

Do you sing in tune?

Pauline Larrouy-Maestri

Neuroscience Department Max-Planck Institute for Empirical Aesthetics

Pauline.larrouy-maestri@aesthetics.mpg.de

Perception of pitch accuracy when listening to sung melodies

Pauline Larrouy-Maestri

Neuroscience Department Max-Planck Institute for Empirical Aesthetics

Pauline.larrouy-maestri@aesthetics.mpg.de

Does Marilyn sing in tune?

Musical errors

Sensitivity from early age and perception in adults: e.g., Dowling & Fujitani, 1970; Edworthy, 1985; Ferland & Mendelson, 1989; Hannon & Trainor, 2007; Gooding & Stanley, 2001; Plantinga & Trainor, 2005; Stalinski et al., 2008; Trainor & Trehub, 1992

Musical errors

Musical errors - Judges

	Experts	Non experts
n	18	18
Gender	8 women	8 women
Age	<i>M</i> = 29.89; <i>SD</i> = 14.47	<i>M</i> = 33.06 ; <i>SD</i> = 9.57
Expertise	5 professional musicians 5 professional singers 4 music students 4 speech therapists	
Musical or vocal practice	ОК	
Audiometry		OK
MBEA (Peretz et al., 2003)		OK
Production task « Happy Birthday »		OK

Musical errors - Computer assisted method

F0 information

AudioSculpt and OpenMusic (Ircam)

Quantification of errors Excel (Microsoft)

Manual segmentation AudioSculpt (Ircam)

Larrouy-Maestri & Morsomme (2013), Logopedics Phoniatrics Vocology.

Musical errors - Experts

Larrouy-Maestri et al. (2013), Journal of Voice.

Musical errors - Layman listeners

Musical errors – Conclusions

- Intervals are important in the definition of vocal pitch accuracy in a melodic context
- When you are an "experts", you pay attention to interval deviation and number of modulations

Singing voice

- Never perfect!
- Does not mean that it is "out of tune"
- → What is the limit between "in" and "out" of tune (i.e., tolerance)?

	< 50	= 50 cents	= 100 cents	> 100
Pitch discrimination	Several studies			
Musical conventions			e.g. musical notation, piano,	
Measurement of performances		Hutchins & Peretz (2012)Pfordresher & Mantell (2014)	 Berkowska & Dalla Bella (2009) Dalla Bella et al. (2007, 2009) Pfordresher & al. (2007, 2009, 2010) 	
Pitch perception		Hutchins et al. (2012)Warrier & Zatorre (2002)	Burns & Wards (1978)Zarate et al. (2012)	 In trained voices Larrouy-Maestri et al. (2014) Sundberg et al. (1996, 2013) Vurma & Ross (2006)

→ Does it depend on the melody/type of error?

Tolerance - Material

1. Interval direction (Ascending vs. Descending) and type of error (Interval vs. Tonal drift)

2. Size (2nd vs. 4th) and position (Middle vs. End) of the interval

3. Familiarity (and expertise of the listener)

399 participants from 13 to 70 years old (M = 29.81)Familiarity ratings: t(398) = 20.92, p < .001

Tolerance – Procedure

- Manipulation of one/sequence of tone(s)
- Methods of limits (Van Besouw, Brereton, & Howard, 2008)

• Test-retest paradigm (7 to 14 days)

Tolerance – Experiment 1

Conditions

- Interval direction (Ascending vs. Descending)
- Type of error (Interval vs. Tonal drift)

Participants

- n = 30 non musicians
- M = 23.33, SD = 3.53
- Control tasks

No effect of Error type f(1, 114) = 1.74, p = .19No effect of Interval direction f(1, 114) = 0.68, p = .42No interaction f(1, 114) = 0.01, p = .98

Tolerance – Experiment 2

Conditions

- Interval size (2nd vs. 4th)
- Interval position (Middle vs. End)

Participants

- n = 28 non musicians
- M = 20, SD = 4

Tolerance – Experiment 3

- Conditions
 - Familiarity
 - Expertise
- Participants
 - n = 30 non musicians (M = 41, SD = 12)
 - n = 30 musicians (M = 41, SD = 11.85)
 - Control tasks

Tolerance – Bonus

Tolerance – Conclusions

- Consistency when categorizing melodies, whatever the familiarity, size, position, type of error
- Low tolerance (20-30 cents), particularly for music experts (~ 10 cents)

Singing voice

Trained singers

- Complex signal (e.g. Larrouy-Maestri et al., 2014a; Sundberg, 2013) including vibrato (Ekholm et al., 1998; Garnier et al., 2007; Rothman et al., 1990)
- Influence on the perception of pitch accuracy (Larrouy-Maestri et al., 2014b)

Untrained singers

- Something happens at the start
 - Stevens & Miles (1928)
 - Few studies (Hutchins & Campbell, 2009; Saitou, Unoki, & Akagi, 2005) + J. Mantell!

Description of pitch fluctuations (i.e., scoops)

• It might influence our perception

→ Perception of scoops

Pitch fluctuations within tones - Description

Data analysis of Pfordresher & Mantell (2014): 12 "inaccurate" and 17 "accurate" singers Melodies of 4 notes: 1854 tones

Pitch fluctuations within tones - Perception

Melodies

• Manipulations of one tone

ытсн

- Asymptote
- Scoops at the start and/or at the end
- 102 undergrads in 4 Experiments
- For each melody
 - Pairwise comparison
 - Ranking from "most out of tune" to "most in tune"
 → Reliability
 - → Effect of one/several manipulations on the rating

Pitch fluctuations - Do Scoops matter?

- Manipulation of the Asymptote: +/- 50 cents
- Manipulation of the Scoop
 - start vs. end
 - up vs. down

Manipulation of the Asymptote and Scoop

Pitch fluctuations - Do Scoops matter?

- → Effect of Asymptote (f(2,100) = 113.41, p < .001), but also of Scoops (f(1,50) = 35.03, p < .001)</p>
- → None > Start > End: Perfect > Motor adjustment > Lack of stability

Pitch fluctuations – Averaging process?

- No manipulation of the Asymptote
- Manipulation of the Scoop

Correlation between Deviation and Ratings (r = -0.42, p < .01)</p>
Preference for low deviation

Pitch fluctuations – Sequential process?

- No manipulation of the Asymptote
- Manipulation of the Scoop

Pitch fluctuations – Sequential process?

→ Clear preference for NO continuity (f(2,102) = 66.66, p < .001)

Pitch fluctuations – Sequential vs. Averaging?

- New manipulations: Asymptote AND Start/End
- Same procedure with new participants

	Continuity	Compensation	
	ns	***	
	**	ns	* <.05 ** < 01
	*	**	*** <.001
	*	***	
All melodies	***	***	

Pitch fluctuations – Conclusions

- Scoops in singing performances
- Influence of Scoops on melodic perception
 - Tolerance regarding motor constraints
 - Glides (i.e., continuity) make the melody sounds "out of tune"
- Both averaging/sequential processes seem important

Yohanna Lévêque

Dominique Morsomme

David Poeppel

Laura Gosselin

Ellen Blanckaert

Simone Franz

Zahra Malakotipour

Malak Sharif

Michael Wright

Daniele Schön

David Magis

Marie-Reine Ayoub