

Goat breeding in the rural district of Chemini (Algeria)

N. Moula^{1,2}, F. Farnir¹, P. Leroy^{1,2} and N. Antoine-Moussiaux^{1,2}

1. Fundamental and Applied Research for Animals & Health (FARAH), Sustainable Animal Production, ULg; 2.Tropical Veterinary Institute, Faculty of Veterinary Medicine, ULg

Introduction

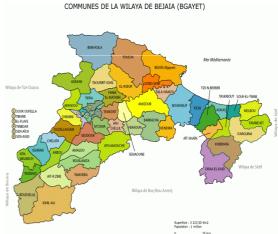
In Algeria, livestock consist mainly of dairy cattle, poultry and sheep. Despite numerous programs aiming at developing the sector in the recent years, production performances are still unsatisfactory. Therefore, the competitiveness of local production remains poor and national demand for animal products is met by imports. In Algeria, goats are estimated at 3.8 million heads in total including 2.2 million adult females. With 400.000 heads, the Kabylie region harbors about 10% of the national herd. This paper attempts to characterize the goat population and the typology of the farms involved, in the rural district (daira) of Chemini, of the department of Bejaia.

Material and Methods

A survey of 69 farmers has been carried out in order to characterize goat breeding and its production context in the District of Chemini. The questions focused on household agricultural activities, including breeding of goats, cattle, sheep, rabbits, chicken, turkeys, honeybees and the production of olive oil and figs. The goat morpho-biometric characterization was based on 18 corporal measurements.

Results

The Hierarchical Cluster Analysis (HCA) of the farm structures defined four groups of farms. Variance between groups accounts for 55.7% of total variability.


Table 1. Animals and trees numbers by species.

Species	n	Animal and tree number					
		Mean	Median	Max	Min	CV (%)	
Goat	69	9.42	9	24	2	57.87	
Cattle	40	21.82	12	92	1	113.88	
Sheep	59	16.57	12	79	1	100.41	
Rabbit	35	33.80	35	66	2	41.51	
Hen	54	22.24	20	50	2	57.24	
Turkey	20	29.50	28.5	58	11	40.80	
Bee hives	30	12.07	9	24	2	59.72	
Olive	63	71.79	49	395	5	105.14	
Fig	63	22.32	16	64	4	61.44	

Table 3. Breeders age, numbers of animal species, beehives, olive and fig trees per group: Mean (number ofg breeders).

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster Effect ¹
Farmer age	54.24 (29)	61.16 (25)	67.33 (6)	37.11 (9)	***
Goat	7.17 (29)	11.08 (25)	22.33 (6)	3.44 (9)	***
Cattle	15.18 (17)	9.92 (13)	1.00(1)	51.56 (9)	***
Sheep	16.38 (29)	9.53 (19)	48.67 (6)	6.00 (5)	***
Rabbit	33.44 (25)	2.00 (1)	50.83 (6)	13.33 (3)	***
Hen	14.91 (23)	23.42 (24)	48.33 (6)	6.00 (1)	***
Turkey	26.38 (16)	-	42.00 (4)	-	*
Beehives	9.83 (12)	14.15 (13)	9.00 (4)	24.00 (1)	ns
Olive	67.10 (29)	28.64 (25)	-	206.78 (9)	***
Fig	22.55 (29)	13.04 (25)	-	47.33 (9)	***

 1 Kruskal-Wallis test: *** : statistically highly significant (p<0.001); ns : statistically not significant (p>0.05)

Table 2. Least square means (LSM) and their standard error (Se) for the body measurements by sex.

Parameters	Lsmeans ± SE					
	Male	Female				
Weight (Kg)	38.99 ± 0.83^{a}	31.93 ± 0.47^{b}				
Body length (cm)	95.12±0.96a	92.29±0.54b				
Hair length (cm)	12.24±0.51a	9.51 ± 0.29^{b}				
Height at sacrum (cm)	69.60±0.91a	66.78±0.51b				
Height at withers (cm)	68.23±0.97a	65.41 ± 0.55^{b}				
Tail length (cm)	20.61 ± 0.64^{a}	17.87 ± 0.36^{b}				
Trunk length (cm)	64.13±1.03a	61.35±0.58b				

a, b: Different letters on a same line indicate statisticaly different values $\boldsymbol{\theta}$

Conclusion

The Kabyle goat appears as a well-characterized breed, exploited in diversified agro-pastoral production systems. In the prospect of capitalizing on this valuable genetic resource, the population nevertheless lacks a management structure that would pursue collectively defined selection goals.