distributed too evenly over the profile and the highest wear rate is rather located on top of the
wave instead of on its leading edge. Finnie’s wear model provides almost identical values for
the maxima and minima but they seem to be phase-delayed along the profile. This delay might
be due to the influence of the factor 1/3 in the definition of the model (equation 3.5). This factor
depends on the boundary condition of the body during its collision with the facet, i.e. either its
velocity is zero after the impact or it leaves the surface while its tip is still scratching this surface,
as explained in the section 1.3. Adjusting this parameter seemed not to be necessary because
the other wear models already provided relatively accurate data. It is also important to notice
that we did not smooth the wear data in spite of its sometimes strong first order discontinuity22.
Smoothing the data at this stage would only introduce an additional parameter in this study
without changing significantly its outcome due to the overall variation of the wear constant, as
explained in the next paragraph.

Since our objective is to find the best fitting wear model with a wear constant, which is
actually constant, we have to calculate the average wear constant over the whole life of the liner
for each model before choosing the wear model. Hence, the least-squares problem described by

21The wear constant is usually the variable K (section 1.3) but since the hardness H is also assumed to be constant,
we can define a global wear constant K = K/H.

22This statement is only valid because the facets have almost the same size. Otherwise, the volume loss rates of
the different facets could not be compared that easily.
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(a) Energy dissipated by normal damping.
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(b) Energy dissipated by tangential damping.
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(c) Energy dissipated by sliding.
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(d) Archard’s wear model.
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(e) Finnie’s wear model.
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(f) Excess kinetic energy.

Figure 3.22: Numerically predicted wear rate vs. the real wear rate for each of the 35 axial stripes of the
coarse 1D mesh. Each stripe is approximated by 6 facets in the mesh due to the axial extrusion of the 35
segments of the liner profile discretization in the figure 3.7. The real wear rate was calculated based on
the profile curves after 2383 h and 7060 h, while the predicted relative wear rate was determined based
on the coarse 1D mesh of the profile curve after 2383 h. The predicted wear rate was then obtained by
multiplying the predicted relative wear rate by the corresponding global wear constant K, which is the
solution of the least-squares problem in the equation 3.7.
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the equation 3.7 is solved for each of the 6 wear models and for each of the 8 operating duration
steps (from 2383 h to 7060 h, from 7060 h to 12120 h and so on). This means, that we also
created the 1D coarse meshes of the profile after 7060 h, 12120 h, . . . and that a simulation was
executed for each of these meshes to accumulate their wear data. Then, the weighted average of
the wear constants over the 8 steps is determined for each model. The weighting coefficients used
to calculate these averages are the number of operating hours of the specific operating duration
step (e.g. 7060 - 2383 = 4677 h for the first step, and so on) since wear constants, which are
determined over a longer time scale, seem to be more representative of the real wear constant;
calculating a non-weighted average would, however, not have changed the results significantly.
In fact, the wear constants of each individual step are fluctuating by about ±50% around their
average values as shown in the figure 3.23. Interestingly, the variation of the wear constant is
very similar to the variation of the real wear rate shown in the figure 3.18. This behavior therefore
implies that the load on the liner is first reduced, then increased and finally reduced again in the
real mill. Hence, this behavior is an additional argument for the increase of the rotation speed
after around 23669 operating hours in the real mill, as mentioned earlier.
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Figure 3.23: Fluctuation of the wear constants at each operating duration step around the average wear
constant of the specific wear model.

Changing the rotation speed of the mill in the model is certainly possible but relatively com-
plex because of the limited experimental data. This is why, we will only determine the best
fitting wear model with its average wear constant. More precisely, we calculated the predicted
wear rate for each of the 8 operating duration steps, for each wear model with the average wear
constant of the model and for each facet. Then, the mean23 squared errors between the real
wear rates and the corresponding predicted wear rates were computed. Finally, after dividing
the mean square errors of the 6 wear models at each operating duration step by the largest mean

23It is the average over all the facets for a given operating duration step and a given wear model.
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square error at the specific step, we get the error percentages of the models with respect to the
worst fitting model at the current step, i.e. the lower the percentage, the better the fitting of the
model with the reality. On average, the energy dissipated by tangential damping is therefore the
best24 fitting wear model according to the figure 3.24. The corresponding average global wear
constant is equal to K = 4.6 · 10−12 m2/N. Since the hardness of the liner is equal to 50 HRC,
i.e. 500HV ≈ 500 MPa, the wear constant is equal to K = 2.3 · 103. This value falls within the
interval of the abrasion wear constant provided in the section 1.3.1. The numerical results thus
seem to be coherent with the real wear phenomenon. In the next section, we will try to push
things a little further by estimating the modification of the geometry due to wear.
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Figure 3.24: Error percentage of the wear model with respect to the worst fitting model at the specific
operating duration step, i.e. the lower the percentage, the better the fitting of the model with the reality.
The error is equal to the mean square error of the predicted wear data (on the basis of the simulation
and the average wear constant of the specific wear model) and the real wear data of the given operating
duration step.

3.3.5 Geometry modification

The best shell liner profiles in balls mills have low wear rates and preserve their shape during their
whole operating duration. In order to compare these characteristics for different liner profiles,
a simple but sufficient geometry modification strategy will be introduced in this section. More
precisely, this section will be divided into three parts: the displacement of the vertices (of the
mesh) due to wear, the smoothing of the resulting surface and its regularization.

24The energy dissipated by normal damping and the Archard wear model also deliver relatively good results but
by summing the error percentages in the figure 3.24 over all the operating duration steps separately for each model,
the energy dissipated by tangential damping has the smallest value, i.e. it is the best fitting model in agreement with
this criteria.
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Displacement of the vertices

The starting point of such a strategy is a liner profile mesh, in our case, the coarse 1D and the
fine 2D meshes of the 250 mm slice after 2383 operating hours, and the predicted wear rates of
each facet, which were determined according to the explanations in the previous sections. The
liner profile after 12120 h can then be determined as follows. Since the liner mesh is initially
assembled from the meshes of each plate, modifying the geometry of one plate is equivalent to
modifying the entire liner. This is why, we will focus only on the geometry modification of one
plate.

First, the directions, along which the vertices of the initial mesh (here the mesh after 2383 h)
will be displaced, have to be chosen. Since a material body looses its material by wear normally
to its surface, these directions are provided be the normals of the surface. These normals can be
approximated at the vertices of the mesh by the average normal of the neighboring facets [Jin
et al., 2005]. In order to obtain a better approximation of the normals at the edges and the corners
of the plate, this plate is virtually reproduced in space and translated or rotated as illustrated in the
figure 3.25. Hence, the normals at the edges and the corners are not only calculated by means of
the neighboring facets of the vertex within the current plate but also by means of the neighboring
facets within the bordering plates.

Figure 3.25: Illustration of the neighboring facets of a vertex, which are used to calculate the normal
of the surface at this vertex. The master plate is translated axially and rotated azimuthally in order to
reproduce the bordering plates. The colored patches around a vertex show which facets are included in the
calculation of the normal at a vertex inside of the master plate, on an edge or at a corner. The shrinking of
the plates on the left and on the right represents the rotation of those plates, which thus become shorter, if
viewed from above.

Once the direction is known for each vertex, the amplitude of the displacement along this
direction is determined on the basis of the predicted wear rate. For this reason, the predicted
wear rate of each facet is multiplied by the operating duration, which separates the current liner
profile from the new predicted profile in time. Consequently, the predicted volume loss below
each facet is known. Choosing the operating duration step means that the geometry modification
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strategy is explicit. Therefore, this step has to be chosen carefully. In our case, we want to
predict the liner profile after 12120 h, i.e. after 12120 - 2383 = 9737 h with respect to the
profile at 2383 h. How many steps are needed in practice to simulate the whole liner life will be
explained in the section 3.3.7. By means of the predicted volume loss of each facet, their height
loss can then be determined because it is equal to the volume loss divided by the area of the facet.
The displacement of each vertex along its normal is then equal to the average height loss of the
neighboring facets. Such a strategy is certainly an approximation but it has the benefit of already
smoothing the profile without having to specify any additional parameter.

The last two steps of the geometry modification strategy are the smoothing of the new liner
profile and its regularization. To understand why the smoothing might be necessary in some
cases, the figure 3.26 shows the unsmoothed predicted liner profile after 12120 h based on the
fine 2D mesh. Hence, the vertices on the leading edge of the small wave are displaced too far,
which is clearly non physical. In the reality, wear is self-smoothing in the sense that, if the
height loss at a given location would be greater than at the immediate neighboring locations,
these neighboring locations would be worn away until reaching the same height as at the given
location, i.e. the wear profile can only be smooth in the reality. For this reason, mathematical
smoothing can be seen as the numerical equivalent of this process if the operating duration time
step is too large to capture this effect. For this reason, we will show in the section 3.3.7, that
smoothing allows to accelerate the analysis of a profile over its entire life while it is also possible
to simulate the wear without any smoothing at all, if the number of operating duration steps is
large enough.

Figure 3.26: Predicted liner profile after 12120 h based on the fine 2D mesh of the 250 mm slice with
frictionless walls after 2383 h. The red ellipses encircle the reason why the smoothing of the surface mesh
is necessary, i.e. the displacement of the vertices on the leading edge of the small wave is too large in
comparison to the real displacement. The color code represents the volume loss of each facet (dark blue
to yellow). The problem is also highlighted in the figure 3.27.

Due to the ambiguity of 2D representations of 3D surfaces, we will introduce a method,
which simplifies the analysis of 3D surfaces and their smoothing. More precisely the figure 3.27
shows the normal projection of the vertices on the xz-plane as well as the alpha shape boundary
of these points [Edelsbrunner et al., 1983]. This boundary is a very convenient way to determine
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the valley of the grooves. The upper region of the contour has, however, less significance as it is
the profile curve of the liner after 2383 h with frictionless end walls, which prohibit any contact
between the balls and the facets next to the walls. The boundary thus shows that the leading edge
of the small wave is unrealistically flattened. For this reason, we will introduce two smoothing
algorithms.
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Figure 3.27: Projection of the vertices of the predicted liner profile on the xz-plane with their alpha shape
boundary. The excessively large displacement of the vertices on the leading edge of the small wave can
be seen in the region from -250 mm to -200 mm along the x-axis.

Smoothing

A vast number of surface smoothing algorithms can be found in the field of surface reconstruc-
tion from noisy point clouds. For this reason, we limited the scope of the research to simple
algorithms, which are easy to implement or have already been implemented in MATLAB and
which proved successful in previous studies. One technique, which has extensively been used,
at least for the smoothing of 1D liner profiles, are smoothing splines (section 1.4.4). In partic-
ular, we first used the thin-plate smoothing spline algorithm to smooth the wear profiles. This
algorithm is described in [Wahba, 1990, p. 10-14] and implemented in the tpaps MATLAB

function. It has the advantage to take scattered data as input and to depend only on one smooth-
ing parameter p, which quantifies the compromise between the interpolation and the smoothing.
More precisely, the coefficients ci and the control points wi of the radial basis functions φi of the
thin plate spline f ,

f (x,y) = ∑
i

ci φi((x,y)) with φi((x,y)) = ‖(x,y)‖2 log‖(x,y)−wi‖2 (3.8)

are determined by solving the following problem:

min
ci,wi

(
p

n

∑
j=1

(
z j− f (x j,y j)

)2
+(1− p)

∫∫ [(
∂ 2 f
∂x2

)2

+2
(

∂ 2 f
∂x ∂y

)2

+

(
∂ 2 f
∂y2

)2
]

dx dy

)
(3.9)
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where (xi,yi,zi) are the coordinates of the vertices before the smoothing of the liner surface.
The first term in the optimization problem is related to the interpolation while the second term
is related to the curvature. Once the coefficients of the spline have been computed, it can be
evaluated at (xi,yi) to get the new zi values. It becomes clear that the weakness of this strategy is
that the thin-plate spline algorithm in MATLAB only takes bivariate data as input. If the xy-plane
can, however, not be used as the basis of the parameterization, finding another basis becomes
much more difficult. For instance, the vertical line between the plates in the Perfecto ABAB liner
(section 2.1.2) could not be (easily) parameterized by a point in the xy-plane; in fact, multiple z
coordinates of the liner would correspond to one (x,y) coordinate.

The previous problem can be solved by the second smoothing algorithm, i.e. the surface
relaxation by a 2D moving average. This algorithm simply consists in substituting the position
of a vertex by the average position of its neighboring vertices. For instance, if the coordinates of
the vertices in the figure 3.28 are denoted by Pi, the new position of the vertex P0 is determined
by the following equation:

P∗0 =
1
5

5

∑
i=1

Pi (3.10)
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Figure 3.28: Illustration of the surface relaxation by a 2D moving average.

While this algorithm can be applied to any kind of mesh in contrast to the thin plate spline
smoothing algorithm, it has mainly two drawbacks. On the one hand, the smoothing can not
be adjusted continuously. It is, however, possible to apply the algorithm several times to the
surface mesh. Ultimately, it would also be possible to introduce weighting coefficients for the
neighboring nodes. Trying to keep the model as simple as possible, we will, however, only
study the multiple application of the algorithm without weighting coefficients. On the other
hand, the surface relaxation is mesh-dependent, i.e. the larger the elements (with respect to the
characteristic size of the liner), the faster the curvature will vanish.

Before analyzing the results obtained by applying each algorithm, it has to be mentioned
that the plate was again reproduced in space to account for the axial and azimuthal periodicity
(similar to the figure 3.25). This means that the vertices of the nine plates were used in the thin
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plate spline smoothing method. Similarly, the neighboring nodes of the bordering plates were
used to calculate the average of the nodes on the edges and at the corners of the master plate in
the surface relaxation method.

The influence of the smoothing on the liner shape is shown in the figure 3.29. In general, the
results are almost identical for both smoothing algorithms, which is partially due to the values
of the smoothing parameter p. Most interesting is, however, that both algorithms almost equally
well interpolate the initial point cloud while loosing a matching amount of curvature. Since
both algorithms lead to similar results and since the surface relaxation algorithm is much simpler
and more versatile than the thin plate spline smoothing algorithm, we will focus exclusively
on this algorithm in the next sections (esp. in section 3.3.7). It is also interesting to see that
the smoothing by relaxation converges relatively quickly, i.e. after one or two relaxations, no
significant change of the alpha shape boundary can be observed. In the case of the coarse 1D
mesh, the smoothing seems almost not necessary. Nevertheless, we will show that this small
amount of smoothing is necessary to keep the wear profiles coherent when the entire liner life is
simulated with a large operating duration step in the section 3.3.7.

Regularization

The last step of the geometry modification method is the surface regularization. Since only the
vertices of one plate were displaced and smoothed, it might happen that small gaps or overlaps
(characteristic scale of about 1 mm) exist if the entire liner is assembled of the plates. These
small imperfections can quickly increase the local wear rate in the simulation. This is why
they have to be eliminated. First, the vertices of the edges are averaged with the vertices of
the bordering plates as illustrated in the figure 3.30 for the rear and front edges of the plate. In
addition to the averaging, the vertices of the lateral edges are projected on the xz-planes in y = 0
and y = 250 mm, to reestablish the full 250 mm slice.

3.3.6 Second pseudo steady state

The comparison of the results with the real wear profile will be described in the section 3.3.7 for
the whole liner life. Simulating this evolution, however, requires to restart a simulation starting
from the modified geometry in order to account for the variation of the load on the liner due to its
shape modification. In consequence, it is necessary to determine when starts the (second) pseudo
steady state after starting from the previous state. This question will be answered in this section.

As mentioned in the section 3.2.3, we will use the final state (positions and velocities) of
the balls in the previous simulation as the initial state in the following simulation to reach more
quickly the pseudo steady state. This is also one of the reasons why the total simulated time in
the previous simulations was always equal to a multiple of the time necessary for one rotation.
Hence, the small and large waves of the profile are located at almost the same positions (at the
end of the previous simulation and the start of the new simulation) and no undesired interactions
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(a) Thin plate spline smoothing of the fine 2D mesh.

x [mm]
-250 -200 -150 -100 -50 0 50 100 150 200 250

z 
[m

m
]

0

50

100

150

not smoothed
1 relaxation
2 relaxations

(b) Relaxation of the fine 2D mesh.
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(c) Thin plate spline smoothing of the coarse 1D mesh.
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(d) Relaxation of the coarse 1D mesh.

Figure 3.29: Influence of the smoothing algorithms on the predicted profile after 12120 h starting from
the profile at 2383 h. The alpha shape boundaries are represented for the 2D meshes and the profile curves
for the 1D meshes. These results were obtained with the 250 mm slice, two end walls without friction, the
energy dissipated by tangential damping as wear model, and the global wear constant 4.6 · 10−12 m2/N.
The wear data was accumulated over 4 rotations in the pseudo steady state for the coarse 1D mesh and
over 8 rotations for the fine 2D mesh, as the results of the previous section were reused.
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Figure 3.30: Illustration of the surface regularization, which is necessary to eliminate any gap or overlap
after the assembly of the liner plates. The figure shows only three plates and the resulting regularized plate
in blue. The zoom focuses on the average position of matching vertices.

between the balls and the liner can exist; this is also true because the mean diameter of the liner
increases with its level of wear.

Based on the data of the previous section, it is possible to determine the profiles at 7060 h
and 12120 h starting from the profile at 2383 h. Consequently, the coarse 1D meshes were
created at 7060 h and 12120 h. The fine 2D mesh was, however, only determined at 12120 h.
In fact, the small operating duration step (around 5000 h) will be impracticable with the fine
2D mesh because of the long computation time (around 10 h per simulation), which is why the
corresponding mesh was not created.

The ball charge motion simulation was then restarted for these three meshes starting from
the final state of the previous simulation. The resulting vertical position of the center of gravity
(of the balls) is represented in the figure 3.31. To highlight the change of its position, the last
rotation with the mesh after 2383 h was also represented.

Because of the small periodic fluctuations, which are certainly a remnant of the initial tran-
sient state, it is difficult to say when the second pseudo steady state starts, especially for the
small liner modification after 7060 h. For the larger modifications after 12120 h, it is, however,
clearly visible that the lifting capability of the liner decreases, since the average position of the
center of gravity drops. Due to the evolution of this average position, one rotation seems to be a
reasonable amount of time necessary to reach the second pseudo steady state.

3.3.7 Multi-step procedure

In this last section, we will combine the methods of the six preceding sections in order to predict
the entire liner wear evolution by introducing the multi-step procedure. In the first part of this
section, we will therefore explain the antagonism between the operating duration step and the
smoothing of the mesh. In the second part, the numerical results will finally be compared with
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Figure 3.31: Vertical position of the center of gravity (of the balls) over time for the coarse 1D mesh as
well as for the fine 2D mesh. The dashed vertical lines indicate the end of a full rotation. During the first
rotation, the meshes after 2383 h were used. The continuity of the curves between the first and the second
rotation indicates that the final state of the simulation with the 2383 h meshes was used as the initial state
of the following 3 rotations. These 3 following rotations were created with the coarse 1D meshes after
7060 h and 12120 h, and the fine 2D mesh after 12120 h.

the real measurements in order to judge the predictive capability of the model.

Operating duration steps vs. smoothing

As mentioned earlier, the multi-step procedure consists in progressively updating the geometry
of the liner in order to capture the variation of the load, to which it is subjected, due to the
modification of its geometry. Since the procedure is completely explicit, i.e. based only on the
current shape of the liner to determine its future shape, it is important to carefully choose the
operating duration step. This step is the amount of real operating time, which separates two
successive updates of the geometry.

In the following lines, we will illustrate the importance of the operating duration step and the
smoothing on the basis of the coarse 1D and the fine 2D meshes of the 250 mm slice at 2383 h
closed by end walls without tangential interaction (section 3.2). Initially, the simulations start
with the balls at rest. The first pseudo steady state is supposed to be reached after two rotations
of the mill (section 3.3.1). The wear data is then recorded during 3 and 8 rotations respectively
for the 1D and the 2D meshes (section 3.3.2). By means of the relative wear data, the energy
dissipated by tangential damping and the corresponding wear constant (section 3.3.4), the new
geometry of the liner after a specified operating duration is predicted (section 3.3.5). Starting
from the previous final state, one rotation is supposed to be sufficient in order to reach the second



Wear Simulation 159

pseudo state (section 3.3.6). Afterwards, the wear data is again recorded and the iterative process
continues until reaching the required total operating duration.

Since we will only use the experimental wear profiles from 2383 h to 41541 h (section 3.3.3)
in order to validate the model in the next section, a good choice of the operating duration steps
seems to be the time between the measurements. These measurements were taken after 2383 h,
7060 h, 12120 h, 16680 h, 23669 h, 28668 h, 33034 h, 37020 h and 41541 h, i.e. the average
operating duration steps is equal to 5000 h, if the profile evolution is simulated in 8 steps starting
from the liner after 2383 h.

Coarse 1D mesh In the section 3.3.5, it was shown that the smoothing of the liner mesh seemed
not to be necessary for the coarse 1D mesh (see figure 3.29d). This observations rises the question
whether the smoothing is actually needed for this kind of meshes. To answer this question, the
figure 3.32 shows the evolution of the liner profile over time in 4 steps with an increasing level of
smoothing. In consequence, the smoothing is necessary in the case of a 4 step liner modification
in order to not amplify a small error during the progressive evolution of the liner. Interestingly, a
facet, which protruded from the average profile at the previous iteration, lies below this profile at
the next iteration. This characteristic is clearly visible in the region of the small wave on the left.
Previously, this phenomenon was described as the self-smoothing feature of wear (section 3.3.5),
i.e. if a zone of the liner can not be touched by the balls, the immediate neighboring region is
worn away until the balls can again touch that zone. According to the figure 3.32, the numerical
smoothing successfully models this feature with only one surface relaxation; any additional re-
laxation would only reduce the global curvature of the profile without significantly improving its
smoothness.

x [mm]
-250 -200 -150 -100 -50 0 50 100 150 200 250

z 
[m

m
]

0

50

100

150

no smoothing
1 relaxation
2 relaxations

Figure 3.32: Influence of the smoothing on the coarse 1D liner mesh. Liner wear evolution in 4 steps with
the surface relaxation smoothing method: 2383 h, 12120 h, 23669 h, 33034 h, 41541 h. The blue profile
curve was obtained without any smoothing at all, while the other profiles were relaxed either one or two
times at each iteration.
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While the liner evolution in 4 steps requires smoothing, a second questions rises: is it possible
to predict the liner evolution without any smoothing method but with more operating duration
steps? The answer to this question is given in the figure 3.33. Since the results are globally
overlapping, it is also possible to simulate the liner wear without smoothing but the number of
operating duration steps has to be increased; hence, the computation time is also increased.
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Figure 3.33: Number of operating duration steps vs. smoothing for the coarse 1D liner mesh. Liner wear
evolution in 4 steps with one surface relaxation at each step (2383 h, 12120 h, 23669 h, 33034 h, 41541 h)
and in 8 steps without any smoothing (2383 h, 7060 h, 12120 h, 16680 h, 23669 h, 28669 h, 33034 h,
37020 h, 41541 h). The intermediate steps of the 8 step procedure were not represented to keep the figure
readable.

Fine 2D mesh In a similar way as for the coarse 1D mesh, the importance of the smoothing
can be studied for the fine 2D mesh. The only major difference with respect to the previous study
is that a single 4 step procedures takes about 48 h of computation time instead of 8 h. On this
account, only the influence of the relaxation during the liner evolution was studied as shown in
the figures 3.34 and 3.35, i.e. the liner evolution in 8 steps without smoothing was not simulated.
The figure 3.34 shows that only one relaxation is in general not sufficient to obtain a smooth
profile with a 4 step procedure. In fact, the spike on the right side of the figure comes from a
collection of facets, which were in the optimal position to be hit strongly by the balls. In reality,
this zone would be quickly worn away so that the material in the neighboring region would also
erode at a similar rate. Because of the reduced number of operating duration steps, the response
time of the model is, however, too long to correct the errors, which is why they are amplified.

This problem has two solutions: either the smoothing is increased or the operating duration
step length reduced. On the one hand, the first solution has the drawback of eliminating more
and more the characteristic information of the geometry since it reduces the global curvature, i.e.
the curvature due to the errors but also the natural curvature of the liner profile. For instance,
the creation of grooves at the center of the profile can be observed in the figure 3.35 for the
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Figure 3.34: Influence of the smoothing on the fine 2D liner mesh along the azimuthal direction. Liner
wear evolution in 4 steps with the surface relaxation smoothing method: 2383 h, 12120 h, 23669 h,
33034 h, 41541 h. The figure shows the valley of the grooves since the lower part of the alpha shape
boundary was represented.
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Figure 3.35: Influence of the smoothing on the fine 2D liner mesh along the axial direction. Liner wear
evolution in 4 steps with the surface relaxation smoothing method: 2383 h, 12120 h, 23669 h, 33034 h,
41541 h. The figure shows the alpha shape boundary of the plate along its axial direction (top of the big
wave), i.e. the boundary of its projection onto the yz-plane.
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curves obtained with one relaxation, while two relaxations completely remove this information.
On the other hand, reducing the operating duration step length increases the computation time
considerably. Hence, the only acceptable solution at the current state is to smooth the profile by
two relaxations. In the future, it would be very interesting to simulate the entire liner evolution
in 8 steps, once without smoothing, and once with one surface relaxation in order determine
whether the response time is sufficient to obtain smoother wear profiles with an adequate content
of curvature. If these simulations are not conclusive, a more powerful smoothing algorithm
should be implemented and the influence of the average element size on the liner evolution
should be studied.

Prediction vs. reality

In this section, we will finally compare the predicted wear profiles with the real wear profiles in
order to evaluate the predictive capability of the model. The results are shown in the figures 3.36
and 3.37 respectively for the coarse 1D mesh and the fine 2D mesh.
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Figure 3.36: Comparison of the predicted wear profiles (solid lines) with the real wear profiles (dashed
lines) for the coarse 1D mesh. The predicted wear profiles were obtained by a 4 step procedure with
one relaxation smoothing pass. The other parameters are summarized at the beginning of this section
(section 3.3.7). The real wear profiles are the average values of the minimum and maximum height
measured at the specified moments in time.

Concerning the coarse 1D mesh, the correlation between the real wear and the prediction is
relatively good. Only after 23669 h, the difference on the leading edge of the big wave becomes a
little more significant. This difference can be explained by the increased rotation speed of the real
mill after half of its lifespan in order to keep the throughput constant with a more and more worn
out liner as explained in the section 3.3.4. Obtaining a better correspondence between the real
wear profiles and their predicted counterparts would therefore only be possible by monitoring
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Figure 3.37: Comparison of the predicted wear profiles (solid lines) with the real wear profiles (dashed
lines) for the fine 2D mesh. The predicted wear profiles were obtained by a 4 step procedure with two
relaxation smoothing passes; these profiles represent the lower part of the corresponding alpha shape
boundary, i.e. the contour of the projected points onto the xz-plane. The other parameters are summarized
at the beginning of this section (section 3.3.7). The real wear profiles are the minimum height measured
at the specified moments in time, if a minimum height was available. Otherwise, i.e. at 12120 h, it is the
average profile height.

more carefully the operating conditions of the real mill and by modeling second order phenomena
like the progressive grinding of the balls and their radial segregation.

It is important to notice that the liner evolution was predicted with one single global wear
constant, i.e. K = K/H = 4.6 ·10−12 m2/N (section 3.3.4). If the number of operating duration
steps is sufficiently large, the profile height is linear in this constant. Increasing the hardness of
the plate or the ground clinker by a certain factor would thus divided the life expectancy of this
plate by the same factor. The evolution of the geometry would, however, spatially be the same
for different values of the hardness (except for their time scale).

With regard to the fine 2D mesh, more significant differences than for the coarse 1D mesh
can be observed in the figure 3.37. In the same way as for the coarse 1D mesh, the correlation
is relatively good for the first three profiles. After 23669 h, the difference increases again due
to the increased rotation speed of the real mill. In contrast to the 1D mesh, the disagreement
between the curves is more important, though. Essentially two reasons might explain this larger
disagreement; further subsidiary reasons certainly also exist: the operating duration step or the
enrichment of the solution space.

On the one hand, we stated earlier that at least two relaxations were required for a 4 step
simulation in order to obtain a sufficiently smooth profile. Each of these relaxations eliminates
some of the useful geometrical information while also removing the spurious first order disconti-
nuities. Hence, the profile might be numerically worn a little less than it should be. According to
the figure 3.35, the importance of this first reason is, however, rather low since the corresponding
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curves are relatively close. As pointed out previously, an 8 step simulation with and without one
relaxation should give more conclusive results with respect to this phenomenon in the future.

On the other hand, by allowing the axial modification of the fine 2D mesh, we enrich the
solution space. From the perspective of the balls, wear can be seen as an optimization process
because these balls try to find their optimal trajectory. This optimal trajectory is the path where
the balls encounter the least obstacles. Otherwise, these obstacles are little by little worn away.
Allowing the axial alteration of the profile renders is possible to create ball trajectories which are
better, i.e. with less obstacles, than those of a 1D mesh. Therefore, the average wear rate is lower
for 2D meshes than for 1D meshes (with the same initial profile), provided that the liner evolution
was predicted with the same wear constant. This reasoning is a strong argument for designing
ball mill liner plates with initial grooves similar to those of the worn liner. The figure 3.38
illustrates this phenomenon on the basis of the wear distribution accumulated on the initial liner
and the worn liner. Thus, the predicted height loss rate is very concentrated in some regions of
the initial liner while it is more uniformly distributed and lower on the worn liner. For this reason,
the wear constant should be adjusted for the 2D meshes. If the facet size decreases, the adjusted
wear constant increases until converging to the real wear constant since the solution space in the
model is likely to converge to the solution space of the real liner. As mentioned earlier, adjusting
the wear constant should, however, have no influence of the geometry modification from a spatial
point of view since the model is linear in this constant, i.e. only the time scale is rescaled.

(a) Geometry and wear distribution after 2383 h. (b) Geometry and wear distribution after 33034 h.

Figure 3.38: Geometry and wear distribution accumulated on the initial liner plate and the worn liner
plate (2D mesh). The profiles were obtained by a 4 step procedure with two relaxations.

One important question remains: why are the grooves at the center of plate not as deep as in
the reality (figure 3.35)? First, the smoothing algorithm might be too strong and the element size
to large so that the smoothing simply removes the axial curvature, which leads to the creation
of the grooves. Second, the slice might be too short to create 4 grooves but too long to create
3 grooves, which means that the grooves at the center annihilate themselves. Moreover, the
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particular boundary condition, i.e. flat end walls without tangential interaction, overestimates
the outer grooves, which reduces the space available for the creation of the central grooves.

In conclusion, relatively good predictions of the liner wear evolution can be obtained for 1D
meshes. Their accuracy is mainly limited by the explicitness of the experimental reference data
and the modeling of second order phenomena. Almost satisfactory results can be obtained for 2D
meshes but the influence of the boundary condition, the facet size and the smoothing algorithm
in combination with the number of operating duration steps has to be studied in more detail in the
future. This study is mainly limited by the long computation time with 2D meshes. Concerning
the predictive capability of the model in scenarios with different liner geometries and different
operating conditions, no definite conclusion can obviously be draw from this study but there is
strong evidence that at least the 1D model will deliver quite satisfactory estimates of the liner
evolution in those scenarios.



Conclusion

In this thesis, a DEM-based method to predict the charge motion and the power draw of a ball mill
has been calibrated and validated by means of photographs of the charge motion, and power draw
measurements of a 1:5-scale laboratory mill (chapter 2). This computational method essentially
renders future experimental testing unnecessary in order to quantify the previous characteristics
of the mill. Based on this first method, we have developed, implemented and tested a generic
procedure for predicting the wear distribution and the progressive shape evolution of liner sur-
faces, here the shell liner in the first compartment of a clinker grinding 5.8 m diameter cement
tube mill (chapter 3). The liner wear evolution of profiles with no axial variation can be predicted
with confidence while the study of this evolution for fully variable geometries is still limited by
the significant computation time. Moreover, additional validation studies of the wear prediction
are required but usually difficult to realize because of the rare and incomplete experimental data
commonly available in this field.

In the next section, these general conclusions will be described more explicitly to summarize
the most important results of the previous chapters. Finally, in the last section, we will put
emphasis on possible improvements and future applications of these results.

Summary and main contributions

The content of the thesis and the main contributions will be summarized by following the struc-
ture of this document.

First chapter - Theoretical background

In the first chapter, basically no new contributions to the fields of DEM ball mill modeling and
wear prediction are introduced. Its objective is rather to build a solid theoretical foundation for
the models of the following chapters by reviewing the current state of the art.

In summary, the grinding process in ball mills is highly energy-intensive and aggressive in
terms of wear. This process can be improved by the design of a wear-resistant liner, which
enhances the energy transfer to the charge.

166
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The most promising method to simulate the ball mill and its charge is the 3D discrete element
method. In this method, the balls are represented by spherical particles and the liner by a surface
mesh assembled of triangular facets. The bottleneck of DEM simulations with respect to the
computation time is the collision detection between the bodies. The linear spring-slider-damper
contact law, which is based on a soft representation of the contact, i.e. with overlapping, is a
sufficient and necessary but idealized model to predict the forces between the particles. Once
these forces are known, the equations of motion are integrated explicitly with a constant time
step. Ball mills have already been simulated in the literature by this method but no general
agreement about the values of the contact parameters seems to exist. This is why an extensive
parameter validation study was carried out in the second chapter.

To predict the wear, the major wear mechanisms and wear models were introduced in the
third section of the first chapter, but no single wear model was found to be valid in general. For
this reason, the best fitting wear model with the real wear was determined a posteriori in the third
chapter.

In the last section of the first chapter, the current state of the art in ball mill liner wear
modeling was summarized by combining the results of the previous sections. Hence, the best
way of modeling the wear of a liner in a ball mill is as follows: first, sufficiently representative
numerical wear data has to be synthetically accumulated on the surface mesh of the liner, which
plays the role of a binning structure, during a DEM charge motion simulation. The numerical
wear data, which is defined by the best fitting wear model and the simulation, is then converted
into a real volume loss by the wear constant and the specified operating duration. Since the
volume loss of the material immediately below each facet is known, the surface of the mesh
can be displaced to account for the respective volume loss after the corresponding duration; a
smoothing technique might be necessary to obtain realistic wear profiles. Finally, this process
should be repeated several times in order to capture the variation of the load on the liner due
to the modified particle flow pattern after the update of the geometry; this process is called a
multi-step procedure.

Second chapter - DEM ball mill simulation

In the second chapter, a DEM model of a laboratory ball mill is calibrated and validated on the
basis of experimental data. This data consists of photographs of the charge motion and power
draw measurements of a Ø 800 mm× 400 mm laboratory mill with different 1:5-scale shell liner
plates (of the first chamber of a clinker grinding cement tube mills) provided by the company
Magotteaux International S.A. .

The open-source DEM solver YADE was selected to create the simulations because of its
versatility and reduced size in contrast to the software LIGGGHTS, which is, however, on average
2.5 times faster than YADE.

Concerning the DEM model, the linear spring-slider-damper contact law was implemented
in YADE with some additional features, like the possibility of calculating the different power
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components, by which energy is dissipated during collisions. The geometry of the mill is then
represented by an extruded surface mesh of the liner profile curve, which has been discretized on
the basis of its curvature in order to reduce the number of elements. Concerning the evaluation
of the model, it was interesting to notice that DEM simulations lead to results, which are on
average equal, but non-deterministic, when they are run in parallel on multiple processors. In
the last section about the DEM model, the position density limit was introduced as a new and
efficient post-processing tool to characterize easily the global charge motion in the pseudo steady
state.

The essential conclusion in the section about the numerical results is that the DEM model
can predict the charge motion and the power draw with accuracy, i.e. the representations of the
predicted and the real charge motion overlap almost exactly, when they are superposed. More-
over, the power draw prediction is systematically lower than the real power draw (at maximum
by 5%), which can be explained by additional dissipative mechanisms in the reality. In general,
the charge motion and the power draw of the mill are relatively insensitive to the material pa-
rameters. Choosing the normal stiffness such that the maximum overlap between two colliding
balls is equal to about 5% minimizes the computation time and has a negligible influence on the
results of the simulation. Moreover, the coefficient of normal damping should be deduced from
the coefficient of normal restitution. This coefficient leads to realistic results, when it is equal
to around 0.3 and 0.8 respectively for a mill containing metal balls and a feed material, and for
a mill containing only metal balls. A realistic value of the coefficient of friction is 0.75. At the
same time, the tangential stiffness and the tangential damping coefficient should be equal to their
normal counterparts. Moderately different values deliver, however, nearly identical results in
terms of the average charge motion and the power draw. Interestingly, the energy in the model is
mainly dissipated by the sliding of the charge. Finally, it was shown that there is strong evidence
that the discrete element method is also able to predict the charge motion and the power draw of
full-scale industrial ball mills.

Third chapter - Liner wear simulation

In the third chapter, a DEM-based generic procedure was developed to simulate the wear, i.e. the
spatial distribution of the wear and the progressive change in the geometry due to wear, of lining
surfaces. This procedure was illustrated, calibrated and validated on the basis of experimental
data measured during one decade in the first chamber of a cement tube mill. More precisely, the
experimental reference data consisted of the wear profiles of a Duolift liner plate kindly provided
by Magotteaux International S.A. .

The fundamental requirement of the wear simulation is a DEM charge motion model in order
to predict the numerical wear data. While the material parameters were easily determined on
the basis of the previous chapter, defining the geometry and the boundary conditions was more
complex since simulating the entire first chamber of the mill was impossible within the time
frame of the thesis, and also unnecessary at the current stage of development. Hence, 8 different
scenarios were defined by combining the following conditions: 250 mm or 500 mm axial slice of



Conclusion 169

the mill, periodic boundary condition or end walls without tangential interaction, 1D liner mesh
or 2D liner mesh, where the first mesh category only allows modifications of the liner along the
radial direction (axial extrusion of the liner profile curve) while the second category also allows
modifications along the axial direction (average triangular facet size: 15 mm). These 8 scenarios
were then studied by a wear simulation strategy in 7 stages.

First, it was shown that the pseudo steady state of the mill is reached after 1 to 2 rotations
starting from rest.

The representative wear data for 6 different wear model was then accumulated by a synthetic
data extraction strategy on each facet during 2 to 3 and at least 8 rotations in the pseudo steady
state for the 1D and 2D meshes, respectively. To obtain sufficiently representative wear data, a
master lifter mapping scheme, was absolutely necessary. This scheme consists in mapping the
wear data accumulated on all the plates, on one single plate thanks to the azimuthal periodicity.
Axial averaging is also possible for axially periodic plates and an axially periodic charge motion,
like the one obtained with a periodic boundary condition. Based on the relative wear distribution,
it was concluded that only the scenarios with the 250 mm slice and frictionless end walls are
realistic (grooves can not be created with a periodic boundary condition and a shell liner, which
initially has no height variation along the axial direction) and computationally feasible.

The third step of the wear simulation is the extraction of the real wear data from the exper-
imental wear profiles for each facet of the liner mesh to correlate it with the predicted relative
wear. Interestingly, the real wear rate increased strongly after half the lifespan of the liner. This
phenomenon was explained by the increase in the rotation speed of the real mill in order to keep
the throughput constant with a more and more worn out liner.

In the next section, its was shown that the energy dissipated by tangential damping is the best
fitting wear model. Its wear constant was also determined.

On the basis of the predicted wear rate, the geometry of the liner mesh was then modified by
displacing each vertex normally to the surface by a distance equal to the average height loss of
the neighboring facets due to wear. As a result of the scattering of the wear data and the relatively
large operating duration between the initial and the modified liner mesh, it was concluded that
smoothing is required for 2D meshes but not necessarily for 1D meshes. Therefore, a thin-plate
spline smoothing algorithm and a surface relaxation algorithm were introduced. Because of the
similar compromise between the curvature loss and the interpolation of both algorithms but the
superior versatility of the surface relaxation algorithm, this latter algorithm seemed to be the
better smoothing algorithm.

Since the state of the balls in the previous simulation is used as the initial state in the following
simulation to reduce the computation time of a multi-step procedure, it was shown that the second
pseudo steady state starts around one rotation after the beginning of the simulation with the
updated liner mesh.

Finally, the multi-step procedure is able to predict relatively accurately the liner wear evolu-
tion in 4 steps with smoothing or in 8 steps without smoothing for the 1D mesh. At least two
surface relaxations are, however, necessary to obtain a sufficiently smooth shape evolution of
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the fine 2D liner mesh in 4 steps. Moreover, the creation of grooves can be simulated and there
is some evidence that they might reduce the liner wear rate. More detailed investigations are,
however, necessary to prove this conclusion. For this reason, the following section gives some
suggestions about future research objectives.

Future research

The following list summarizes some recommendations about the future research in the fields of
DEM ball mill modeling and liner wear prediction:

• DEM solver: an important limitation of the discrete element method applied to industrial
problems is the computation time. This problem has especially become apparent during
the analysis of almost fully variable 2D meshes in the last chapter. Developing more effi-
cient DEM solvers therefore seems to be an important requirement for the design of better
industrial products. In particular, highly parallel solvers with a grid collision detection
algorithm executed on GPU seem to be an first step in their improvement, considering
that LIGGGHTS (grid collision detection) was already around 2.5 time faster than YADE

(insertion sort collision detection) on CPU.

• Fully variable geometry and boundary condition: while relatively good predictions of
the liner wear evolution were obtained for 1D meshes, it is still necessary to continue
studying this topic in greater depth in order to obtain more conclusive results for almost
fully variable geometries represented by fine 2D meshes. In particular, the influence of the
number of operating duration steps, the smoothing algorithm, the average facet size and
the boundary condition (end walls with friction, length of the axial slice, . . . ), on the liner
wear evolution have to be studied in more detail for almost fully variable geometries.

• Consequences of wear: in this thesis, only the wear as such was studied. Ultimately, the
consequences of wear are, however, important for optimizing the design of future liners,
specifically, the influence of wear on the power draw of the mill, the lifting height and the
lifespan of the liner.

• Further applications: due to the versatility of the discrete element method and the gen-
erality of the DEM-based procedure for predicting wear, these methods can be used to
optimize ball mill liners as well as liners in totally different machines, for instance ver-
tical shaft impactor mills. Such applications require, however, further validation studies
to judge more objectively the predictive capability of the models. Once a certain exper-
tise has, however, been acquired, these models might become very powerful tools for the
development of better liners and comminution devices.



Appendix A

Analytic Validation of the Linear
Spring-Slider-Damper Contact Law

In this chapter, several standard collision problems will be described. These problems are suf-
ficiently simple to have an analytic solution. In consequence, the linear spring-slider-damper
contact law implementation in the DEM solver YADE (see appendix C) will be validated on the
basis of these analytic solutions (motion and power dissipation) to ensure that the software is
working according to our expectations. The following problems will be studied:

• normal sphere/sphere collision

• normal sphere/facet collision

• tangential sphere/wall collision without sliding

• tangential sphere/wall collision with sliding

The values of the simulation parameters1, which were used throughout this study are the
following ones; exceptions will be mentioned2:

• density of the spheres: ρ = 7640 kg/m3

• equivalent normal stiffness: kn = 105 N/m

• equivalent normal damping coefficient: cn = 18.6 Ns/m, i.e. the normal coefficient of
restitution is equal to εn = 0.3 (sphere/sphere collision)

• equivalent tangential stiffness kt = 105 N/m
1The absolute values of these parameters have no real significance in this chapter since we are only interested in

finding the same analytic and numerical solution. They are, however, itemized here for the sake of completeness.
2These values are equal those used in [Sawley, 2003], except for the density (ρ = 7650 kg/m3, negligible differ-

ence) and the time step (smaller here to neglect its influence on the results).
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• equivalent tangential damping coefficient ct = 18.6 Ns/m

• friction coefficient µ = 0.75

• diameter of the spheres d = 15 mm

• time step ∆t = 10−6 s, i.e. sufficiently small to reduce the influence of the numerical
integration

A.1 Normal sphere/sphere collision

In this section, the analytic solution of the normal collision between two spheres will be deter-
mined in order to validate the spring-slider-damper contact law implemented in the DEM solver
YADE. Moreover, this solution will be used to establish the relation between the contact param-
eters and some derived parameters, i.e. the contact time tc, the normal coefficient of restitution
εn and the maximum overlap ∆xmax of the spheres during their collision.

A.1.1 Analytic solution

Let m1 and m2 be the masses of two spherical particles moving towards each other with their
respective normal velocities v1 and v2. The particles collide when the distance between their
centers located in x1 and x2 becomes smaller than z0 = r1 + r2, where r1 and r2 are the radii
of the particles. The collision forces are then described by the normal component of the linear
spring-slider-damper contact law, where the spring has a stiffness kn and the damper a damp-
ing coefficient cn. The figure A.1 shows the schematic representation of the contact law at the
moment of the normal collision.

b b

m1

x2

z0

x1

m2
kn

cn

x

v1 v2r1 r2

Figure A.1: Schematic representation of the normal contact law between two spherical bodies having the
radii r1 and r2, and being initially located in x1 and x2 separated by a distance z0, i.e. z0 = r1+ r2 (adapted
in the diagram). The bodies have the masses m1 and m2, and the opposed velocities v1 and v2, resulting in
their contact. The normal contact law is represented by a spring of stiffness kn in parallel with a dashpot
having damping coefficient cn.
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The equations of motion of the spherical particles in the normal direction can be written as
follows:

m1ẍ1 + cn(ẋ1− ẋ2)+ kn(ẋ1− ẋ2 + z0) = 0 (A.1)
m2ẍ2 + cn(ẋ2− ẋ1)+ kn(ẋ2− ẋ1− z0) = 0 (A.2)

By taking the difference of the equation A.2 multiplied by m1 and the equation A.1 multiplied
by m2, we obtain the equation of relative motion:

m1m2(ẍ2− ẍ1)+ cn(m1 +m2)(ẋ2− ẋ1)+ kn(m1 +m2)(x2− x1− z0) = 0 (A.3)

This equation can be rewritten by introducing the relative displacement z= x2−x1, the natural
frequency ω0 =

√
kn/meff, the effective mass meff = m1m2/(m1 +m2) and the damping ratio

ζ = cn/(2
√

meff kn):
z̈+2ζ ω0ż+ω

2
0 (z− z0) = 0 (A.4)

If the damping ratio satisfies the condition 0 ≤ ζ < 1, which is usually the case, the general
solution of the previous differential equation is:

z(t) = e−ζ ω0t [Acos(ωdt)+Bsin(ωdt)]+ z0 where ωd = ω0

√
1−ζ 2 (A.5)

The values of the constants A and B in this equation can be determined be the initial condi-
tions: {

z(0) = z0

ż(0) =−(v1 + v2)
⇒

A = 0

B =−v1+v2
ωd

(A.6)

The analytic solution of the normal linear spring-damper contact law is thus:

z(t) = z0− e−ζ ω0t v1 + v2

ωd
sin(ωdt) (A.7)

Notice that this solution obviously makes only sense from t = 0, i.e. the beginning of the
contact, to t = tc, i.e. the ending of the contact (contact time).

A.1.2 Validation

To ensure that our implementation of the spring-slider-damper contact law in YADE is working
correctly, the charge motion and the power dissipated by normal damping will be validated ana-
lytically. The analytic description of the relative motion z(t) between the spheres is given by the
equation A.7. The power dissipation can be deduced as follows:

Pnormal = cn ż2 (A.8)



Normal sphere/sphere collision 174

Supposing that v1 = 2 m/s and v2 = 1 m/s (opposed directions according to the figure A.1),
the analytic and numerical solutions were determined. The figures A.2 and A.3, show that both
solutions are identical on the domain of validity of the analytic solution, i.e. the analytic solution
is not valid after the rebound since both particles continue to float in space without any interaction
in the simulation. The normal contact between spheres is therefore implemented correctly. It
should be mentioned that the spring-slider-damper contact law in YADE prohibits any attractive
forces between two colliding particles. These forces might be created by the damper when the
particles separate after the collision. To eliminate the attraction, the force between the respective
particles is simply set equal to 0 in the simulation. This feature, was not validated here due to its
simplicity.
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Figure A.2: Relative displacement z of the two
spheres during their normal interaction obtained by
the analytic formulas and the DEM solver YADE.
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Figure A.3: Power dissipated during the normal
collision of two spheres calculated by YADE, and
the relevant power dissipation, which was deter-
mined by the analytic formulas.

A.1.3 Derived parameters

The contact time tc is the time, when the distance between both particles is again equal to z0 after
their collision. By solving the equation z(t) = 0 for the first t different from 0, we obtain:

tc =
π

ωd
(A.9)

The normal coefficient of restitution εn is the ratio of the separation speed to the speed of
approach:

εn =

∣∣∣∣z(tc)z(0)

∣∣∣∣= e−ζ ω0tc (A.10)
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This equation can be solved for the damping ratio ζ :

ζ =− ln(εn)√
π2 + ln2(εn)

(A.11)

Substituting the damping ratio by it definition, the normal damping coefficient cn can be
written as a function of the normal coefficient of restitution εn:

cn =−2 ln(εn)

√
meff kn

π2 + ln2(εn)
(A.12)

Finally, it is necessary to determine the maximum overlap ∆xmax of the spheres during their
impact. This can be done by noticing that the overlap is maximum, when the relative velocity
ż(t) is equal to zero, i.e. when t = to:

to =
1

ωd
arctan

(√
1−ζ 2

ζ

)
(A.13)

The maximum overlap is thus given by ∆xmax = z0− z(to). If the damping is relatively low
(ζ → 0), a simpler expression can be determined. In this case, the overlap is maximum for:

t∗o =
π

2ωd
(A.14)

And the maximum overlap for relatively low damping (indicated by the ∗) is given by:

∆x∗max =
v1 + v2

ω0
(A.15)

Introducing the relative velocity vr = v1 + v2 and supposing that both spheres have the same
mass m, the more practical formula of maximum overlap is the following one:

∆x∗∗max = vr

√
m

2kn
(A.16)

A.2 Normal sphere/facet collision

The figure A.4 shows the second validation scenario consisting of a sphere colliding with a facet
along the normal direction (v0 = 3 m/s). This model was necessary to check that the facet element
in YADE was implemented as expected.
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b
v0

x

Figure A.4: Normal collision of a sphere on a facet with an initial velocity v0.

The system of equations which describes the motion of the sphere is the following one, where
m is the mass of the sphere: 

m ẍ+ cn ẋ+ kn x = 0

ẋ(0) = v0

x(0) = 0

(A.17)

The analytic solution of this system is almost identical to the one in the preceding case
(sphere/sphere collision). For this reasons, the definition of the natural frequency ω0, the damp-
ing ratio ζ and the damped frequency ωd is the same as previously, provided that meff is replaced3

by m:
x(t) =

v0

ωd
e−ζ ω0t sin(ωdt) (A.18)

The power dissipation by normal damping is still given by the equation A.8, where ż has to
be replaced by ẋ.

Finally, the figures A.5 and A.6 show again that the analytic and numerical solutions are
identical on the domain of validity of the analytic solution, i.e. during the contact of the sphere
and the facet4. In conclusion, the facet element simulates the contact as expected due to the
equality of the solutions.

3The coefficient of restitution, the contact time and the maximum overlap can also be calculated by the previous
formulas, if meff is replaced by m.

4More precisely, the domain of validity of the analytic solution is even more restricted since the normal force is
set equal to 0 in the implementation of the contact law, if it becomes attractive.
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Figure A.5: Displacement x of a sphere, which
normally impacts a facet, obtained by the analytic
formulas and the DEM solver YADE.
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Figure A.6: Power dissipated during the normal
collision of the sphere on the facet calculated by
YADE, and the relevant power dissipation, which
was determined by the analytic formulas.

A.3 Tangential sphere/wall collision without sliding

To validate the tangential component of the contact law analytically, it was necessary to control
the interaction artificially since a simple analytic solution5 can only be determined if sliding is
neglected. Therefore, the friction coefficient µ was increased to 100. Simultaneously, a constant
normal overlap do = 1 mm was imposed to ensure the tangential interaction, as shown in the
figure A.7. Initially, the sphere moves forward with a velocity equal to v0 = 3 m/s and it does not
rotate.

b
v0

x

θ

do

Figure A.7: Tangential collision of a sphere on a wall with an initial velocity v0. The overlap do between
the sphere and the wall is artificially maintained so that the tangential interaction is ensured.

The system of equations, which describes the motion of the sphere, is the following one,
where m, r, r0 = r− do and I = 2/5 mr2 are the mass, the radius, the reduced radius and the

5It is obviously possible to derive an analytic solution for the combined tangential interaction with sliding but it
seems not necessary to introduce this additional complexity in this validation study.



Tangential sphere/wall collision with sliding 178

moment of inertia of the sphere:

m ẍ+ kt (x− rθ)+ ct (ẋ− rθ̇) = 0

I θ̈ + r
(
kt (rθ − x)+ ct (rθ̇ − ẋ)

)
= 0

ẋ(0) = v0

x(0) = 0

θ̇(0) = 0

θ(0) = 0

(A.19)

The analytic solution of this system was determined by using a symbolic equation solver:

x(t) = m v0

r2
0 t
I0

+

2 I2 e−
ct I0 t
2 I m sinh

(√
I0 (c2

t I0−4 kt I m) t
2 I m

)
I3/2

√
c2

t I0−4 kt I m

 (A.20)

θ(t) = m r0 v0

 t
I0
−

2 I m e−
ct I0 t
2 I m sinh

(√
I0 (c2

t I0−4 kt I m) t
2 I m

)
I3/2

√
c2

t I0−4 kt I m

 (A.21)

with I0 = I +m r2 (A.22)

The power dissipation along the tangential direction (without sliding) is then given by the
following formula (translation and rotation):

Ptangential = ẋ
[
kn (x− r0θ)+ cn (ẋ− r0θ̇)

]
+ θ̇ r0

[
kn(r0θ − x)+ cn(r0θ̇ − ẋ)

]
(A.23)

To verify the validity of the DEM results, the wall was represented by an actual wall ele-
ment in YADE, instead of a facet. The results in the figures A.8, A.9 and A.10 prove that the
tangential contact law (without sliding) and the wall element are implemented according to our
expectations.

A.4 Tangential sphere/wall collision with sliding

Since the tangential component of the contact law has been studied previously without sliding,
it is necessary to analytically validate its sliding component. To reduce the complexity of the
mathematical formulation, the rotation of the sphere was blocked, the tangential stiffness was
increased to 1010 N/m and the overlap was imposed to do = 1 mm. Hence, the sphere can only
slide over the wall starting with an initial velocity equal to v0 = 3 m/s (figure A.11).
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Figure A.8: Displacement x of a sphere, which
tangentially collides with a wall, obtained by
the analytic formulas and the DEM solver YADE

(without sliding).
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Figure A.9: Angle θ of a sphere, which tangen-
tially collides with a wall, obtained by the analytic
formulas and the DEM solver YADE (without slid-
ing).
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Figure A.10: Power dissipated during the tangential collision of the sphere on the wall calculated by
YADE, and the relevant power dissipation, which was determined by the analytic formulas (without slid-
ing).
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b
v0

x

do

b

Figure A.11: Sliding collision of a sphere on a wall with an initial velocity v0. The overlap do between
the sphere and the wall is artificially maintained so that the tangential interaction is ensured. The rotation
of the sphere is blocked.

Due to the constant overlap do and the blocked rotation, the tangential sliding force is equal
to:

Fsliding = µ kn do (A.24)

The displacement of the sphere is therefore the solution of the following system of equations,
where m is the mass of the sphere: 

m ẍ = Fsliding

ẋ(0) = v0

x(0) = 0

(A.25)

The solution is easily obtained by time integration:

x = v0 t− Fsliding t2

2 m
(A.26)

Moreover, the power dissipated by sliding is equal to:

Psliding = Fsliding ẋ (A.27)

Determining again the displacement and the dissipated power by the analytic formulas and
the DEM solver YADE, identical solutions are found on the valid domain of the analytic solution,
i.e. while the sphere slides (figures A.12 and A.13).
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Figure A.12: Displacement x of a sphere, which
slides on a facet, obtained by the analytic formulas
and the DEM solver YADE.
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Figure A.13: Power dissipated during the sliding
collision of the sphere on the wall calculated by
YADE, and the relevant power dissipation, which
was determined by the analytic formulas.



Appendix B

Standard Simulation Control Script of the
Laboratory Mill

This chapter contains the standard PYTHON control script used to simulate the laboratory mill.

Listing B.1: Standard simulation control script of the laboratory mill - sim.py
1 ################################################################################

#
# Filename:
# sim.py
#

6 # Title:
# Standard simulation control script of the laboratory ball mill
#
# Author:
# Dominik Boemer (dominik.boemer@gmail.com)

11 #
# Date:
# March 2015
#
# Description:

16 # This Python script controls the simulation of the 0.8 m diameter laboratory
# ball mill. It is divided into the following sections:
# - INPUT: input parameters, like the material density or the filling ratio
# - IMPORT: import of python modules and creation of output folders
# - MATERIAL: definition of the material

21 # - MILL GEOMETRY: import of the mill geometry mesh
# - FILLING: filling of the mill with balls
# - SIMULATION: engines of the simulation (mill rotation, integration, ...)
# - POST-PROCESSING: post-processing functions
# - RUN: start of the simulation

26 #
# Usage:
# dem -j nProc sim.py
# dem is a link to the DEM solver (by default dem = yade)
# nProc is the number of processors on which the simulation will be run

31 #
################################################################################

182
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################################################################################
36 # INPUT

#
# This input section contains all the input parameters concerning the material,
# the geometry/filling and the simulation. The shell liner mesh will be added
# later; its file name should be changed in the MILL GEOMETRY section.

41 #

# Material
rho = 7640.0 # [kg/m^3] density (of the balls)
kn = 1.0e5 # [N/m] equivalent normal stiffness

46 kt = kn # [N/m] equivalent tangential stiffness
cn = 18.6 # [Ns/m] equivalent normal damping coefficient (equiv. en = 0.3)
ct = cn # [Ns/m] equivalent tangential damping coefficient
mu = 0.75 # [-] friction coefficient

51 # Geometry/Filling
length = 0.4 # [m] axial length of the mill
rMean = 0.772/2.0 # [m] liner profile mean radius
rBall = 0.0075 # [m] ball radius
fRatio = 30.0 # [%] filling ratio

56

# Simulation
pcv = 70.0 # [%] percentage of critical velocity
tEnd = 5.0 # [s] total simulation time
O.dt = 1.0e-5 # [s] fixed time step

61 tRec = 1.0e-2 # [s] recording interval

################################################################################
# IMPORT

66 #
# In this section the Python modules necessary for reading the mesh, exporting
# the results and performing some mathematical operations are imported. It also
# verifies that former results were deleted to ensure that they will not be
# overwritten.

71 #

from yade import ymport,export
import math,os

76 if os.path.exists(’output’):
print ’Delete old "output" directory.’
exit()

else:
os.makedirs(’output’)

81 os.makedirs(’output/vtk’)
os.makedirs(’output/xyz’)

print ’\nBall Mill Simulation\n’

86

################################################################################
# MATERIAL
#
# In this section the material of the mill (shell liner + end walls) is defined.

91 # The linear spring-slider-damper contact law is used. For this reason, the
# equivalent stiffness and damping coefficients are multiplied by 2. In other
# words, the contact parameters of the elementary entities have to be specified;
# these parameters are internally combined by the DEM solver.
#

96

millMat = O.materials.append(SprSldDmpMat(knEl=2*kn,ktEl=2*kt,cnEl=2*cn,
ctEl=2*ct,muEl=mu))

ballMat = O.materials.append(SprSldDmpMat(knEl=2*kn,ktEl=2*kt,cnEl=2*cn,
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ctEl=2*ct,muEl=mu,density=rho))
101

################################################################################
# MILL GEOMETRY
#

106 # The mill and its end walls are added to the simulation. The shell liner
# profile mesh is imported in the .mesh GMSH format. The liner should be
# centered at the origine and be axially aligned with the y-axis. It will turn
# negatively around this axis with respect to the right hand rule, i.e. looking
# in the direction of the y-axis, it turns anticlockwise. As the shell mesh was

111 # created in millimeters, a scale factor has to be applied to rescale it to
# meters.
# The end walls of the mill are modeled by infinite planes, which will be
# rotating at the same speed than the shell liner.
#

116

liner = O.bodies.append(ymport.gmsh(’PerfectoABAB_dia_08_medium.mesh’,
material=millMat,color=(1,1,1),
scale=1e-3))

walls = O.bodies.append([
121 utils.wall((0,0,0),1,material=millMat,color=(1,1,1)),

utils.wall((0,length,0),1,material=millMat,color=(1,1,1))
])

126 ################################################################################
# FILLING
#
# The number of balls is calculated on basis of the filling ratio, which gives
# the ratio of the volume occupied by the balls and their interstices (bulk

131 # density = 4580 kg/m3) with respect to the total volume of the mill (given by
# its mean diameter and its axial length).
#
# The mill will be filled by insering balls in horizontal planes which are
# progressively moving upwards until all balls have been added to the

136 # simulation.
#

vTot = math.pi*rMean**2*length # total volume
vBalls = vTot * fRatio * 1.0e-2 # volume of balls with interstices

141 vBall = 4.0/3.0*math.pi*rBall**3 # volume of one ball
nBalls = int(vBalls * 4580.0/rho / vBall) # total number of balls

gap1 = 0.1*rBall # small gap to have no overlap (between balls)
gap2 = 4*rBall # large gap to have no overlap (between liner and balls)

146

z = -rMean + rBall + gap2 # vertical initial coordinate
x = -math.sqrt((rMean-rBall)**2 - z**2) + gap2 # horizontal initial coordinate
y = rBall + gap1 # axial initial coordinate

151 for i in range(nBalls):
# new axial line
if y > length - rBall - gap1:

y = rBall + gap1
x = x + 2*rBall + gap1

156 # new horizontal plane
if x > math.sqrt((rMean-rBall)**2 - z**2) - gap2:

z = z + 2*rBall + gap1
x = -math.sqrt((rMean-rBall)**2 - z**2) + gap2

# append ball
161 O.bodies.append(utils.sphere(center=(x,y,z),radius=rBall,\

material=ballMat,color=(1,1,1)))
# new axial position
y = y + 2.0*rBall + gap1
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166 print ’Filling Ratio: ’+str(fRatio)+’ [%]’
print ’Number of balls: ’+str(nBalls)+’ [-]’

################################################################################
171 # SIMULATION

#
# First, the rotation speed of the mill is calculated on basis of the percentage
# of critical velocity and the mean diameter of the mill. Then, the engines
# of the simulation are defined. The linear spring-slider-damper contact law

176 # was chosen.
#
# The simulation will successively call the following engines:
# - ForceResetter
# The forces, torques and some energies are reset as they will be

181 # calculated during the new simulation loop.
#
# - InsertionSortCollider
# The collisions between spheres and facets and spheres and walls are
# detected by the insertion sort algorithm based on the axis aligned

186 # bounding boxes of the different elements.
#
# - InteractionLoop
# The interactions loop first calculates the geometrical interaction
# characteristics, like the overlapping of spheres. Then, it determines

191 # the interaction parameters, like the equivalent spring stiffness.
# Finally, the forces, torques and energies of the interaction are
# calculated by the contact law.
#
# - NewtonIntegrator

196 # The forces and torques are integrated by taking gravity into account.
#
# - RotationEngine
# The mesh of the shell liner and the end walls are rotated at constant
# angular velocity about the y-axis.

201 #
# - VTKRecoder and PyRunner
# These engines are used to save the data for the post-processing at a
# constant sampling period "tRec":
# - center coordinates and radii of the spheres in VTK format (ParaView)

206 # - center coordinates of the spheres in text format
# - power draw of the mill
#

omegact = math.sqrt(9.81/rMean) # [rad/s] critical angular speed
211 omega = pcv*1e-2*omegact # [rad/s] angular speed

rpm = omega*30/math.pi # [rpm] rotation speed

print ’Percentage of critical velocity: ’+str(pcv)+’ [%]’
print ’Rotation speed: ’+str(rpm)+’ [RPM]’

216

O.engines=[
ForceResetter(),

InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb(),Bo1_Wall_Aabb()]),
221

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),
Ig2_Facet_Sphere_ScGeom(),
Ig2_Wall_Sphere_ScGeom()],

226 [Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys()],
[Law2_ScGeom_SprSldDmpPhys_Basic()]

),
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NewtonIntegrator(damping=0,gravity=[0,0,-9.81]),
231

RotationEngine(ids=liner,rotationAxis=[0,-1,0],rotateAroundZero=True,
angularVelocity=omega),

RotationEngine(ids=walls,rotationAxis=[0,-1,0],rotateAroundZero=True,
angularVelocity=omega),

236

VTKRecorder(fileName=os.getcwd()+’/output/vtk/’,
recorders=[’spheres’,’facets’,’velocity’],
iterPeriod=int(math.ceil(tRec/O.dt))),

241 PyRunner(command=’saveSphereXYZ()’,iterPeriod=int(math.ceil(tRec/O.dt))),
PyRunner(command=’savePower()’,iterPeriod=int(math.ceil(tRec/O.dt)))

]

246 ################################################################################
# POST-PROCESSING
#
# In this section, the functions called by the PyRunner in the simulation loop
# are defined. These functions calculate and save some data used for the post-

251 # processing.
#

# Save the position of the center of each sphere.
def saveSphereXYZ():

256 out=open(os.getcwd()+’/output/xyz/’+str(O.iter/int(math.ceil(tRec/O.dt))),’w’)
output = ’’
for b in O.bodies:
if isinstance(b.shape,Sphere):

output+=(’%g %g %g\n’ \
261 %(b.state.pos[0],b.state.pos[1],b.state.pos[2]))

out.write(output)
out.close()

266 # Calculate the power needed to rotate the mill and retrieve the power
# dissipated along the normal and tangential direction as well as the sliding
# dissipation
# Save this data.
def savePower():

271 # Mechanical power
power = 0;
for i in O.interactions:
f = Vector3(0,0,0)

276 # Force by sphere on facet
if isinstance(O.bodies[i.id1].shape,Sphere) \

and isinstance(O.bodies[i.id2].shape,Facet):
f = O.interactions[i.id1,i.id2].phys.normalForce \

+ O.interactions[i.id1,i.id2].phys.tangentialForce
281

# Force by facet on sphere
if isinstance(O.bodies[i.id1].shape,Facet) \

and isinstance(O.bodies[i.id2].shape,Sphere):
f = -O.interactions[i.id1,i.id2].phys.normalForce \

286 - O.interactions[i.id1,i.id2].phys.tangentialForce

# Force by sphere on wall
if isinstance(O.bodies[i.id1].shape,Sphere) \

and isinstance(O.bodies[i.id2].shape,Wall):
291 f = O.interactions[i.id1,i.id2].phys.normalForce \

+ O.interactions[i.id1,i.id2].phys.tangentialForce

# Force by wall on sphere
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if isinstance(O.bodies[i.id1].shape,Wall) \
296 and isinstance(O.bodies[i.id2].shape,Sphere):

f = -O.interactions[i.id1,i.id2].phys.normalForce \
- O.interactions[i.id1,i.id2].phys.tangentialForce

cp = i.geom.contactPoint
301

# Power = rotation speed * torque arm x force
power = power + Vector3(0,omega,0).dot(cp.cross(f))

out=open(os.getcwd()+’/output/rotationPower’,’a’)
306 out.write(’%g\n’%(power))

out.close()

# Power dissipation in the normal direction
try:

311 normalPower = O.energy[’normalPower’]
except:
normalPower = 0.0

out=open(os.getcwd()+’/output/normalPower’,’a’)
316 out.write(’%g\n’%(normalPower))

out.close()

# Power dissipation in the tangential direction (without sliding)
try:

321 tangentialPower = O.energy[’tangentialPower’]
except:
tangentialPower = 0.0

out=open(os.getcwd()+’/output/tangentialPower’,’a’)
326 out.write(’%g\n’%(tangentialPower))

out.close()

# Power dissipation due to sliding
try:

331 slidingPower = O.energy[’slidingPower’]
except:
slidingPower = 0.0

out=open(os.getcwd()+’/output/slidingPower’,’a’)
336 out.write(’%g\n’%(slidingPower))

out.close()

################################################################################
341 # RUN

#
# The command in this section simply starts the simulation after indicating that
# the energy should be tracked; this is necessary to calculate the dissipated
# power.

346 #

O.trackEnergy = True
O.run(int(math.ceil(tEnd/O.dt))+1)



Appendix C

Linear Spring-Slider-Damper Contact Law
Source Code Files

This chapter contains the source code of the linear spring-slider-damper contact law added to
the YADE DEM solver in the folder pkg/dem.

Listing C.1: Spring-slider-damper contact law - SprSldDmpPM.hpp
// 2009 (c) Sergei Dorofeenko <sega@users.berlios.de> (ViscoElasticPM)
// 2015 (c) Dominik Boemer <dominik.boemer@gmail.com>

4 /*******************************************/
/* Linear spring-slider-damper contact law */
/*******************************************/

#pragma once
9

#include<core/Material.hpp>
#include<core/IPhys.hpp>
#include<pkg/common/Dispatching.hpp>
#include<pkg/dem/ScGeom.hpp>

14

/* Material */
class SprSldDmpMat : public Material
{
public:

19 virtual ~SprSldDmpMat();

YADE_CLASS_BASE_DOC_ATTRS_CTOR(SprSldDmpMat,Material,
"Material for the linear spring-slider-damper contact law.",
((Real,knEl,0.0,,"Elementary normal stiffness."))

24 ((Real,cnEl,0.0,,"Elementary normal damping coefficient."))
((Real,ktEl,0.0,,"Elementary tangential stiffness."))
((Real,ctEl,0.0,,"Elementary tangential damping coefficient."))
((Real,muEl,0.0,,"Friction coefficient")),
createIndex(););

29

REGISTER_CLASS_INDEX(SprSldDmpMat,Material);
};
REGISTER_SERIALIZABLE(SprSldDmpMat);

188
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34

/* Interaction parameters */
class SprSldDmpPhys : public IPhys
{
public:

39 virtual ~SprSldDmpPhys();

YADE_CLASS_BASE_DOC_ATTRS_CTOR(SprSldDmpPhys,IPhys,"IPhys created from "
":yref:‘SprSldDmpMat‘, for use with "
":yref:‘Law2_ScGeom_SprSldDmpPhys_Basic‘.",

44 ((Real,kn,0.0,,"Equivalent normal stiffness."))
((Real,cn,0.0,,"Equivalent normal damping constant."))
((Real,kt,0.0,,"Equivalent tangential stiffness."))
((Real,ct,0.0,,"Equivalent tangential damping constant."))
((Real,mu,0.0,,"Friction coefficient."))

49 ((Vector3r,normalForce,Vector3r::Zero(),,
"Normal force after previous step (in global coordinates)."))

((Vector3r,tangentialForce,Vector3r::Zero(),,
"Tangential force after previous step (in global coordinates)."))

((Vector3r,tangentialSpringForce,Vector3r::Zero(),,
54 "Tangential spring force after previous step (in global coordinates). "

"This variables stores the history of the tangential spring.")),
createIndex(););

REGISTER_CLASS_INDEX(SprSldDmpPhys,IPhys);
59 };

REGISTER_SERIALIZABLE(SprSldDmpPhys);

/* Extract the interaction parameters */
64 class Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys: public IPhysFunctor

{
public :
virtual void go(const shared_ptr<Material>& m1,
const shared_ptr<Material>& m2,

69 const shared_ptr<Interaction>& interaction);
YADE_CLASS_BASE_DOC(Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys,
IPhysFunctor, "Convert 2 instances of :yref:‘SprSldDmpMat‘ to "
":yref:‘SprSldDmpPhys‘ using the rule of consecutive connection.");

74 virtual void calculate_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys(
const shared_ptr<Material>& m1, const shared_ptr<Material>& m2,
const shared_ptr<Interaction>& interaction,
shared_ptr<SprSldDmpPhys> phys);

79 FUNCTOR2D(SprSldDmpMat,SprSldDmpMat);
};
REGISTER_SERIALIZABLE(Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys);

84 /* Constitutive law - spring-slider-damper contact law */
class Law2_ScGeom_SprSldDmpPhys_Basic: public LawFunctor
{
public :
virtual bool go(shared_ptr<IGeom>&, shared_ptr<IPhys>&, Interaction*);

89

YADE_CLASS_BASE_DOC_ATTRS(Law2_ScGeom_SprSldDmpPhys_Basic,LawFunctor,
"Linear spring-slider-damper contact law operating on :yref:‘ScGeom‘ and "
":yref:‘SprSldDmpPhys‘.",

((int,normalPowerIx,-1,(Attr::hidden|Attr::noSave),
94 "Index for normal damping power (with O.trackEnergy)"))

((int,tangentialPowerIx,-1,(Attr::hidden|Attr::noSave),
"Index for tangential damping power (with O.trackEnergy)"))

((int,slidingPowerIx,-1,(Attr::hidden|Attr::noSave),
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"Index for shear power (with O.trackEnergy)")));
99

FUNCTOR2D(ScGeom,SprSldDmpPhys);
DECLARE_LOGGER;

};
REGISTER_SERIALIZABLE(Law2_ScGeom_SprSldDmpPhys_Basic);

104

/* Contact force, torque, dissiapated power and wear calculation */
bool computeSprSldDmp(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys, Interaction* I, Vector3r & force,

109 Vector3r & torque1, Vector3r & torque2, Real & normalPower,
Real & tangentialPower, Real & slidingPower);

/* Equivalent contact parameter calculation (series) */
114 Real equivalentParameter(const Real& l1, const Real& l2);
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Listing C.2: Spring-slider-damper contact law - SprSldDmpPM.cpp
// 2009 (c) Sergei Dorofeenko <sega@users.berlios.de> (ViscoElasticPM)
// 2015 (c) Dominik Boemer <dominik.boemer@gmail.com>

#include"SprSldDmpPM.hpp"
5 #include<core/State.hpp>

#include<core/Omega.hpp>
#include<core/Scene.hpp>
#include<pkg/common/Sphere.hpp>
#include<pkg/common/Facet.hpp>

10 #include<pkg/dem/ScGeom.hpp>

YADE_PLUGIN((SprSldDmpMat)
(SprSldDmpPhys)
(Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys)

15 (Law2_ScGeom_SprSldDmpPhys_Basic));

/* SprSldDmpMat */
SprSldDmpMat::~SprSldDmpMat(){}

20

/* SprSldDmpPhys */
SprSldDmpPhys::~SprSldDmpPhys(){}

25

/* Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys */
void Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys::go(
const shared_ptr<Material>& m1, const shared_ptr<Material>& m2,
const shared_ptr<Interaction>& interaction)

30 {
// no updates of an existing contact
if(interaction->phys) return;
shared_ptr<SprSldDmpPhys> phys (new SprSldDmpPhys());
calculate_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys(m1, m2, interaction, phys);

35 interaction->phys = phys;
}

/* Law2_ScGeom_SprSldDmpPhys_Basic */
40 bool Law2_ScGeom_SprSldDmpPhys_Basic::go(shared_ptr<IGeom>& _geom,

shared_ptr<IPhys>& _phys, Interaction* I)
{
// force and torque
Vector3r force = Vector3r::Zero();

45 Vector3r torque1 = Vector3r::Zero();
Vector3r torque2 = Vector3r::Zero();

// energy
Real normalPower = 0.0;

50 Real tangentialPower = 0.0;
Real slidingPower = 0.0;

if (computeSprSldDmp(_geom, _phys, I, force, torque1, torque2,
normalPower, tangentialPower, slidingPower)

55 and (I->isActive))
{
const int id1 = I->getId1();
const int id2 = I->getId2();

60 addForce (id1,-force, scene);
addForce (id2, force, scene);
addTorque(id1, torque1, scene);
addTorque(id2, torque2, scene);
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65 // energy tracking
if (scene->trackEnergy)
{
scene->energy->add(normalPower, "normalPower",

normalPowerIx, true);
70 scene->energy->add(tangentialPower, "tangentialPower",

tangentialPowerIx, true);
scene->energy->add(slidingPower, "slidingPower",

slidingPowerIx, true);
}

75

return true;
} else return false;

}

80

/* Contact force, torque, dissiapated power and wear calculation */
bool computeSprSldDmp(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys, Interaction* I, Vector3r & force,
Vector3r & torque1, Vector3r & torque2, Real & normalPower,

85 Real & tangentialPower, Real & slidingPower)
{
SprSldDmpPhys& phys=*static_cast<SprSldDmpPhys*>(_phys.get());
const ScGeom& geom=*static_cast<ScGeom*>(_geom.get());
Scene* scene=Omega::instance().getScene().get();

90

if (geom.penetrationDepth<0)
return false;

else
{

95 // get bodies
const int id1 = I->getId1();
const int id2 = I->getId2();
const BodyContainer& bodies = *scene->bodies;
State& de1 = *static_cast<State*>(bodies[id1]->state.get());

100 State& de2 = *static_cast<State*>(bodies[id2]->state.get());

// get time step
const Real& dt = scene->dt;

105 // handle periodicity
const Vector3r shift2 = scene->isPeriodic ?
scene->cell->intrShiftPos(I->cellDist): Vector3r::Zero();
const Vector3r shiftVel = scene->isPeriodic ?
scene->cell->intrShiftVel(I->cellDist): Vector3r::Zero();

110

// calculate relative velocity and its components (normal/tangential)
const Vector3r c1x = (geom.contactPoint - de1.pos);
const Vector3r c2x = (geom.contactPoint - de2.pos - shift2);

115 const Vector3r relativeVelocity = (de1.vel+de1.angVel.cross(c1x))
- (de2.vel+de2.angVel.cross(c2x)) + shiftVel;

const Real normalVelocity = geom.normal.dot(relativeVelocity);
const Vector3r tangentialVelocity = relativeVelocity

- normalVelocity*geom.normal;
120

/**********/
/* Forces */
/**********/

125

// calculate normal force
const Real normalForceScalar = phys.kn * geom.penetrationDepth

+ phys.cn * normalVelocity;
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130 // prevent attraction due to normal damper
if (normalForceScalar < 0)
phys.normalForce = Vector3r::Zero();

else
phys.normalForce = normalForceScalar * geom.normal;

135

// get tangential spring force history and account for the rotation
Vector3r& tangentialSpringForce = phys.tangentialSpringForce;
if (I->isFresh(scene)) tangentialSpringForce=Vector3r(0,0,0);
tangentialSpringForce = geom.rotate(tangentialSpringForce);

140

// calculate tangential forces
tangentialSpringForce += phys.kt*tangentialVelocity*dt;
Vector3r tangentialDamperForce = phys.ct*tangentialVelocity;
Vector3r& tangentialForce = phys.tangentialForce;

145 tangentialForce = tangentialSpringForce + tangentialDamperForce;

// check for Coulomb sliding
const Real limitFt = phys.normalForce.squaredNorm() * phys.mu * phys.mu;
bool sliding = tangentialForce.squaredNorm() > limitFt;

150 if (sliding)
{
/* It is necessary to calculate the following ratio in order to obtain a

* tangential sliding force which is aligned with the tangential force

* just before the sliding. The spring component of the tangential force
155 * also has to be reduced due to the sliding. In fact, this component

* will be used at the next time step since the spring stores energy

* (history). Thus, it is necessary to update its value.

*/
const Real ratio = sqrt(limitFt) / tangentialForce.norm();

160 tangentialForce *= ratio;
tangentialSpringForce *= ratio;

}

// force result
165 force = phys.normalForce + tangentialForce;

torque1 = -c1x.cross(force);
torque2 = c2x.cross(force);

170 /**********/
/* Energy */
/**********/

if (scene->trackEnergy)
175 {

// normal dissipation power
if (normalForceScalar < 0)
normalPower = 0;

else
180 normalPower = phys.cn * normalVelocity * normalVelocity;

/* Since the time step is very small, it is reasonable to suppose that

* the energy dissipation in the tangential direction occurs either

* exclusively by sliding or (exclusively) by tangential damping.
185 *

* It is important to notice that the tangential force is in the

* tangential plane even though it is the accumulated history of the

* spring force. The rotation of the accumulated tangential spring force

* actually makes sure that this requirement is satisfied. The dot
190 * product of the tangential force and the tangential velocity is,

* however, necessary as they are not naturally aligned due to the spring

* history.

*/
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195 // sliding dissipation power (tangential direction)
if (sliding)
slidingPower = tangentialForce.dot(tangentialVelocity);

// tangential damping dissipation power
200 else

tangentialPower = tangentialForce.dot(tangentialVelocity);
}

205 /********/
/* Wear */
/********/

/* Wear will only be accumulated if:
210 * - wear should actually be recorded;

* - a certain moment in time has been reached (pseudo steady state);

* - a sphere collides with a facet.

*/
if (scene->trackWear

215 && scene->time > scene->recordingStartTime
&& (dynamic_cast<Facet*>(bodies[id1]->shape.get())

|| dynamic_cast<Facet*>(bodies[id2]->shape.get())))
{
// Get area and state of the facet

220 const int id = dynamic_cast<Facet*>(bodies[id1]->shape.get()) ? id1 : id2;
const Facet& facet = *dynamic_cast<Facet*>(bodies[id]->shape.get());
const Real area = facet.area;
State& facetState = *static_cast<State*>(bodies[id]->state.get());

225 //== Energy dissipated by normal damping
if (normalForceScalar > 0)
facetState.energyNormalDamping +=

phys.cn * normalVelocity * normalVelocity * dt / area;

230 //== Energy dissipated by sliding
if (sliding)
facetState.energySliding +=

tangentialForce.dot(tangentialVelocity) * dt / area;

235 //== Energy dissipated by tangential damping
else
facetState.energyTangentialDamping +=

tangentialDamperForce.dot(tangentialVelocity) * dt / area;

240 //== Wear by the Archard equation
facetState.archardWear +=

phys.normalForce.norm() * tangentialVelocity.norm() * dt / area;

//== Wear by Finnie’s law
245 if (I->isFresh(scene))

{
// facets do not have any mass; thus, the mass of the sphere is selected
Real mass = de1.mass == 0.0 ? de2.mass : de1.mass;

250 // sine of the angle between the facet surface and the impact velocity
Real sinAlpha = fabs(geom.normal.dot(relativeVelocity)

/relativeVelocity.norm());

// cosine of the angle between the facet surface and the impact velocity
255 Real cosAlpha = sqrt(1.0 - sinAlpha*sinAlpha);

// angular dependence
Real f = 0.0;
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if (sinAlpha/cosAlpha > 1.0/3.0)
260 f = 1.0/3.0 * cosAlpha * cosAlpha;

else
f = 2.0 * sinAlpha * cosAlpha - 3.0 * sinAlpha * sinAlpha;

facetState.finnieWear +=
265 f * mass * relativeVelocity.squaredNorm() / area;

}

//== Excess kinetic energy wear
if (I->isFresh(scene) && normalVelocity > 0.1)

270 {
Real mass = de1.mass == 0.0 ? de2.mass : de1.mass;
facetState.excessKineticEnergy +=

mass * normalVelocity * normalVelocity / area;
}

275

}
return true;

}
}

280

/* Convert material to interaction physics */
void Ip2_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys::
calculate_SprSldDmpMat_SprSldDmpMat_SprSldDmpPhys(

285 const shared_ptr<Material>& m1, const shared_ptr<Material>& m2,
const shared_ptr<Interaction>& interaction,
shared_ptr<SprSldDmpPhys> phys)

{
SprSldDmpMat* mat1 = static_cast<SprSldDmpMat*>(m1.get());

290 SprSldDmpMat* mat2 = static_cast<SprSldDmpMat*>(m2.get());

// elementary parameters
Real kn1 = mat1->knEl;
Real kn2 = mat2->knEl;

295 Real kt1 = mat1->ktEl;
Real kt2 = mat2->ktEl;
Real cn1 = mat1->cnEl;
Real cn2 = mat2->cnEl;
Real ct1 = mat1->ctEl;

300 Real ct2 = mat2->ctEl;

// equivalent parameters (serie)
phys->kn = equivalentParameter(kn1,kn2);
phys->kt = equivalentParameter(kt1,kt2);

305 phys->cn = equivalentParameter(cn1,cn2);
phys->ct = equivalentParameter(ct1,ct2);

phys->mu = std::min(mat1->muEl, mat2->muEl);
}

310

/* Equivalent contact parameter calculation (series) */
Real equivalentParameter(const Real& l1, const Real& l2)
{

315 if (l1>0 && l2>0) return l1*l2/(l1 + l2);
else return 0;

}
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Wear Profile Measurements

The tables D.1 and D.2 contain the wear profile measurements used in the chapter 3 to calibrate
and validate the wear model.

0 h 2383 h 7060 h
(max)

7060 h
(min)

12120 h 16680 h
(max)

16680 h
(min)

23669 h
(max)

23669 h
(min)

-240 108 99 95.5 92.5 89.5 84 84 83.5 77
-220 104.5 96.5 90.5 88 82 76 76 75.5 69
-200 92.5 84 77 76 71 67 67 67 63
-180 77 71.5 67.5 68.5 65 62.5 62.5 62.5 60
-160 74 68.5 65.5 67 65 61.5 61.5 62.5 61
-140 78 71 69.5 71 69 65 65 67.5 65
-120 85 79 77.5 78.5 76 75 75 74.5 73
-100 97 90.5 89 88.5 87 89 89 88.5 84.5

-80 112 106.5 105 104.5 101 103 103 103.5 97
-60 125 120 117 116.5 112 110 108 115 106
-40 133.5 128.5 126 123.5 118 120.5 113 120 110.5
-20 138 132.5 129.5 126.5 121 124 115.5 121 111.5

0 139 134 130 127 121 123.5 115 121 111
20 138 133 129 124.5 119 122 114 119 105.5
40 133.5 128.5 124 119.5 114 107 106 106.5 92
60 125 119.5 115 108.5 101 91 91 89.5 79
80 113.5 106.5 98.5 94.5 86.5 78 78 75 68.5

100 99 91.5 84 81 75 68 68 65.5 60
120 87 78.5 73 71.5 67.5 61 61 60 55.5
140 78 70.5 66 66 63 59 59 59 55
160 74 67.5 64.5 64.5 63 60.5 60.5 61 58
180 76.5 71 69 69 68 67 67 68 65
200 92 84 81.5 80.5 80 79 79 80 73.5
220 102.5 96 92 89 86 83 83 86 76.5
240 106 99 96 91 87 85 85 85 76

Table D.1: Wear profile measurements of the liner plate (from 0 h to 23669 h) used in the chapter 3
to calibrate and validate the wear model. The first column gives the position along the x-axis (in mm),
while the other columns give the respective position along the z-axis over time (in mm). The system of
coordinates is defined in the figure 3.1.

196
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28668 h
(max)

28668 h
(min)

33034 h
(max)

33034 h
(min)

37020 h
(max)

37020 h
(min)

41541 h
(max)

41541 h
(min)

48437 h
(min)

-240 74 63 66.5 60 64 51 63 51 36
-220 67 57.5 61.5 54.5 61.5 48 59 48 33.5
-200 61 53 58 52 58 46 56 46 33.5
-180 58.5 51.5 56 52 56.5 47 56 47 37.5
-160 60 53.5 58 55 58.5 49.5 58.5 50.5 43
-140 65.5 58 64 60.5 64.5 55 65 56.5 50
-120 75 66.5 73 69 75 63 75 65 58
-100 89 77 84 80.5 89 74.5 87 76 67

-80 104 88.5 98 91.5 102 85 99 85 74
-60 114 95 107 96 108 91 106 90 76
-40 117 98.5 109.5 98.5 110 94 106 92 69
-20 118 99.5 108 99 107 92.5 100 87 59

0 116 99 101.5 92 99.5 85 91 76.5 48
20 107.5 90 90.5 80 88.5 73.5 81 64.5 37.5
40 96.5 77 78 67.5 77 62 71 54 29
60 83.5 65.5 66 56.5 67 52 62.5 46.5 23.5
80 71.5 56 57 49 59 45 56 40 22

100 63 50 52.5 44.5 55 41 52 37 22
120 58.5 47 51 43.5 53.5 40 52 37 23
140 58 47 52 45.5 55.5 41 55 40 26
160 61.5 51 58 50 59.5 46 59 45 30
180 70 58 68 57 68 52 67 49.5 32
200 82.5 64 75 62 72.5 55.5 70.5 53 33.5
220 82 65 74 62 70.5 55.5 70 52.5 35
240 77 63.5 68.5 61.5 65 52.5 65 51 35

Table D.2: Wear profile measurements of the liner plate (from 28668 h to 48437 h) used in the chapter
3 to calibrate and validate the wear model. The first column gives the position along the x-axis (in mm),
while the other columns give the respective position along the z-axis over time (in mm). The system of
coordinates is defined in the figure 3.1.
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Project Data Files

In order to keep the project data files for future projects, they were meticulously archived. With-
out taking into consideration the numerous scripts and output files during the testing phase, the
simulation data amounts for about 540,000 files taking up around 580 GB of memory space.
After removing the output data of the DEM simulations, around 1200 manually created files,
like simulation, pre- and post-processing scripts remain, in addition to the 876 source files of the
DEM solver YADE. This data and the document, which you are about to read, were saved on a
CD distributed with this document. The directory tree of the CD is shown in the figure E.1. In
the following lines, we will briefly explain how the content of the CD relates to this document.

Simulation data

The folder SimulationData contains:

• the PYTHON (Python 2.7.6 and IPython 1.2.1) control scripts of the DEM simulations;

• the MATLAB (R2014b) pre- and post-processing scripts;

• the FREECAD (0.14) and CATIA (V5R20) CAD files of the geometries;

• the GMSH (2.8.3) meshes;

• the PDF figures of this document.

These files are chronologically sorted by creating a folder for each major objective, like
benchmarking YADE and LIGGGHTS or studying the influence of the number of processors
used to run the simulation. Each folder contains in general two additional folders, which are
called input and output, as well as some pre- and post-processing scripts. One of the post-
processing scripts usually has a similar name to the folder in which it is saved, like nbrProcessors.m
in the folder 2_NbrProcessors. This script is the master script, which uses the other scripts
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/

SimulationData

1_Benchmark

2_LinerMesh

3_NbrProcessors

4_PostProcessing

5_AnalyticValidation

6_Overlap

7_TimeStep

8_GeneralResults

9_InfluenceMesh

10_InfluenceMaterial

11_Validation

12_IndustrialMill

13_Measurements

14_DuoLiftDia58

15_PseudoSteadyState1

16_RepresentativeData

17_RealWearVolume

18_WearConstant

19_GeometryModification

20_PseudoSteadyState2

21_Multistep

Thesis

MT_BOEMER_2015.pdf

src

YadeSourceCode

origsrc

trunk

Figure E.1: Directory tree of the CD.
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to create the results necessary to achieve the objective of the folder. The results are created on
the basis of the input data in the input folder and saved in the output folder.

In the following list, we will summarize the major objective of each folder and indicate the
related section of this document:

• 1_Benchmark (section 2.2): comparison of the performance of LIGGGHTS and YADE;

• 2_LinerMesh (section 2.3.2): creation of the mesh of the liner in the laboratory mill;

• 3_NbrProcessors (section 2.3.3): influence of the number of processors on the com-
putation time;

• 4_PostProcessing (section 2.3.4): general explanation of the post-processing tech-
niques, e.g. position density limits and power draw predictions;

• 5_AnalyticValidation (section 2.4.1): analytic validation of the new spring-slider-
damper contact law in YADE;

• 6_Overlap (section 2.4.1): overlap of the discrete elements as a function of the contact
parameters;

• 7_TimeStep (section 2.4.1): determination of the time step;

• 8_GeneralResults (section 2.4.2): general results of the simulation of the laboratory
mill, like the pseudo steady state or the power draw;

• 9_InfluenceMesh (section 2.4.2): influence of the mesh refinement on the charge mo-
tion and the power draw;

• 10_InfluenceMaterial (section 2.4.2): influence of the material contact parameters
on the charge motion and the power draw;

• 11_Validation (section 2.4.2): validation of the predicted charge motion and power
draw of the laboratory mill based on experimental data;

• 12_IndustrialMill (section 2.4.3): extension of the results of the laboratory mill to
the industrial mill;

• 13_Measurements (section 3.1): illustration of the measurements of the real wear pro-
files;

• 14_DuoLiftDia58 (section 3.2.2): creation of the meshes of the Duolift liner in the
5.8 m diameter mill;

• 15_PseudoSteadyState1 (section 3.3.1): number of rotations necessary to reach the
first pseudo steady state;
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• 16_RepresentativeData (section 3.3.2): accumulation of representative wear data by
the simulation;

• 17_RealWearVolume (section 3.3.3): extraction of the real wear volume from the mea-
sured wear profiles;

• 18_WearConstant (section 3.3.4): determination of the best fitting wear model and the
corresponding wear constant from the correlation of the real and predicted wear rates;

• 19_GeometryModification (section 3.3.5): modification of the geometry due to wear;

• 20_PseudoSteadyState2 (section 3.3.6): number of rotations necessary to reach the
second pseudo steady state;

• 21_Multistep (section 3.3.7): modeling the entire liner wear evolution by a multi-step
procedure and comparison of the predicted results with the real wear profiles.

Thesis

The folder Thesis contains the PDF version of this document as well as its LATEX source code
files in the folder src.

YADE source code

The folder YadeSourceCode contains the original and the modified source code of the DEM
solver YADE in the folders origsrc and trunk, respectively. The guidelines of the installation
are provided by the INSTALL file in these folders.
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