

UMONS 🎘

The trace element contamination of coastal waters: A holistic approach to environmental monitoring surveys

5th Annual World Congress of Marine Biotechnology-2015

J. Richir and S. Gobert

Qingdao, 11-07-15

Source: EEA and UNEP, Priority issues in the Mediterranean environment, 2006.

(UNEP/MAP, 2012; State of the Mediterranean Marine and Coastal Environment)

Geographical distribution of *Posidonia oceanica* (Michel, 2012; redrawn using data from Lipkin et al., 2003; Procaccini et al., 2003; Boudouresque et al., 2006; Gobert et al., 2006; Meinesz et al., 2009). 1: Gibraltar; 2: Almeria; 3: Oran; 4: Coasts of Syria, Israel and Lebanon; A: Rhone estuary; B: Po estuary; C: Nile estuary.

Objectives

- i. to assess, for the first time, the TE contamination in the entire Mediterranean biomonitored with *P. oceanica*;
- ii. to propose a new 5-level water quality scale;
- iii. to calculate coastal water pollution indices from bioaccumulated TE levels measured in that bioindicator;
- iv. to produce, on the basis of these data, accurate maps of the contamination of the Mediterranean by TEs.

Overall aim of this work:

to develop a holistic approach in order to provide scientists, stakeholders and decision makers with a global tool to bioassess the TE contamination severity of Mediterranean coastal waters.

110 sites differing by their levels of exposure to contaminants sampled for *P. oceanica*.

Left: P. oceanica shoots fixed on a plagiotropic rhizome. Right: (A) shoot of leaves on a plagiotropic rhizome; (B, C) adult leaves; (D) intermediate leaf; (E) juvenile leaf (modified after Libes and Boudouresque, 1987).

Trace elements monitored

Α

Т

Ε

R

A I

Μ

Ε

Т

Η

0

D

S

- Water quality scale
- Contamination indices:
 - Trace Element Spatial Variation Index (TESVI)
 - Trace Element Pollution Index (TEPI)

Maths and stats: spatial analysis

- GIS mapping
- Principal component analysis
- Cluster analysis
- Correlation analysis

Α

Т

Maths and stats: 5-level water quality scale

Ε R Α Μ Ε т Η 0 D S

qu. 1		qu. 2	qu. 3	qu. 4	
0.600	00	1.3333	1.7635	2.9333	
0.633	33	1.3333	1.7667	2.9667	
0.666	67	1.3667	1.7682	3.0012	
0.700	00	1.4000	1.8000	3.1253	
0.766	67	1.4000	1.8000	3.2113	
0.800	00	1.4000	1.8018	3.2333	
0.833	33	1.4333	1.8241	3.2333	
0.833	33	1.4333	1.8349	3.3667	
0.833	33	1.4333	1.8667	3.3667	
0.866	67	1.4511	1.9667	3.4705	
0.900	00	1.4667	1.9667	3.6000	
1.033	33	1.5000	2.0000	3.7667	
1.066	67	1.5000	2.0333	3.8000	
1.066	67	1.5180	2.1667	3.9000	
1.133	33	1.5667	2.2000	4.0667	
1.166	67	1.6000	2.2793	4.0667	
1.166	67	1.6000	2.3333	4.4333	
1.166	67	1.6333	2.3333	4.6000	
1.200	00	1.6333	2.3667	5.3333	
1.233	33	1.6333	2.4000	5.4790	
1.233	33	1.6667	2.4333	5.5667	
1.266	67	1.6667	2.5333	5.9129	
1.266	67	1.7000	2.6333	5.9250	
1.266	67	1.7000	2.6667	6.0751	
1.266	67	1.7000	2.7333	6.1230	
1.266	67	1.7333	2.9333	7.9000	
1.300	00	1.7333	2.9333	8.5667	
1.300	00			14.5000	
	Quartile means				

Superior	limit of		
quartiles	Pb		
quartile 1	1.3083		
quartile 2	1.7484		
quartile 3	2.9333		
quartile 4	14.5000		

5 contamination levels

- < 1st qu. mean : very low CL
- 1st-2nd qu. mean: low CL
- 2nd-3rd qu. mean: medium CL
- 3rd-4th qu. mean: high CL
- > 4th qu. mean: very high CL

Sub-areas differences

0

L

Ш

ĪV

Med. sub-areas

Ш

v

Ń

0.0

Т

Ш.

Ш

ĪV

Med. sub-areas

Ń

V

Maths and stats: pollution indices

STARESO

A R

CAPMEI

JMC

- How to order and to compare TEs according to the overall spatial variability of their environmental levels through the whole of a studied area ?
- How to compare global pollution levels in TEs between several monitored sites ?

Pollution indices developed first for the French Mediterranean littoral.

Marine Pollution Bulletin 89 (2014) 390-406

Contents lists available at ScienceDirect

Marine Pollution Bulletin

journal homepage: www.elsevier.com/locate/marpolbul

A reassessment of the use of *Posidonia oceanica* and *Mytilus galloprovincialis* to biomonitor the coastal pollution of trace elements: New tools and tips

J. Richir^{*}, S. Gobert

Laboratory of Oceanology, MARE Centre, University of LIEGE, B6C, 4000 LIEGE, Sart Tilman, Belgium

Trace Element Spatial Variation Index

How to order and to compare TEs according to the overall spatial variability of their environmental levels through the whole of a studied area ?

Trace Element Spatial Variation Index (TESVI)

 $TESVI = [(x_{max}/x_{min}) / (\sum (x_{max}/x_i)/n)] * SD$

where:

- x_{max} and x_{min} are the maximum and minimum mean concentrations recorded among the n sites,
- x_i are mean concentrations recorded in each of the n sites,
- SD is the standard deviation of the weighted sum $\sum (x_{max}/x_i)/n$.

The highest the index value, the more environmental levels of a TE globally vary (punctual contaminations and overall coastal spatial heterogeneity of TE levels taken into account) through the whole of the studied area the index is applied to.

Trace Element Spatial Variation Index (TESVI)

 $TESVI = [(x_{max}/x_{min}) / (\sum (x_{max}/x_i)/n)] * SD$

T E S V I

Trace Element Spatial Variation Index (TESVI)

 $TESVI = [(x_{max}/x_{min}) / (\sum (x_{max}/x_i)/n)] * SD$

T E S V

Α.

TESVI graphical representation

TEs broadly monitored with P. oceanica					
	x_{max}/x_{min}	$\sum (x_{max}/x_i)/18 \pm SD$	TESVI	Site x _{max}	
Cr	6.0	3.6 ± 1.3	2.2	St Florent	
Fe	4.4	2.0 ± 0.9	1.9	Bravone	
Ni	2.4	1.6 ± 0.3	0.5	St Raphaël	
Cu	3.4	1.9 ± 0.7	1.2	Villefranche	
Zn	19.6	13.3 ± 4.4	6.5	Bravone	
Cd	3.9	1.9 ± 0.7	1.4	St Raphaël	
Pð	4.4	2.7 ± 1.2	2.0	Ajaccio N.	
Be	3.1	1.6 ± 0.6	1.0	Ajaccio N.	
A	7.5	2.2 ± 1.8	6.1	Ajaccio N.	
V	14.5	5.9 ± 5.0	12.3	Antibes	
Mn	2.2	1.6 ± 0.4	0.5	St Raphaël	
Co	2.9	1.8 ± 0.5	0.7	St Raphaël	
As	10.6		4.9	P. des Chèvres	
Se	1.7		0.3	Calvi	
Mo	22.8	228	10.5	Aregno	
Ag	3.1		0.9	La Vesse	
Sn (BAL)	6.9		3.8	Corbière	
Sb	4.4	3.6 ± 0.7	0.9	Bravone	
Bi	13.6	6.1 ± 3.5	7.9	P. des Chèvres	

TESVI values were listed in ascending order : Se, <u>Ni</u>, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, <u>Pb</u>, Cr, Sn, As, <u>AI</u>, Zn, Bi, Mo, <u>∨</u>

TESVI graphical representation

TARESO

Α

TESVI values were listed in ascending order : Se, <u>Ni</u>, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, <u>Pb</u>, Cr, Sn, As, <u>Al</u>, Zn, Bi, Mo, <u>V</u>

TESVI graphical representation

TARESO

Α

TESVI values were listed in ascending order : Se, <u>Ni</u>, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, <u>Pb</u>, Cr, Sn, As, <u>Al</u>, Zn, Bi, Mo, <u>V</u>

110 sites differing by their levels of exposure to contaminants sampled for *P. oceanica*.

Trace Element Pollution Index

How to compare global pollution levels in TEs between several monitored sites ?

Trace Element Pollution Index (TEPI)

 $\mathsf{TEPI} = (\mathsf{Cf}_1 * \mathsf{Cf}_2 \dots \mathsf{Cf}_n)^{1/n},$

a weighted version of the Metal Pollution Index (MPI) of Usero et al. (1996, MPB)

where:

• Cf_n is the mean normalized concentration of the TE n in a given monitored site.

The highest the index value, the more the monitored site is globally contaminated in TEs compared to the others.

Mean normalization

110 sites differing by their levels of exposure to contaminants sampled for *P. oceanica*.

Sites

Α

Т

Ε

R

A I

- Water quality scale
- Contamination indices:
 - Trace Element Spatial Variation Index (TESVI)
 - Trace Element Pollution Index (TEPI)

Maths and stats: spatial analysis

- GIS mapping
- Principal component analysis
- Cluster analysis
- Correlation analysis

-METHODS

Principal component analysis

R
Ε
S
U
L
Т
S
-
D
I
S
С
U
S
S
I
0
Ν

	Ag	As	Cd	Cu	Hg	Ni	Pb	TEPI
Ag	1.000							
As	0.204	1.000						
Cd	0.291	-0.168	1.000					
Cu	0.549	0.096	0.084	1.000				
Hg	0.008	-0.074	-0.043	-0.047	1.000			
Ni	0.464	0.178	0.625	0.425	0.006	1.000		
Pb	0.294	0.252	0.110	0.261	-0.014	0.126	1.000	
TEPI	0.777	0.512	0.383	0.539	0.132	0.686	0.518	1.000

Correlation matrix of parametric Pearson's correlation coefficients and non-parametric Spearman's rank correlation coefficients between TE concentrations and TEPI values in *P. oceanica*. Correlations significant at p < 0.05 are in bold; correlations significant at p < 0.01 are in bold underlined.

PRODUCED BY THE FOUNDATION FOR EDUCATION, SCIENCE AND TECHNOLOGY FOR NATIONAL SET WEEK 2003

R

Cluster analysis

Dendrographic classification after cluster analysis of Ag, As, Cd, Cu, Hg, Ni and Pb concentrations measured in the blades of *Posidonia oceanica*, and TEPI values calculated from mean normalized TE concentrations.

Cluster analysis

R Ε S U L Т S D S С U S S L 0 Ν

TEPI values calculated from mean normalized Ag, As, Cd, Cu, Hg, Ni and Pb concentrations measured in the blades of *P. oceanica* adult leaves. Sampling sites are sorted on the graph according to the dendrographic classification after cluster analysis of trace element concentrations and TEPI values.

Conclusion

Sustainable coastal management requires the development of appropriate contamination classification systems.

Combined utilization of several complementary monitoring tools:

- water quality scale;
- pollution index (TEPI and TESVI);
- spatial analysis (PCA, CA, correlation analysis and GIS mapping).

In the Mediterranean:

- To assess TE contamination threats;
- To depict contamination gradients;
- To monitor TE contamination at regional or local scales.

<u>Conclusion</u>: to privilege such holistic approaches to accurately monitor the TE contamination rate of coastal waters and to transfer relevant information on this composite problem to environmental managers and policy makers.

Acknowledgements

This study was supported by the collaboration of several laboratories from all around the Mediterranean:

- Pr Gérard Pergent, Pr Céline Lafabrie, Dr Christine Pergent-Martini, Dr Maylis Salivas-Decaux and Dr Cecilia Lopez y Royo, University of Corte (Corsica, France);
- Dr Saïd Belbacha and Dr Rachid Semroud (Algeria);
- University of Zagreb, Dr Tatjana Bakran-Petricioli (Croatia);
- Melina Marcou and Myroula Hadjichristoforou (Cyprus);
- Dr Stéphane Sartoretto, Ifremer Center of Toulon,
- Berangère Casalta (France);
- Dr Georges Skoufas and Dr Eugenia Apostolaki, Institute of Oceanography, Hellenic Centre for Marine Research (Greece);
- Dr Cristina Buia and Dr Pier Panzalis (Italy);
- Dr Joseph Borg (Malta);
- Robert Turk, Borut Mavric and Lovrenc Lipej (Slovenia);
- Boris Weitzmann, Dr Yolanda Fernandez Torquemade, F. Javier Zapata Salgado, Elvira Alvarez Pérez, Dr Javier Romero, Izaskun Llagostera (Spain);

• Dr Habib Langar (Tunisia); Dr Baris Akçalı and Billür Celebi (Turkey). We also thank Steven Barillec, Nicolas Luy and Renzo Biondo for their help.

Bioassessment of trace element contamination of Mediterranean coastal waters using the seagrass *Posidonia oceanica*

J. Richir ^{a, b, *}, M. Salivas-Decaux ^c, C. Lafabrie ^{c, d}, C. Lopez y Royo ^c, S. Gobert ^a, G. Pergent ^c, C. Pergent-Martini ^c

^a Laboratory of Oceanology, MARE Centre, University of LIEGE, B6C, 4000 LIEGE, Sart Tilman, Belgium

^b Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, United Kingdom

^c FRES 3041, EqEL, University of Corsica, Faculty of Sciences, BP 52, 20250 Corte, France

^d UMR 241 EIO, University of French Polynesia, BP 6570, 98 702 Faa'a, Tahiti, French Polynesia

