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SUMMARY: The present study carries out output-only modal analysis using two blind source separation (BSS) 
techniques, namely independent component analysis and second-order based identification. It is shown under 
which circumstances the normal coordinates of the vibration modes may be interpreted as virtual sources, which 
renders the application of these BSS techniques possible. To support the theoretical findings, numerical 
experiments are first carried out using a discrete system of three masses. Secondly the method is applied to a 
real-life structure which is a blade extracted from a turbojet engine stator. The results are compared with the 
stochastic subspace identification method. 
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1. INTRODUCTION 
 
Blind source separation (BBS) techniques were initially developed for signal processing in the early 1980s [1]. 
The general aim of BSS techniques is to recover unobserved source signals from their observed mixtures. The 
well-known problem named cocktail-party problem perfectly illustrates this idea. It consists in retrieving the 
initial speech signals emitted by several persons speaking simultaneously in a room using only the mixed signals 
which are recorded by a set of microphones located in the room. 
 
The BSS techniques quickly found many applications in speech processing and wireless communications and 
proved useful for the analysis of multivariate data sets such as financial time series [2], astrophysical data sets 
[3], image processing [4], electrical and hemodynamic recordings from the human brain [5]. The mechanical 
engineering community recently took into consideration these techniques, in areas such as non-destructive 
control, online condition monitoring or noise analysis. 
 
This paper investigates the usefulness of BSS techniques for modal analysis through the virtual source concept 
[6]. Indeed, the sources considered herein are not the physical excitations of the identified structure, which 
allows us to interpret the response of a mechanical system as a static mixture of (virtual) sources. Two methods 
are considered, namely independent component analysis (ICA) [7] and second-order based identification (SOBI) 
[8]. A simple numerical application (a three-degree-of-freedom system) firstly illustrates the proposed 
methodology. Secondly the algorithms are applied to a real-life structure to demonstrate the applicability of the 
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methodology for practical applications. A comparison with the stochastic subspace identification (SSI) method 
[9] is finally achieved. 
 
 
2. THEORETICAL BACKGROUND 
 
This section briefly introduces the two considered algorithms (ICA and SOBI) and shows that they can be useful 
for modal identification, even in the absence of external forces. However, the detailed description of these 
algorithms is beyond the scope of this paper. The reader may consult [7, 8, 10] for further details. 
 
 
2.1. Two considered BSS algorithms 
The objective of SS techniques consists then in revealing the underlying structure hidden in a set of measured 
data. The simplest BSS model assumes the existence of n source signals  and the observation of 
as many mixtures . We focus on linear and static mixtures for which BSS is well established. 
Mathematically, this can be expressed as in equation 

( ) ( )1 , , ns t s t…
( ) ( )1 , , nx t x t…

(1), where  is referred to as the mixing matrix. A
 
  (1) ( ) ( )t = ⋅x A s t
 
The basic idea of BSS is to recover the unobserved source signals  from their observed mixtures ( )s t ( )x t . 
Blind means that very little, if anything, is known about the mixing matrix , and that fairly general 
assumptions are made about the source signals. 
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2.1.1. Independent Component Analysis 
To alleviate the lack of a priori knowledge about the mixture, ICA assumes that the observed data are linear 
combinations of statistically independent sources. Since it is usually not possible to estimate sources that are 
perfectly statistically independent and since noise often perturbs the measurements, ICA consists in searching a 
linear transformation that minimizes the statistical dependence between its components. The method considered 
here is based on the mutual information concept and maximizes the non-Gaussianity of the sources. Statistical 
independence and non-Gaussianity are the guiding principles of ICA [10]. More explanations are also available 
in [11, 12]. 
 
 
2.1.2. Second-Order Based Identification 
The objective of the SOBI algorithm is to take advantage, whenever possible, of the temporal structure of the 
sources for facilitating their separation [8]. SOBI is therefore an interesting alternative to ICA for sources with 
different spectral contents, which is often the case in structural dynamics [12]. 
 
SOBI is based on the joint diagonalization of several matrices and can be interpreted as an extension of the POD 
method [13] for a set of covariance matrices characterized by different time lags. These matrices are evaluated 
from the observed data ( )x t , and the idea is to find a unitary matrix, which jointly diagonalizes all the 
covariance matrices. It can be proven that this unitary matrix corresponds to the mixing matrix. Another 
advantage of the procedure is that being based on the joint diagonalization of a set of covariance matrices it only 
involves second-order statistics, which are easier to compute. 
 
 
2.2. Application for Modal Analysis 
In view of the BSS techniques success, some attempts were performed to use them in the field of structural 
dynamics. They were generally based on equation (2), which expands the response of a mechanical system 
(governed by the equation of motion (3)) in terms of a convolutive product between the impulse response  and 
the external forces f . Unfortunately the application of ICA to a convolutive mixture of sources is not yet 
completely solved and raises several problems [14]. Moreover the prime goal in this case is to separate all the 
(physical) excitations applied on the structure. 

h
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The use of BSS techniques for modal analysis requires the introduction of the virtual source concept. Indeed, 
besides expression (2), the response of system (3) can also be expanded in terms of normal modes  and 
normal coordinates 

( )in

iη  using a static product as follows 
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By definition, the normal modes provide a complete set for the expansion of an arbitrary vector. It turns out that 
the normal coordinates act as virtual sources on the system regardless the number and the type of the physical 
excitation forces. Under the assumption of independent normal coordinates, the application of BSS methods 
should therefore provide a straightforward identification of the eigenmodes of a structure through the computed 
mixing matrix (5). For further theoretical development, the reader can consult [11, 12]. 
 
  and =N A ( ) ( )t = sη  (5) 
 
 
3. NUMERICAL APPLICATIONS 
 
Numerical tests were performed in order to evaluate the proposed methodology and to compare the two 
algorithms considered in this paper. Only the main results are summarized here, the complete analysis (on 
discrete and distributed-parameter systems) was detailed in [15].  
 
 
3.1. System Description 
The system considered herein is a discrete (three-degree-of-freedom) system which is depicted in Figure 1. 
Diagonal damping is added to the system. The equations of motion are  
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Figure 1 – Schematic of the 3 dof system 

 
 
The system response is computed using Newmark’s algorithm with a sampling frequency of 100 Hz. It is then 
resampled to 10 Hz. The system parameters are ,  and  and 

 for the mass and stiffness parameters. Diagonal damping is introduced using only 
one parameter, denoted α . This gives ,  and finally . 

1 2m = 2 1m = 3 3m =
1 12 23 3 1k k k k= = = =

1 1c mα= ⋅ 2c α= ⋅ 2m 3 3c mα= ⋅
 
 
3.2. Modal Parameters Identification using BSS 
The proposed modal analysis process can be summarized as below: 
 

1. Perform experimental measurements of the structure response (or simulate it) to obtain time 
series at different sensing positions. 

2. Apply the BSS techniques to the measured time series to estimate the mixing matrix  and 
the sources . 

A
( )ts

3. The mode shapes are contained in the mixing matrix . A
4. The identification of the corresponding natural frequencies and damping ratios is 

straightforward using 1-dof fitting techniques applied to the normal coordinates. 
 



Figure 2 illustrates this methodology for the free response of the 3-dof system. The considered initial conditions 
are zero except for . The left column corresponds to the simulated system response ( )3 0x =� 1 ( )ix t  for the 
three masses. These data are the only information furnished to the BSS algorithm. On the right side are presented 
the identified sources. They correspond to the normal coordinates of the system. The natural frequencies and 
damping ratios can be evaluated from these time series. 
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Figure 2 – Simulated responses for the 3-dof system (on the left) and normal coordinates after SOBI application (on the right) 

 
 
3.3. ICA/SOBI comparison 
Using the same 3-dof system, a comparison of the two methods (ICA and SOBI) was achieved regarding 
measurement noise and the level of damping. The theoretical modal parameters (namely the mode shapes, 
natural frequencies and damping ratios) are calculated by solving an eigenvalue problem, and the theoretical 
normal coordinates are computed using (7).  
 
 ( ) ( )1

th tht −= N x tη  (7) 
 
The modal assurance criterion (8) is used to assess the accuracy of the mode identification. 
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The results of this study are summarized in the 4 plots below for the three identified modes. The left and right 
columns correspond to the ICA and SOBI algorithms, respectively. 
 
To investigate the robustness of the proposed algorithms to noise, the displacement signals are corrupted by non-
Gaussian random noise (uniform distribution) after the Newmark simulation. The noise RMS amplitude is 
gradually increased from 0 to 35 % of the signal RMS value. Results seem to be fairly insensitive to noise. 
 
The free response of the damped system for values of α  ranging from 0 to 0.15 is also considered. This latter 
value corresponds to a highly damped system; the damping ratios of the three modes are 13.33%, 8.18% and 
4.73%, respectively. Both methods perform well for the weakly damped system. When damping increases 
beyond 1%, the correspondence between the ICA modes and the vibration modes is no longer valid, whereas the 
SOBI method continues to provide accurate results. 
 
To conclude this numerical study, let us notice that this methodology is also applicable to forced responses. The 
conclusions are similar. More details may be found in [12, 15]. 
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Figure 3 – Robustness of ICA and SOBI with respect to noise and damping level. 

 
4. EXPERIMENTAL DEMONSTRATION 
 
As mentioned in the introduction, this paper is dedicated to the application of BSS techniques for modal 
identification in practical applications. This section applies the SOBI algorithm to a real-life-structure, and the 
stochastic subspace identification method [9] is used as reference to check the results validity. 
 
 
4.1. Setup Description 
The real-life structure which is considered is a stator blade extracted from a turbojet engine. The blade was tested 
in a clamped-free configuration with the blade root clamped in a vice as shown in Figure 4. The 15 considered 
measurement locations are also presented on the picture. A hammer provided a short impulse to the system, and 
non-contact vibration measurements were performed using a laser vibrometre. This avoids to perturb the 
structure with the mass of sensors but forbids simultaneous measurements. 
 

 
Figure 4 - Experimental fixture 

 
The receptance frequency response functions (FRFs) were recorded in the range [0 − 5000] Hz; some of them 
are plotted in Figure 5. This figure reveals the presence of 6 natural frequencies around 170, 780, 1080, 2220, 
2950 and 3880 Hz, respectively. A finite element model of the structure was created and also confirmed the 
presence of 6 resonant frequencies in this frequency range. 
 
In order to perform a modal identification, a set of 15 impulse response functions was computed by applying the 
inverse Fourier transform to the measured FRFs. As we can observe on the two right graphs which depict zooms 
around two eigenfrequencies, there is a slight frequency shift between the FRFs. This frequency shift is equal to 
the frequency resolution of the measurements and probably takes its origin in the fact that the FRFs were not 
acquired simultaneously. This will lead to a splitting of these modes (see below). 
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Figure 5 – Frequency response functions of the clamped blade. 

 
4.2. Modal Analysis using Stochastic Subspace Identification Method 
In the field of output-only modal analysis, the stochastic subspace identification (SSI) method is well-known and 
can be considered as a mature method. The used version is based on the covariance-driven algorithm. The 
resulting stabilization diagram, presented in Figure 6, confirms the presence of 6 natural frequencies. However, 
close-ups of the stabilization diagram show that two stabilized poles, related to a single physical mode, are 
present around 2220 (second torsional blade mode) and 3880 Hz (third torsional blade mode). The modes in 
closer correspondence with the expected modal forms are therefore retained, and the others are discarded. 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

Frequency (Hz)

S
ys

te
m

 o
rd

er

2210 2215 2220 2225 2230
0

5

10

15

20

25

Frequency (Hz)

S
ys

te
m

 o
rd

er

3870 3875 3880 3885 3890
0

5

10

15

20

25

Frequency (Hz)

S
ys

te
m

 o
rd

er

 
Figure 6 – Stabilization diagram for the SSI method. 

 
4.3. Modal Analysis using SOBI 
The SOBI-based modal analysis method is now applied to the blade experiment. Because there are 15 
measurement locations, a total of 15 virtual sources can be considered. Two of the 15 sources are presented in 
Figure 7. 
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Figure 7 – Two identified sources (numbered #2 and #6) 

 
 
4.3.1. Source Selection Criterion 
The number of identified sources being higher than that of the structural modes, the actual sources have to be 
selected. The selection is greatly facilitated by computing the error realized during the fitting of the time series of 
the sources with exponentially damped harmonic functions. Indeed, in case of viscous damping, the generic 
expression of the normal coordinates is (9) where  and ξ  are the natural pulsation and the damping ratio of the 
mode, respectively. 

ω
Figure 8 depicts the fitting error for each identified source. Seven sources have a fitting error 

below 4%, and the source #11 has a somewhat higher error, 16%, but it corresponds to the mode around 2900 Hz 
which has the lowest participation in the system response (see Figure 5). The remaining sources have their error 
above 50%. This indicates that sources #2, #4, #6, #8, #9, #11, #12 and #13 can be safely selected. 
 



 ( ) ( ) ( 2exp cos 1t A t tη ξω ξ ω= ⋅ − ⋅ − + )α  (9) 

 
For the same reason as for the SSI method (splitting of the second and third torsional modes), sources #9 and #13 
are not taken into account. 
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Figure 8 – Fitting error of the identified SOBI sources 

 
 
4.3.2. Comparison with SSI 
We can now compare results issued from SSI and SOBI identifications. Figure 9 presents the comparison of 2 
modes identified using SSI and SOBI. The visual similarity is obvious. In order to numerically evaluate the 
correspondence, the MAC matrix is computed between SSI and SOBI modes. A comparison is also carried out 
with the eigenmodes computed using the finite element method (see Figure 10). All these results confirm that an 
accurate and consistent identification is carried out using SOBI. The ICA algorithm was also applied and 
compared with the SSI results. All the modes were not caught in this case. 
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Figure 9 – Picture of two eigenmodes computed using SSI and SOBI 
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Figure 10 – Modal assurance criterion matrices between SOBI and SSI (on the left) and SOBI and FEM (on the right) 



 
5. CONCLUSIONS 
 
This study applies BSS techniques, and particularly the SOBI algorithm, to the measured responses of 
mechanical systems. An output-only modal analysis technique is developed, based on an existing relationship 
between the vibration modes and the so-called mixing matrix. For the SOBI method, this relation holds as well 
for weakly as moderately damped systems. 
 
Even if further research is needed for the analysis of complex industrial structures, the numerical and 
experimental applications considered herein show that the method holds promise in the area of system 
identification: 

1. A truly simple identification scheme is proposed, because the straightforward application of SOBI to 
the measured data yields the modal parameters. 

2. According to the numerical simulations carried out herein, the method is fairly insensitive to the 
presence of measurement noise. 

3. A seemingly robust criterion has been developed for the selection of the actual modes. This is useful 
when the number of sources exceeds the number of active modes. Compared to standard modal analysis 
techniques, the use of stabilization charts, which always require a great deal of expertise, is therefore 
avoided. 

A potential limitation of the method is that sensors should always be chosen in number greater or equal to the 
number of active modes. Note that the application of the method to forced (random) response was also tested 
[12] and leads to the same conclusions. The determination of the modal parameters and the selection criterion are 
then realized using the random decrement method [16, 17] to obtain the free response from the identified 
sources. This will be address in a subsequent study [18]. 
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