The vacuum UV photoabsorption spectrum of methyl bromide (CH₃Br) and its perdeuterated isotopomer CD₃Br: a vibrational analysis

R. Locht^a, B. Leyh^a, D. Dehareng^b, H.W. Jochims^c, H. Baumgärtel^c

^a Laboratoire de Dynamique Moléculaire, Département de Chimie, Institut de Chimie Bât.B6c, Université de Liège, Sart-Tilman par,B-4000 Liège 1, Belgium

^b Centre d'Ingéniérie des Protéines, Institut de Chimie, Bât.B6a, Université de Liège, Sart-Tilman par, B-4000 Liège 1, Belgium

^c Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany

Abstract

The fine structure of the vacuum UV photoabsorption spectrum of CH₃Br and CD₃Br has been analyzed in the 6.9-10.2 eV photon energy range. A large number of lines have been observed, classified and assigned to the vibrational excitation accompanying a series of Rydberg transitions. The effects of the Jahn-Teller distortion and of the spin-orbit splitting of the ground electronic state of the ion have been considered. The former effect has been evaluated by ab initio calculations, showing that the ²E state (in the C_{3v} symmetry group) splits into ²A' and ${}^{2}A''$ states in the C_s symmetry group. Even though the energy difference of about 1 meV is extremely small, the ²A' state is energetically the lowest component whereas the ²A'' is found to be a transition state. The Jahn-Teller stabilization energy and the wavenumbers associated with all vibrational modes have been calculated. Experimentally, the entire fine structure could be described in terms of three vibrational modes, i.e., $hc\omega_{f} = 146$ $\pm 6 \text{ meV} (1178 \pm 48 \text{ cm}^{-1}), hc\omega_5 = 107 \pm 6 \text{ meV} (863 \pm 48 \text{ cm}^{-1}) \text{ and } hc\omega_6 = 71 \pm 4 \text{ meV} (572 \pm 32 \text{ cm}^{-1}),$ respectively, as resulting from an average over all analyzed Rydberg states. In CD₃Br the corresponding energies are $hc\omega_4 = 104 \pm 3 \text{ meV} (839 \pm 24 \text{ cm}^{-1})$, $hc\omega_5 = 82 \pm 4 \text{ meV} (661 \pm 32 \text{ cm}^{-1})$ and $hc\omega_6 = 62 \pm 4 \text{ meV} (500 \pm 32 \text{ cm}^{-1})$ cm⁻¹). These values are in fairly good agreement with those predicted by the present ab initio calculations for the ionic ground state. The experimental isotopic ratio $\rho_i = [\omega/\omega_{isot}]_i$ is 1.15 ± 0.14 , 1.31 ± 0.14 and 1.39 ± 1.0 and is predicted to be 1.04, 1.34 and 1.36, respectively, for ω_6 , ω_5 and ω_4 . On the basis of the present study an alternative assignment of the $CH_3Br^+(\tilde{\chi}^2 E)$ photoelectron band structure is proposed.

Keywords: Photoabsorption; Vacuum UV; Rydberg series; CH₃Br; Jahn-Teller effect; CD₃Br; Vibrational analysis; Ab initio calculations; Photo-electron spectrum

1. INTRODUCTION

In previous papers, we investigated in detail the photoabsorption and photoionization dynamics of fluoro and chloromethanes [1-3]. Their vacuum UV photo-absorption spectrum proved to be an essential piece of information for the puzzling interpretation of the threshold photoelectron spectrum (TPES), constant ion state spectra (CIS) and the fragment ion yields in photoionization mass spectrometry.

The previous paper is devoted to a detailed analysis of the pure electronic Rydberg excitations in CH_3Br and CD_3Br [4] between 6 and 12 eV photon energy. In these spectra, numerous weaker and generally broader features are identified. Previous studies of these structures are very scarce in the literature and are limited to a narrow low photon energy range.

Essentially, two papers contributed to the analysis of the vibrational fine structure of the Rydberg series in CH₃Br. First, Causley and Russell [5] examined the photoabsorption spectrum of CH₃Br and other bromomethanes in the 6-10 eV photon energy range. These authors proposed a vibrational analysis of the first *ns*and *np*-type Rydberg states converging to both spin-orbit ionization limits $\tilde{X}^2 E_{3/2}$ - $\tilde{X}^2 E_{1/2}$. The spectrum of CD₃Br was not included in this work.

Felps et al. [6] restricted their investigation to the study of the vacuum UV photoabsorption spectrum of CH_3Br in the 54,000-64,000 cm⁻¹ (6.69-7.93 eV) spectral region which corresponds to the $2e \rightarrow 5s$ Rydberg transition. An extensive vibrational analysis is presented. This study was extended to CD_3Br . The pressure dependence of the absorption spectrum has also been examined.

The aim of the present work is to identify and classify most of the weak features present in the vacuum

UV absorption spectrum of both CH_3Br and CD_3Br over the 6.9-10.2 eV spectral region. Our assignments are supported by ab initio quantum mechanical calculation of the wavenumbers associated with the vibrational normal modes of CH_3Br^+ and CD_3Br^+ . This will allow us to make a comparison between the experimental and predicted isotope effect on the vibrational wavenumbers.

2. EXPERIMENTAL

2.1. Experimental set-up

The experimental set-up used in this work has already been described in detail elsewhere [7]. Only the most salient features will be reported here.

Synchrotron radiation available from the BESSY I facility (Berlin, Germany) is dispersed with a modified vacuum UV normal incidence 225 McPherson mono-chromator with a focal length of 1.5 m, instead of 1 m in the commercial version (lm-NIM-2 beamline). A laminar Zeiss grating is used for the efficient reduction of the second spectral order. It is gold coated with 1200 l/mm and its transmission vanishes above 26 eV $(210,000 \text{ cm}^{-1} \text{ or } 47 \text{ nm})$. The width of the entrance and exit slits of 100 μ m provides a 0.1 nm resolution. The light passes through a 1 mm thick stainless steel microchannel plate necessary to maintain a differential pressure of 1:1000 before entering a 30 cm long stainless steel absorption cell. The vapor pressure in the cell is measured by a Balzers capacitor manometer. CH₃Br and CD₃Br vapors are introduced at a pressure of 20 µbar. The light is detected by a sodium salicylate sensitized photomultiplier located at the end of the absorption cell and in front of the monochromator exit slit. The recording of an absorption spectrum requires one scan with gas in the absorption cell and one with the empty cell. The stability of the synchrotron radiation and of the pressure in the cell ensures reliable absorption data. If required, the spectra presented in the following sections are corrected for any pressure drift. The commercially available CH₃Br, purchased from Praxair and of 99.5% purity, was used without further purification. The CD₃Br, purchased from Merck, Sharp and Dohme, is certified at 99 at.% purity. No noticeable impurity was observed by mass spectrometry at 21.2 eV photon energy. Therefore, the sample was used without further purification.

2.2. Data handling and error estimation

The wavelength calibration of the monochromator has been performed by using the Ar^+ absorption spectrum between the ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ ionic states. The accuracy of this calibration was estimated to be 2 meV. In the photoabsorption spectra extending between 6 and 12 eV photon energy, an energy increment of 1.5 meV has been adopted. The precision on the energy position of a feature is estimated to be of the order of 2 meV. Therefore, in these cases the assigned total error would be 4 meV. This evaluation is confirmed by the reproducibility of energy positions measured in four different spectra recorded over a two year interval.

3. EXPERIMENTAL RESULTS

3.1. The CH₃Br photoabsorption spectrum

Fig. l(a)-(c) reproduces the photoabsorption spectrum of CH₃Br on an expanded photon energy scale. The assignments of the observed fine structure to various vibrational progressions have been inserted in this figure as far as not overcrowded.

They will be discussed in Section 5.

3.2. The CD₃Br photoabsorption spectrum

The photoabsorption spectrum of CD_3Br has been recorded between 6 and 12 eV photon energy. The fine structures, assigned to excitation of vibrational progressions in the successive Rydberg states, are clearly identified in an expanded photon energy scale, as shown in Fig. 2(a)-(c).

4. AB INITIO CALCULATIONS: METHODS AND RESULTS

Ab initio quantum mechanical calculation of the geometry and the vibrational wavenumbers of the cation proved to be very helpful for the interpretation of the vacuum UV spectroscopy of CH_3Cl and CD_3Cl [3]. A similar extensive ab initio calculation on the ground state of CH_3Br and CD_3Br and their cations has been performed.

The latest high level ab initio quantum mechanical calculations on CH_3Br^+ and CD_3Br^+ were reported by Lugez et al. [8]. They investigated the infrared spectrum of the methyl halides cations, i.e., the CH_3Br^+ and CD_3Br^+ cations trapped in a frozen neon matrix. The discussion of their experimental results was based upon ab initio calculations at MP2 and QCISD levels with different basis sets (in the frozen core approximation, 6- $311+G^{**}$ for C and H and HW $2111+G^{**}$ for Br). The CH_3Br^+ and its isomeric ylidion H_2CBrH^+ were investigated. Contrarily to the results on CH_3F , the latter isomer is less stable than the former one. With respect to the neutral molecule, the C-Br bond length increases slightly upon ionization whereas a shortening was calculated in CH_3F^+ and CH_3Cl^+ . These results were corroborated by the experimental data.

Furthermore, these authors [8] calculated the vibrational wavenumbers in CH_3Br^+ and compared the theoretical results with their infrared data and with the values obtained for the cation by photoelectron spectroscopy [9]. However, this work was restricted to the lowest energy component ²A' of the Jahn-Teller split ²E ground state of the CH_3Br^+ cation. No information is provided about the second component ²A".

In order to obtain a more complete picture, we performed ab initio calculations on CH₃Br and CH₃Br⁺ using the Gaussian-03 program [10]. The geometries of the neutral ground state and the cations are fully optimized at several levels including electronic correlation, using either a perturbational method (MP2 [11]), variational-related methods (QCISD [12], CCSD [13]) or working within the density functional theory (DFT [14]) framework with the B3LYP hybrid func-tionals [15]. The geometries are optimized in the C_{3v} and the C_s symmetry point groups for CH₃Br and CH₃Br⁺, respectively. The effect of isotopic substitution has been evaluated by performing the same calculations on CD₃Br and CD₃Br⁺. The vibrational wavenumbers of the neutral and ionic species were calculated at the MP2 and the B3LYP levels. Two basis sets were used, i.e., the 6-311++G** [16] and cc-pVTZ [17], respectively. The results related to the geometry of the neutral and ionized species are shown in Table 1 for CH₃Br($\tilde{X}^{-1}A_1$) and CH₃Br⁺(²A' and ²A") together with the results provided by the calculations reported by Lugez et al. [8]. The ²A" component is a transition state (TS) connecting two minima corresponding to the lowest Jahn-Teller distorted potential energy surface.

Table 1- Optimized geometries of $CH_3Br(\tilde{X}^1A_1)$ in the C_{3v} symmetry group and $CH_3Br^+(^2A' \text{ and }^2A'')$ in the C_s symmetry group calculated at the MP2/6-311G**, QCISD/6-311++G** and CCSD/cc-pVTZ levels

Level	C-Br	C-Hl	C-H2	Hl-C-Br	H2-C-Br	H2-C-Br-Hl
	CH	$_{3}Br(\widetilde{X}^{1}A_{1})$	C _{3v} symmet	try		
MP2	1.9343	1.0876	1.0876	108.40	108.40	120.0
QCISD	1.9452	1.0894	1.0894	108.26	108.26	120.0
CCSD	1.9342	1.0835	1.0835	108.16	108.16	120.0
Ref. [8]	1.955	-	-	-	-	120.0
Experimental [19]	1.939	1.113	1.113	-	-	
	CH	$_{3}\mathrm{Br}^{+}(^{2}\mathrm{A'})$ in	C _s symmet	try		
MP2	1.9374	1.0974	1.0882	103.13	107.31	117.80
QCISD	1.9606	1.0983	1.0896	103.06	106.76	117.95
CCSD	1.9406	1.0947	1.0844	102.50	106.86	117.65
Ref. [8]	1.971	-	-	-	-	-
	CH	$_{3}\mathrm{Br}^{+}(^{2}\mathrm{A'})$ in	C _s symmet	try		
MP2	1.9377	1.0860	1.0939	108.09	104.90	122.04
QCISD	1.9616	1.0875	1.0949	107.46	104.54	121.90
CCSD	1.9415	1.0819	1.0906	107.63	104.29	122.15

Distances in Å and angles in °. Comparison is made with previous calculations at their highest level [8] and experimental results [19].

In agreement with these authors [8], a slight lengthening of the C-Br bond is obtained upon ionization in either the ²A' or the ²A" component of the Jahn-Teller splitting. For both the ²A' and the ²A" states, the largest C-H bond change involves the lengthening of either the C-Hl (²A') or the C-H2 (²A") (about 0.01 Å) whereas the other C-H remains almost unchanged (for the H atoms numbering, see figure in Table 1). The most important change of valence angle is the decrease of H1-C-Br (²A') or H2-C-Br (²A") by about 5° whereas the other H-C-

Br angle changes only slightly. The dihedral angle is decreased by about 2° in the ²A' state and increased by the same amount in the ²A" state.

Designation	Description in Fig. 3	Experiment [19,20]		Calculated wavenumbers (this work)			
				Ν	MP2	B3L	YP
	-	CH ₃ Br	CD ₃ Br	CH ₃ Br	CD ₃ Br	CH ₃ Br	CD ₃ Br
	CH ₃	Br and CD ₃ Br X	X^1A_1 in the C_3	, symmetry			
		a ₁ s	ymmetry				
Vl	m_7	2972	2151	3122	2233	3081	2201
v_2	m_3	1305.1	987	1381	1049	1335	1006
v_3	m ₁₁	611	577	649	607	587	554
		e s	ymmetry				
V_4	$m_9 + m_{10}$	3056.3	2293	3237	2404	3188	2368
V ₅	$m_2 + m_6$	1443.1	1053	1496	1084	1475	1070
v_6	$m_1 + m_2$	953.8	717	990	738	964	716
	CH ₃	$_{3}\mathrm{Br}^{+}$ and $\mathrm{CD}_{3}\mathrm{Br}$	$^{+2}A'$ in the C _s	symmetry			
		Calculated way	enumber [8]	Calcu	lated wavenum	nbers (this w	ork)
		CH ₃ Br	CD ₃ Br	Ν	MP2	B3L	YP
				CH ₃ Br	CD ₃ Br	CH ₃ Br	CD ₃ Br
		a' s	ymmetry				
Vl	m_9	3180	2356	3197	2363	3107	2282
v_2	m_7	3056	2183	3064	2191	2953	2120
V ₃	m_6	1448	1059	1455	1065	1406	1033
v_4	m_3	1341	997	1350	1002	1276	939
\mathbf{v}_5	m_1	888	660	891	667	836	624
V_6	m_{11}	506	423	542	513	488	467
		a" s	ymmetry				
V7	m_{10}	3175	2343	3195	2358	3095	2279
V_8	m_2	1313	933	1312	931	1181	837
V_{9}	m_2	558	481	585	447	417	320
	CH ₃ B	r^+ and CD_3Br^+ ²	² A"-TS in the	C _s symmetry			
		a' s'	ymmetry				
$\mathbf{v'}_1$	m_9	-	-	3268	2430	3211	2386
v'_2	m_7	-	-	3075	2195	2983	2130
v ' ₃	m_6	-	-	1441	1054	1400	1025
V'_4	m_3	-	-	1348	996	1271	930
V '5	m_1	-	-	1007	751	973	726
V_{6}^{\prime}	m_{11}	-	-	545	518	489	469
		a" s	ymmetry				
v'_7	m_{10}	-	-	3069	2244	2927	2135
v'_8	m_2	-	-	1346	959	1195	849
v'_{9}	m_2	-	-	i561	i431	i371	i286

Table 2-Vibrational normal modes and their corresponding wavenumbers (cm^{-1}) resulting from ab initio calculations at the MP2/6-311G^{**} and B3LYP/6-311++G^{**} levels, for CH₃Br and CD₃Br($\tilde{X}^{-1}A_1$) and CH₃Br⁺ and CD₃Br⁺ ($^{2}A'$ and $^{2}A''$), respectively, in the C_{3v} and C_s symmetry group

The ²A" state corresponds to a transition state (TS).

The vibrational wavenumbers of the neutral molecule ground state and of the ²A' and the ²A'' states of the cation have been calculated. As we have worked with different basis sets, the correction factor recommended by Scott and Radom [18] has not been applied. The results are displayed in Table 2 for CH₃Br and CH₃Br⁺ (²A' and ²A'') and for CD₃Br and CD₃Br⁺ in the corresponding electronic states. The nuclear motions associated with the nine normal modes are described with reference to symmetry coordinates (m_1 to m_{1l}) represented in Fig. 3.

For both neutral species CH_3Br and CD_3Br in the \tilde{X}^1A_1 state, the present calculated and the experimental wavenumbers [19,20] are in fairly good agreement. Concerning the ²A' state of the normal CH_3Br^+ and perdeu-terated CD_3Br^+ cations, the results provided by the present calculations satisfactorily agree with those reported by Lugez et al. [8] working at the QCISD level. For the ²A'' TS the wavenumbers obtained in this work are listed in Table 2.

The stabilization brought about by the Jahn-Teller distortion is 36 meV, i.e., slightly lower than that calculated in the case of CH_3Cl^+ (40 meV) [3] and is negligible compared with the spin-orbit splitting (319 meV [9]). The energy difference between the minima and the TS is vanishing (1 meV).

5. DISCUSSION OF THE EXPERIMENTAL DATA

For clarity in the following discussion of the experimental results, the molecular orbital configuration of CH_3Br in the C_{3v} point group is

Br(1s²2s²2p⁶) C(1s²) Br(3s²3p⁶3d¹⁰)
(la₁)²(2a₁)²(le)⁴(3a₁)²(2e)⁴ :
$$\tilde{x}^{1}A_{1}$$

where the le, $3a_1$ and 2e molecular orbitals have outer-valence character. The most accurate and vibrationally well-resolved He(I) photoelectron spectrum reported by Karlsson et al. [9] provide the adiabatic ionization energy of the ground ionic state. This state shows a large spin-orbit splitting of $319 \pm 6 \text{ meV} (2573 \pm 50 \text{ cm}^{-1})$, i.e., ionization energies measured at 10.543 ± 0.003 and 10.862 ± 0.003 eV [9]. These quantities were used to calculate the effective quantum numbers n^* associated with each Rydberg state as described earlier [4]. It has also been considered that their values are independent of the vibrational energy. Therefore, it is considered to be constant for each electronic Rydberg state, within experimental accuracy.

The He(I) photoelectron spectra of CH₃Br and CD₃Br have been measured in our laboratory [21] to (i) determine accurately the ionization energies of CD₃Br and (ii) allow us to reexamine the vibrational fine structure of the lowest ionic states of CH₃Br and CD₃Br. The ionization energies corresponding to the spin-orbit split ground state $\tilde{\chi}$ (²E_{3/2}-²E_{1/2}) of CD₃Br are 10.565 ± 0.004 and 10.902 ± 0.004 eV [21].

Fig. 3. Schematic representation and description of nuclear symmetry coordinates m, of CH_3X^+ in the C_s point group.

For convenience we denote the Rydberg series by the ionic core and the successive molecular (nl_1/e) Rydberg orbitals. In the absence of generally accepted rules, the starting values of the principal quantum number were chosen to be as in the correlated Kr atom [4], i.e., n = 5 for s- and p-type orbitals and n = 4 for d- and f-type orbitals.

5.1. The $({}^{2}E_{3/2} - {}^{2}E_{1/2})5sa_{1}$ series

Owing to the absence of overlap, the lowest Rydberg transition will be discussed separately for both CH_3Br and CD_3Br . The energy positions and associated effective principal quantum numbers are listed in Tables 3 and 4. Another reason for a separated discussion is that the two previous reports [5,6] are essentially limited to the vibrational analysis of these transitions only.

As a general remark it has to be pointed out that the $5sa_1$ Rydberg states in both molecules show very different vibrational intensity patterns. This is not completely surprising because, as we showed in a previous paper [4], the first member of this Rydberg series is the only state that corresponds to a coupling case intermediate between Hund's cases (a) and (c). The two optically active states deriving from the $(2e)^3(5sa_1)^1$ configuration have therefore different potential energy surfaces.

From the data obtained in the present work for CH₃Br, and the ionization limits measured by high resolution He(I) photoelectron spectroscopy [9], we are able to propose a reasonable vibrational assignment for the fine structure observed in both 5sa₁ Rydberg states. However, several convergence limits (listed in braces in Table 3), e.g., at 10.611, 11.005 and 11.026 eV, are frequently measured. These have probably not been observed in the photoelectron spectrum [9] owing to lack of resolution and/or sensivity. Otherwise, all observed transitions correspond to a fairly constant effective principal quantum number whose average value and standard deviation are $n_{3/2}^* = 1.944 \pm 0.002$ and $n_{1/2}^* = 1.963 \pm 0.006$ (see Table 3). As already mentioned, the progressions converging to ${}^2E_{3/2}$ and ${}^2E_{1/2}$ are different not only with respect to the vibrational intensity distribution but also regarding the nature of the vibrational modes excited in each state. In the $({}^2E_{3/2})5sa_1$ state three vibrational normal modes (and their overtones and/or combinations) appear to be active upon excitation. By contrast, in the $({}^2E_{1/2})5sa_1$ state the vibrational structure is clearly dominated by only one normal mode.

According to our calculations, the vibrational motions are identified as being the v_6 , v_5 and v_4 modes. Averaging over the energy intervals available for the $({}^2E_{3/2})5sa_1$ component (see Table 4) $hc\omega_6 \approx 71$ meV (573 cm⁻¹), $hc\omega_5 \approx 108$ meV (871 cm⁻¹) and $hc\omega_4 \approx 147$ meV (1185 cm⁻¹) are obtained. From the analysis of the $({}^2E_{1/2})5sa_1$ component a value of about $hc\omega_4 \approx 145$ meV (1170 cm⁻¹) is deduced from the observation of v_4 (v = 1-3). These first estimations have to be compared with the predicted wavenumbers (see Table 2) of $\omega_6 = 488$ cm⁻¹ for the C-Br stretching vibration, $\omega_5 = 836$ cm⁻¹ for the CH₃-rocking mode and $\omega_4 = 1276$ cm⁻¹ for the CH₃-umbrella mode. Only the v_5 mode is Jahn-Teller active.

To improve these assignments, the same analysis has been applied to the same transitions observed in CD₃Br (see Fig. 2 and Table 4). In this molecule the vibrational energies are $hc\omega_6 \approx 64 \text{ meV}$ (516 cm⁻¹), $hc\omega_5 \approx 84 \text{ meV}$ (677 cm⁻¹) and $hc\omega_4 \approx 103 \text{ meV}$ (831 cm⁻¹). These values can be compared to those predicted by our calculations, i.e., $hc\omega_6 = 467 \text{ cm}^{-1}$, $hc\omega_5 = 624 \text{ cm}^{-1}$ and $hc\omega_4 = 939 \text{ cm}^{-1}$.

An argument supporting the present assignments is the calculated ratio ρ , = [ω/ω_{isot}], i.e., $\rho_6 = 1.04$, $\rho_5 = 1.34$ and $\rho_4 = 1.36$ and its comparison with the corresponding provisional experimental values 1.11, 1.29 and 1.41. However, the confidence of these numbers could be improved by the analysis of the vibrational structure observed at higher energies.

The present results on CH_3Br can directly be compared with the data reported by Causley and Russell [5] and Felps et al. [6]. As shown in Table 3 there is a general agreement between the three photoabsorption spectra, within about 100 cm⁻¹. Though present in the spectra reproduced in Figs. 4 and 5 in their paper, Causley and Russell do not mention several structures in their Table V [5]. For CD_3Br a comparison could only be made with the work of Felps et al. [6]. It has to be noted that in the latter work the photoabsorption spectra of CH_3Br were recorded in a pressure range of 120-6000 µbar and for CD_3Br the pressure ranged from 30 to 18,600 µbar. Therefore, several features tabulated in [6] are only detected under high pressure conditions.

In both papers, the authors discussed the assignments in the frame of the C_{3v} symmetry of the neutral ground state of the molecule. Causley and Russell [5] measured four energy intervals of about (i) 2673 cm⁻¹, (ii) 1173 cm⁻¹, (iii) 861 cm⁻¹, and (iv) 533 cm⁻¹ and assigned them to the C-H symmetric stretching, CH₃ umbrella, CH₃-rocking and C-Br stretching modes, respectively. The last three values are in good agreement with the values determined in this work. The energy interval of 2673 cm⁻¹ will be assigned differently, as will be discussed below.

Felps et al. [6] investigated the two $2e \rightarrow 5sa_1$ Ryd-berg transitions in CH₃Br and CD₃Br. In the former molecule they measured energy differences of (i) 2647 cm⁻¹, (ii) 1310 cm⁻¹, (iii) 1127 cm⁻¹, (iv) 840 cm⁻¹, and (v) 560 cm⁻¹. In CD₃Br the corresponding differences are (i) 2010 cm⁻¹, (ii) 950 cm⁻¹ (iii) 845 cm⁻¹ (iv) 685 cm⁻¹, and (v) 527 cm⁻¹. The last figures have to be compared with those determined in this work, i.e., 831, 677 and 516 cm⁻¹, respectively. As for CH₃Br, the wavenumber at 2647 cm⁻¹ (2010 cm⁻¹) has to be discussed at a later stage. The wavenumber of 1310 cm⁻¹ (950 cm⁻¹) is not detected in our spectra and its observation is likely only possible at high pressures.

Table 3- Energies (eV), wavenumbers (cm⁻¹), effective principal quantum numbers (n*), convergence limits (eV) and assignments (0-0 meaning vibrationless transition) of vibrational progressions of $({}^{2}E_{3/2} \text{ or } {}^{2}E_{1/2})[nl(a_{1} \text{ or } e)]$

Rydberg series in	CH ₃ Br	converging to the	$\tilde{\mathbf{X}}^{I}E$	$\Sigma_{3/2}$ and $\tilde{X}^2 E$	$E_{1/2}$ states	of CH_3Br^+	(1 eV	$r = 8065.545 \ cm^{-1}$	[22])
- 0	5	00		5/2	1/2	5 5	(L J/

		Т	his work			Ref. [5]	Ref. [6]
Rydberg	eV	cm ⁻¹	<i>n</i> *	Limit	Assignment		
$(^{2}E_{3/2})$ 5sa ₁	6.944	56,010	1.944	10.543	0-0	56,030	56,023
	7.015	56,580	1.945	{10.611} ^c	V ₆	56,590	56,556
	7.052	56,878	1.945	10.648	v ₅	56,870	56,884
	7.089	57,177	1.940	10.703	v_4	57,170	57,160
	7.151	57,677	1.943	10.750 ∫	$2v_5$	57,670	57,655
	7 1 9 9	57 075	1.042	(10.708)°	$v_4 + v_6$	58 005	57 075
	7.100	58 273	1.943	{10.798} {10.815}° C	$v_4 + v_5$	58,005	58 371
	1.225	50,275	1.744		$v_4 + 2v_6$	56,505	56,571
	7.262	58,573	1.944	10.862	}3v ₅	58,345	
	7.275	58,677	$(1.944)^{b}_{1}$	$(10.87\ 5)^{b}$		58,715	58,693
	7.290	58,798	(1.944) ^b	^{(10.890)^b ∫}	$v_4 + 2v_5$		
	[7 222]ª	50 126	1.044	10.020	$2v_4 + v_6$	50 165	50 175
	[7.332]	59,130	1.944	(10.930)	$2v_4 + v_5$	59,105	59,175
	7 393	59,524	1.940	{11,005}°	$3v_4$ $3v_5 + 2v_6$		
	7 419	59,838	1.942	$\{11.005\}^{\circ}$	$v_4 + 3v_5$	-	-
$(^{2}E_{1/2})$, 5sa	[7.332] ^a	59,136	1.963	10.862	0-0	59,165	59,175
(1/2)	7 474	60.282	1 963	{11.005}°	V	60 280	60 275
	7.510	60.572	1.968	$\{11.026\}^{\circ}$	$v_{5} + v_{6}$	60.670	-
	7.605	61,338	1.976	11.090	$2v_5$	61,210	-
	7.626	61,509	1.957	11.179	$2v_4$	61,450	61,430
	7.657	61,758	1.954	11.220	3v ₅	61,775	61,810
	7 785	62 790	1 963	11 290	314	62 685	_
	7.823	63,097	1.963	11.354	$2v_4 + 2v_5$	62,845	-
	7.920	63,879	1.963	11.451	$4v_4$	63,875	-
			This w	vork			Ref. [5]
Rydberg	eV	cm ⁻¹		<i>n</i> *	Limit	Assignment	
$(^{2}E_{3/2})$ 5pa ₁	8.179	65,968		2.399	10.543	0-0	66,004
	8.223	66,323				n.a. ^d	66,341
	8.239	66,452				n.a. ^d	66,482
	8.254	66,573		2.402	{10.611} ^c	V_{6}	-
	8.260	66,621				n.a. ^d	66,650
	8.275	66,742		2.394	10.648	V5	-
	8.309	67,017		2.407	{10.657}	$2v_6$	66,990
	8.321	67,113	۲	2.397	10.703	V_4	67,093
	8 364	67,420	ł	2.401	{10.720}	$\mathbf{v}_5 + \mathbf{v}_6$	07,437
	8 390	67 670	4	2 400	10 752	2vc	_
	8.394	67,702	ł	2.100	10.752	2.5	67.720
	8.460	68,234	J	2.404	{10.815} ^c	$\int 2v_4$	68,256
						$\int 2v_5 + v_6$	
	[8.508] ^a	68,621		2.404	10.862	3v ₅	68,659
	[8.533] ^a	68,823		$(2.400)^{\circ}$	$(10.895)^{0}$	$\int \frac{v_4 + 2v_5}{2v_4 + v_6}$	68,848
	[8 564] ^a	69 073		2,400	10 931	$L = \frac{2v_4 + v_0}{2v_4 + v_5}$	69 105
	[8.623] ^a	69.549		2.407	{10.972} ^c	$3\mathbf{v}_4$	69.581
	8.646	69,735		2.401	{11.005}°	$3v_5 + 2v_6$	-
	[8.663] ^a	69,872		2.399	{11.026}°	$v_4 + 3v_5$	-
$(^{2}E_{3/2})$ 5pe	8.335	67,226		2.482	10.543	0-0	67,246
	8.408	67,815		2.485	{10.611} ^c	v_6	-
	[8.460] ^a	68,234		2.493	10.648	v ₅	68,256
	8.490	68,476		2.479	10.703	v_4	68,504
	[8.533] ^a	68,823		2.494	{10.720} ^c	$v_5 + v_6$	68,848
	[8.564] ^a	69,073		2.495	10.758	$3v_{6}/2v_{5}$	69,105
	[8.584] ^a	69,235		2.490	{10.779}°	$v_4 + v_5$	-
	[8.623]"	69,549		2.491	{10.815}°	$\int 2v_4$	69,581

Table 3	(continued)
---------	-------------

			This work			Ref. [5]
Rydberg	eV	cm ⁻¹	<i>n*</i>	Limit	Assignment	
	[8.663] ^a	69,872	2.487	10.862	3v ₅	69,932
	8.736	70,460	2.490	10.931	$2v_4 + v_5$	-
	8.789	70,888	2.495	{10.972} ^c	$3v_4$	-
	8.811	71,065	2.490	$\{11.005\}^{c}$	$3v_5 + 2v_6$	-
$(^{2}E_{1/2})$ 5pa ₁	$[8.508]^{a}$	68,621	2.404	10.862	0-0	68,659
	$[8.584]^{a}$	69,235	2.407	10.931	v ₆	
	8.609	69,436	2.399	{10.972} ^c	v ₅	69,581
	8.663	69,872	2.410	{11.005}	V 4	
	8.736	70,460	2.404	11.090	$2v_5$	
	8.811	/1,065	2.397	11.179	$2v_4$	
(^{2}E) 5no	8.804 9.694	71,493	2.403	11.220	3V ₅	70.082
$(E_{1/2})$ spe	8.084 8.752	70,041	2.499	10.802	0-0	70,085
	8.732 8.811	70,390	2.499	10.931 {10.991}°	V 6	
	8 839	71,005	2.506	$\{11,005\}^{\circ}$	V5 V4	
	8 924	71,271	2.506	11 090	2 _{N5}	
	9.025	72,791	2.490	11.220	$3v_5$	
$(^{2}E_{3/2})$ 4f	9.038	72,896	3.006	10.543	0-0	
	9.112	73,493	3.013	{10.611} ^c	V ₆	
	9.146	73,767	3.010	10.648	v ₅	
	9.167	73,937	3.018	{10.660} ^c	$2v_6$	
	9.199	74,195	3.008	10.703	\mathbf{v}_4	
	9.219	74,356	3.011	{10.720} ^c	$v_5 + v_6$	
	9.237	74,501	2.999	10.750	$2v_5$	
	9.282	74,864	3.015	$\{10.7/9\}^{\circ}$	$v_4 + v_5$	
25.) ([9.372]*	/5,590	3.022	10.862	3V ₅	
$(^{2}E_{3/2}) 6pa_{1}$	[9.372]*	75,590	3.409	10.543	0-0	
	9.443	76,163	3.428	$\{10.611\}^{c}$	v_6	
	9.480	76,461	3.413	10.648	V5	
2-	[9.530]*	/6,865	3.408	10.701	V4	
$(^{2}E_{3/2})$ 6pe	9.405	75,856	3.458	10.543	0-0	
	9.463	76,324	3.443	$\{10.611\}^{\circ}$	v ₆	
	9.515	76,744	3.465	10.648	V5	
	[9.530]*	/6,865	3.4/0	{10.660}	$2v_6$	
	9.557	77,082	3.449	$(10.70)^{\circ}$	v_4	
$({}^{2}F_{rr})$ 5d	9.590	77,905	3,973	10.7203	v5 + v6 0-0	
$(L_{3/2})$ 50	0.720	78,470	3.027	$(10.611)^{\circ}$	0-0	
	9.129	78,470	3.927	10.648	v ₆	
	9 818	79 188	3 921	10.703	¥5 V4	
$(^{2}E_{3/2})$ 5f	9.706	78,195	4.022	10.543	0-0	
x 5147 -	9 784	78 913	4 056	{10 611}°	V	
	9.800	79.042	4.005	10.648	V 5	
	[9.857] ^a	79,502	4.010	10.703	V A	
					- 4	

^a Data in brackets have different possible assignments or their intensity has different contributions. ^b Data in parentheses have the proposed assignment by using the mentioned n^* value.

^c Data in braces are ionization limits observed by PES [21]. For explanation see text.

^d n.a. = not assigned: see text.

5.2. The $({}^{2}E_{3/2} - {}^{2}E_{1/2})$ nsa1, npa1, npe, nd(a₁) and nf(nde) series (n > 5)

Table 3 shows a tentative classification and assignments of the fine structure above 8 eV photon energy. Only the lower energy part of these results can be compared with the work reported by Causley and Russell [5]. To the best of our knowledge, no other analysis has been reported in the literature. As can be seen from Table 3, comparing columns 3 and 7, a good agreement is found between both experimental results.

Table 4 - Energies (eV), wavenumbers (cm⁻¹) and assignments (0-0 meaning vibrationless transition) of vibrational progressions of $({}^{2}E_{3/2} \text{ or } {}^{2}E_{1/2})[nl(a_{1} \text{ or } e)]$ Rydberg series in CD₃Br converging to the $\tilde{\chi}{}^{2}E_{3/2}$ and $\tilde{\chi}{}^{2}E_{1/2}$ states of CD₃Br⁺ (1 eV = 8065.545 cm⁻¹ [22])

Rydberg eV cm ⁴ Assignment ($^{1}E_{52}$)5sa ₁ 6.981 56,366 0.0 56,285 - - - - 56,435 - - - 56,435 7,062 56,959 Y_5 56,790 7,062 56,222 V_6 56,793 7,062 57,201 ($2V_6$) 57,190 7,182 57,491 $V_8 + V_6$ - 7,194 58,031 $V_7 + 2V_6$ 58,040 7,240 58,354 $Y_7 + 2V_6$ 58,860 7,261 58,564 $Y_4 + 2V_7$ 58,860 7,261 58,564 $Y_4 + 2V_7$ 58,860 7,308 58,943 $\left\{ 3V_8 + V_6 - 58,995$ 58,995 7,308 58,943 $\left\{ 3V_8 + V_6 - 60,015$ - 7,4111 ¹⁷ 59,774 $V_8 + V_8 - 60,025$ - 7,5201 ⁴ 60,633 $V_8 + V_8 - 60,025$ - 7,5201 ⁴ 60,633 $V_8 + V_8 - 60,025$			This work		Felps et al. [6]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rydberg	eV	cm ⁻¹	Assignment	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(^{2}E_{3/2})5sa_{1}$	6.981	56,306	0-0	56,285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	_	-	56.435
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	_	56.720
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.045	56 822	Vc	56 795
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.062	56,959	V-	56 945
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.002	57 136	v 5	57 125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.004	57,150	(2x)	57,125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.092	57,401	(2v ₆)	37,190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.128	57,491	$v_5 + v_6$	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		/.150	57,669	2V5	57,650
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	-	57,780
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7.194	58,031	$\int 2v_4$	58,010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$v_{5} + 2v_{6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7.240	58,394	3v ₅	58,370
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.261	58,564	$v_4 + 2v_5$	58,460
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7.279	58,709	$2v_4 + v_5$	58,650
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-	_	58,860
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7.308	58,943	∫ 3v ₄	58,995
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$3v_5 + v_6$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[7 350] ^a	59 282	$3v_5 + v_6$	59 255
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[7.304] ^a	59,202	Av.	59,255
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[7.374]	50 774	$4v_4$	50.810
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[/.411]	39,774	$3v_4 + 2v_6$	59,810
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-	-	59,965
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[7.453]"	60,113	$4v_4 + v_6$	60,105
$\begin{bmatrix} [7.520]^a & 60,653 & 4V_4 + 2v_6 & 60,625 \\ & & & & & & & & & & & & & & & & & & $		-	-	-	60,225
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[7.520] ^a	60,653	$4v_4 + 2v_6$	60,625
$ \begin{bmatrix} 7.560 \\ 1.7500 \\ 1.7500 \\ 1.7500 \\ 1.7453 \\$		-	-	-	60,810
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$[7.560]^{a}$	60,975	$5v_4 + v_6$	60,960
$ \begin{bmatrix} 7,41 \\ 1 \\ [7,43]^2 & 60,113 & v_4 & 60,105 \\ [7,520]^4 & 60,653 & v_4 + v_6 & 60,625 \\ [7,520]^6 & 60,975 & 2v_4 & 60,810 \\ [7,560]^9 & 60,975 & 2v_4 & 60,960 \\ - & - & - & 61,035 \\ 7,584 & 61,169 & v_4 + 2v_6 & 61,175 \\ - & - & - & 61,685 \\ 7,668 & 61,847 & 3v_4 & 61,815 \\ 7,668 & 61,992 & 2v_4 + 2v_6 & 61,995 \\ 7,709 & 62,177 & v_4 + 4v_6 & 62,180 \\ - & - & - & - & 62,560 \\ 7,771 & 62,677 & 4v_4 & 62,735 \\ - & - & - & 63,390 \\ - & - & - & - & 63,390 \\ - & - & - & - & 63,390 \\ 7,884 & 63,589 & 5v_4 & 63,030 \\ - & - & - & - & 63,390 \\ 7,884 & 63,589 & 5v_4 & 63,030 \\ - & - & - & - & 63,390 \\ 7,884 & 63,589 & 5v_4 & 63,030 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 63,820 \\ - & - & - & - & 64,610 \\ (^2E_{32})5pa_1 & 8,201 & 66,145 & 0-0 \\ 8,225 & 66,517 & na^b \\ 8,229 & 66,613 & v_6 \\ 8,273 & 66,726 & na^b \\ 8,229 & 66,613 & v_6 \\ 8,304 & 66,975 & v_4 \\ 8,336 & 67,234 & 2v_6 \\ 8,335 & 67,388 & v_5 + v_6 \\ 8,377 & 67,565 & 2v_5 \\ \end{bmatrix}$	$(^{2}E_{1/2})5sa_{1}$	[7.350] ^a	59,282	0-0	59,255
$\begin{bmatrix} [7,453]^a & 60,113 & v_4 & 60,105 \\ - & - & - & 60,225 \\ [7,520]^a & 60,975 & v_4 + v_6 & 60,625 \\ - & - & - & 60,810 \\ [7,560]^a & 60,975 & 2v_4 & 60,960 \\ - & - & - & - & 61,035 \\ 7,584 & 61,169 & v_4 + 2v_6 & 61,175 \\ - & - & - & 61,685 \\ 7,668 & 61,847 & 3v_4 & 61,815 \\ 7,668 & 61,992 & 2v_4 + 2v_6 & 61,995 \\ 7,709 & 62,177 & v_4 + 4v_6 & 62,180 \\ - & - & - & - & 62,825 \\ 7,771 & 62,677 & 4v_4 & 62,735 \\ 7,771 & 62,677 & 4v_4 & 62,235 \\ 7,835 & 63,193 & 4v_4 + v_6 & 63,030 \\ - & - & - & 63,320 \\ - & - & - & 63,320 \\ - & - & - & 63,320 \\ - & - & - & 63,320 \\ - & - & - & 63,820 \\ - & - & - & 64,610 \\ \end{bmatrix}$ $\begin{bmatrix} (^2E_{3/2})5pa_1 & 8,201 & 66,145 & 0-0 \\ 8,225 & 66,339 & na^b \\ 8,247 & 66,517 & na^b \\ 8,247 & 66,517 & na^b \\ 8,225 & 66,339 & na^b \\ 8,247 & 66,517 & na^b \\ 8,225 & 66,339 & na^b \\ 8,247 & 66,517 & na^b \\ 8,225 & 66,339 & na^b \\ 8,247 & 66,517 & na^b \\ 8,225 & 66,339 & na^b \\ 8,247 & 66,517 & na^b \\ 8,225 & 66,339 & na^b \\ 8,247 & 66,517 & na^b \\ 8,259 & 66,613 & v_6 \\ 8,273 & 66,726 & na^b \\ 8,273 & 66,726 & v_5 \\ 8,304 & 66,975 & v_4 \\ 8,335 & 67,388 & v_5 + v_6 \\ 8,377 & 67,565 & 2v_5 \end{bmatrix}$		[7.41 l] ^a	59,774	V6	59,810
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[7.453] ^a	60,113	V ₄	60,105
$ \begin{bmatrix} 7.520 \end{bmatrix}^a & 60,653 & v_4 + v_6 & 60,625 \\ \hline - & - & - & 60,810 \\ \hline [7.560]^a & 60,975 & 2v_4 & 60,960 \\ \hline - & - & - & 61,035 \\ \hline 7.584 & 61,169 & v_4 + 2v_6 & 61,175 \\ \hline - & - & - & 61,685 \\ \hline 7.668 & 61,847 & 3v_4 & 61,815 \\ \hline 7.686 & 61,992 & 2v_4 + 2v_6 & 61,995 \\ \hline 7.709 & 62,177 & v_4 + 4v_6 & 62,180 \\ \hline - & - & - & - & 62,560 \\ \hline 7.771 & 62,677 & 4v_4 & 62,735 \\ \hline - & - & - & - & 63,330 \\ \hline 7.884 & 63,589 & 5v_4 & 63,660 \\ \hline - & - & - & - & 63,320 \\ \hline 7.884 & 63,589 & 5v_4 & 63,660 \\ \hline - & - & - & - & 63,320 \\ \hline (^2E_{32})5pa_1 & 8.201 & 66,145 & 0-0 \\ \hline 8.225 & 66,339 & na^b \\ \hline 8.247 & 66,517 & na^b \\ \hline 8.259 & 66,613 & v_6 \\ \hline 8.273 & 66,726 & na^b \\ \hline 8.259 & 66,613 & v_6 \\ \hline 8.259 & 66,613 & v_6 \\ \hline 8.273 & 66,726 & na^b \\ \hline 8.289 & 66,855 & v_3 \\ \hline 8.304 & 66,975 & v_4 \\ \hline 8.336 & 67,234 & 2v_6 \\ \hline 8.377 & 67,565 & 2v_5 \\ \hline \end{bmatrix} $		-	-	-	60.225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$[7.520]^{a}$	60.653	$v_4 + v_6$	60.625
$ \begin{bmatrix} 7.560]^a & 60.975 & 2v_4 & 60.960 \\ \hline - & - & - & 61.035 \\ \hline 7.584 & 61.169 & v_4 + 2v_6 & 61.175 \\ \hline - & - & - & 61.390 \\ \hline - & - & - & 61.385 \\ \hline 7.668 & 61.847 & 3v_4 & 61.815 \\ \hline 7.668 & 61.992 & 2v_4 + 2v_6 & 61.995 \\ \hline 7.709 & 62.177 & v_4 + 4v_6 & 62.180 \\ \hline - & - & - & - & 62.850 \\ \hline 7.771 & 62.677 & 4v_4 & 62.735 \\ \hline - & - & - & - & 62.825 \\ \hline 7.835 & 63.193 & 4v_4 + v_6 & 63.030 \\ \hline - & - & - & - & 63.390 \\ \hline 7.884 & 63.589 & 5v_4 & 63.600 \\ \hline - & - & - & - & 63.820 \\ \hline - & - & - & - & 63.820 \\ \hline - & - & - & - & 64.610 \\ \end{bmatrix} $		-	_	-	60.810
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[7 560] ^a	60 975	2.v.	60,960
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[,		- 4	61 035
$ ({}^{2}E_{3/2})5pa_{1} = 0 + (-) $		7 584	61 169	$y_{1} + 2y_{2}$	61,055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.564	01,109	v ₄ + 2 v ₆	61 200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	61,695
		-	-	-	61,085
		/.668	61,847	$3V_4$	61,815
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.686	61,992	$2v_4 + 2v_6$	61,995
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.709	62,177	$v_4 + 4v_6$	62,180
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	-	62,560
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.771	62,677	$4v_4$	62,735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	-	62,825
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.835	63,193	$4v_4 + v_6$	63,030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	_	63,390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.884	63,589	5v4	63,660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	-	63.820
		-	-	-	64,610
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(^{2}E_{3/2})5pa_{1}$	8.201	66,145	0-0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	()/2/° F ···	8 225	66 339	na ^b	
8.247 $60,317$ Ha 8.259 $66,613$ v_6 8.273 $66,726$ na^b 8.289 $66,855$ v_5 8.304 $66,975$ v_4 8.336 $67,234$ $2v_6$ 8.355 $67,388$ $v_5 + v_6$ 8.377 $67,565$ $2v_5$		0.225	66 517	na no ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.247	66 612	lia	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.239	00,013	V ₆ h	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.273	66,726	na	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.289	66,855	V5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.304	66,975	v_4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.336	67,234	$2v_6$	
8.377 67,565 2v ₅		8.355	67,388	$\mathbf{v}_5 + \mathbf{v}_6$	
		8.377	67,565	$2v_5$	

Table 4 (continued)

		This work			Felps et al. [6]
Rydberg	eV	cm ⁻¹		Assignment	
	8.383	67,613	l	$v_4 + v_5$	
	8.385	67,630	ſ		
	8.415	67,871		$2v_4$	
	8.426	67,960		$v_5 + 2v_6$	
	8.434	68,025		$v_4 + 2v_6$	
	8.459 8.455	68 194		3v-	
	8 466	68 283	٦	$2v_4 + v_6$	
	8.473	68,339	}	- 4 0	
	8.493	68,501	J	$2v_4 + v_5$	
	8.510	68,638		$3v_4$	
	8.526	68,767		$2v_4 + 2v_6$	
.2	8.563	69,065		$3v_4 + v_6$	
(² E _{3/2})5pe	8.318	67,089	2	0-0	
	[8.377]"	67,565		v ₆	
	$[8.383]^{\circ}$	67,613	}		
	[8.383] $[8.426]^{a}$	67,030	J	V	
	$[8.434]^{a}$	68 025	٦	$\frac{v_4}{2v_6}$	
	$[8.439]^{a}$	68.065	}	2.0	
	[8.466] ^a	68,283	í	$v_{5} + v_{6}$	
	[8.473] ^a	68,339	}		
	[8.493] ^a	68,501		$2v_5$	
	$[8.510]^{a}$	68,638		$v_4 + v_5$	
	$[8.526]^{a}$	68,/6/		$2V_4$	
	8 583	69,003		$v_4 + 2v_6$ $v_4 + 2v_5$	
$(^{2}\mathrm{F_{10}})5\mathrm{pa}$	[8 526] ^a	68 767		0-0	
(12/2) 5 p ar	[8.583] ^a	69 227		V	
	8.630	69.606		V ₆ V ₄	
	8.681	70,017		$v_5 + v_6$	
	8.702	70,186		2v ₅	
	8.721	70,340		$v_4 + v_5$	
	8.737	70,469	c	$2v_4$	
	8.760	/0,654	$\left\{ \right.$	$2v_5 + v_6$	
	8 773	70 759	Ĺ	$v_4 + 2 v_6$ $3v_5$	
	8.788	70,880		$2v_4 + v_6$	
	8.802	70,993		$v_4 + 2v_5$	
	8.812	71,073		$2v_4 + v_5$	
	8.831	71,227		$3v_4$	
	8.888	71,686		$3v_4 + v_6$	
	8.942	72,122		$4V_4$	
(^{2}E))5no	0.700 [9.642] ^a	72,477 60 710		$4v_4 + v_6$	
(E _{1/2})5pe	[8.043]	09,710		0-0	
	[8.702] $[8.721]^{a}$	70,180		V ₆	
	$[8.737]^{a}$	70,340		V ₅ V ₄	
	$[8.760]^{a}$	70,654		$2v_6$	
	[8.788] ^a	70,880		$v_5 + v_6$	
	$[8.802]^{a}$	70,993	J	2v ₅	
	$[8.812]^{a}$	71,073	ſ		
	[8.83]] ^a	71,227		2v ₄	
	[8.888]" [8.924]ª	/1,686		3V5 3x	
	[8.947] ^a	72 122		$3v_4$ $3v_5 + v_4$	
$(^{2}F_{a})$ (682)	9 019	72,122		0-0	
(13/2)0501	9.075	73 105		V -	
	9.094	73 348		v 6 V5	
	9.141	73,727		$2v_6$	

Table 4 (continued)

		This work		Felps et al. [6]
Rydberg	eV	cm ⁻¹	Assignment	
$(^{2}E_{3/2})4f$	9.058	73,057	0-0	
	9.133	73,663	\mathbf{v}_5	
	9.160	73,880	\mathbf{v}_4	
	9.179	74,034	$2v_6$	
	9.192	74,138	$v_5 + v_6$	
	9.223	74,388	$2v_5$	
	9.264	/4,/19	$2v_4$	
	9.280	74,040	$v_4 + 2v_6$	
	9.321	75 356	$2v_4 + v_6$ $2v_4 + v_5$	
	9.370	75,574	$3\mathbf{v}_4$	
	9.420	75,977	$3v_4 + v_6$	
	9.450	76,219	$3v_4 + v_5$	
$(^{2}\text{E}_{1/2})6sa_{1}$	[9.343] ^a	75,356	0-0	
	[9.401] ^a	75,824	v ₆	
	$[9.420]^{a}$	75,977	\mathbf{v}_5	
	[9.450] ^a	76,219	\mathbf{v}_4	
	[9.466]"	76,348	2v ₆	
$(^{-}E_{3/2})6pa1$	9.401	/5,824	0=0	
	9.400	76,348	V ₆ V	
	9 519	76,033	v 4 na	
	9.540	76,945	$v_5 + v_6$	
	9.547	77,002	2v5	
	9.583	77,292	$v_4 + v_5$	
	9.606	77,478	$2v_4$	
	9.716	78,365	$3v_4$	
	9.726	78,445	$2v_4 + 2v_6$	
25.)(9.770	78,800	$3v_4 + v_6$	
$(^{2}E_{3/2})$ 6pe	9.431	76,066	0-0 V	
	[9.304] [9.510] ^a	76,033	V 6	
	[9.519] [9.540] ^a	76,945	v5 V.	
	[9.583] ^a	77.292	\mathbf{v}_4 $\mathbf{v}_5 + \mathbf{v}_6$	
	9.600	77,429	2v5	
	[9.606] ^a	77,478	$v_4 + v_6$	
	[9.699] ^a	78,228	$2v_4 + v_6$	
	[9.716] ^a	78,365	$v_4 + v_5$	
	9.737	78,534	$3v_4$	
	[9.770] ^a	78,800	$2v_4 + 2v_6$	
	9.796	79,010	$3v_4 + v_6$	
	$[9.812]^{a}$	79,139	$3\mathbf{v}_4 + \mathbf{v}_5$	
$({}^{2}\mathrm{F}_{2}/{}_{2})4d$	9.643	79,403	$4v_4$	
(123/2)4u	[9 737] ^a	78,534	V _c	
	9.784	78,913	V ₄	
	9.812	79,139	$v_5 + v_6$	
	9.834	79,316	$2v_5$	
	9.845	79,405	$\mathbf{v}_4 + \mathbf{v}_6$	
	9.867	79,583	$v_4 + v_5$	
	9.878	79,671	$2v_4$	
$(^{2}E_{3/2})7sa_{1}$	9.699	78,228	0-0	
	$[9.784]^{a}$	78,913	\mathbf{v}_5	
	[9.796] ^a	79,010	v_4	
$(^{2}E_{3/2})5f$	9.716	78,365	0-0	
	$[9.784]^{a}$	78,913	v_6	
	[9.796] ^a	79,010	v ₅	
	[9.812] ^a	79,139	\mathbf{v}_4	

	Т	his work		Felps et al. [6]
Rydberg	eV	cm ⁻¹	Assignment	_
$({}^{2}E_{1/2})6pa_{1}$	9.726	78,445	0-0	_
	$[9.784]^{a}$	78,913	v ₆	
	9.812	79,139	v ₅	
	[9.834] ^a	79,316	\mathbf{V}_4	
	9.867	79,583	$v_5 + v_6$	
$({}^{2}\mathrm{E}_{1/2})$ 6pe	9.770	78,800	0-0	
	$[9.834]^{a}$	79,316	V ₆	
	[9.845] ^a	79,405	V ₅	
	[9.878] ^a	79,671	v_4	
	9.920	80,010	$v_{5} + v_{6}$	
	9.933	80,115	$2v_5$	
	9.952	80,268	$\mathbf{v}_4 + \mathbf{v}_5$	
$({}^{2}E_{3/2})7pa_{1}$	9.867	79,583	0-0	
	[9.920] ^a	80,010	v ₆	
	[9.952] ^a	80,268	V5	
	9.983	80,518	$2v_6$	
$({}^{2}E_{3/2})$ 7pe	9.878	79,671	0-0	
	[9.952] ^a	80,268	V5	
	[9.983] ^a	80,518	\mathbf{v}_4	
$({}^{2}\mathrm{E}_{1/2})4\mathrm{d}$	9.996	80,623	0-0	
	10.058	81,123	V 6	
	10.071	81,228	V5	
	10.097	81,438	V ₄	
	10.132	81,720	$2v_6$	
	10.147	81,841	$v_{5} + v_{6}$	
	10.157	81,922	$2v_5$	

^a Data in brackets have different possible assignments or their intensity has different contributions. ^b n.a. = not assigned: see text.

Based on the known convergence limits resulting from photoelectron spectroscopy experiments [9] effective principal quantum numbers have been allocated to each vibronic transition. These have been determined earlier for the 0-0 Rydberg transitions [4]. As shown in Table 3, column 4, the calculated effective principal quantum numbers using these data are nearly constant over one electronic state. The variations are mostly of the order of a few thousandth. Most of the lines have been assigned by this method. A few features couldn't be classified and are noticed by n.a. (not assigned) in Table 3. A possible assignment could be Rydberg transitions in Br₂ produced by photolysis of CH₃Br. Venkateswarlu [23] observed very strong absorptions in Br₂ in 66,227-66,559 cm⁻¹ region.

With the help of this hypothesis, we are able to interpret nearly all structures by the excitation of only three vibrational modes as defined in Section 4, i.e., v_4 , v_5 and v_6 . Averaging over about 40 energy intervals available for each vibrational mode and listed in Table 4, the energies of $hc\omega_6 = 71 \pm 4 \text{ meV} (572 \pm 32 \text{ cm}^{-1})$, $hc\omega_5 = 107 \pm 6 \text{ meV} (863 \pm 48 \text{ cm}^{-1})$ and $hc\omega_4 = 146 \pm 6 \text{ meV} (1178 \pm 48 \text{ cm}^{-1})$ are obtained. These values are in very good agreement with those deduced from the data related to the $5sa_1$ Rydberg series only. Furthermore, the three wavenumbers determined in this work can be compared with those obtained from the infrared spectrum of CH₃Br⁺ trapped in a neon matrix [8]: 550 cm⁻¹ for C-Br stretching, 815 cm⁻¹ for CH₃ rocking and 1297 cm⁻¹ for CH₃ umbrella modes. The discrepancy of about 100 cm⁻¹ for ω_4 could be ascribed to the steric hindrance experienced by vibrational motions in a neon matrix. The barrier associated with the umbrella mode is probably the most sensitive to this phenomenon. It is therefore not surprising that the associated force constant and wavenumber be larger in a matrix.

Table 4 displays the energy positions and assignments of the structures observed in CD_3Br above 8.2 eV photon energy. Tentative assignments are listed in column 4. As already mentioned for CH_3Br , a few lines are not assigned (n.a.). Also in the present case they could be assigned to Rydberg transitions in Br_2 [23].

Assignments were attempted and essentially based on the invariability of energy intervals between lines, within about 5-10 meV (i.e., about twice the error limit). The average over about 60-70 observations of each vibrational mode leads to values of $hc\omega_6 = 62 \pm 4 \text{ meV} (500 \pm 32 \text{ cm}^{-1})$, $hc\omega_5 = 82 \pm 4 \text{ meV} (661 \pm 32 \text{ cm}^{-1})$ and $hc\omega_4 = 104 \pm 3 \text{ meV} (839 \pm 24 \text{ cm}^{-1})$. These values compare favorably with those determined from the 2e \rightarrow 5sa₁ transitions. Additionally, these data are comparable with those provided by the infrared spectrum of CD₃Br⁺ [8] where only the CD₃ rocking at 660 cm⁻¹ and the CD₃ umbrella mode at 948 cm⁻¹ have been reported.

The comparison of the data related to both molecules with the ab initio calculated values remains fairly good. A stronger argument favouring the present values is the isotopic shift measured by the ratio p. As mentioned earlier its value was $\rho_6 = 1.11$, $\rho_5 = 1.29$ and $\rho_4 = 1.41$ as determined from the 5sa₁ transition. With all the available data these ratios become $\rho_6 = 1.15 \pm 0.14$, $\rho_5 = 1.31 \pm 0.14$ and $\rho_6 = 1.39 \pm 0.10$. The predicted ab initio values are, respectively, 1.04, 1.34 and 1.36, as already mentioned.

As already stressed, the comparison of the assignments made in this work and in previous papers [5,6] essentially differ by the assignment of the 2670 cm⁻¹ interval [6] and 2685 cm⁻¹ wavenumber [5] to the v₂ C-H symmetric stretching vibration. In the present work an average energy interval of Δ (*hcw*) = 0.323 ± 0.009 eV (2605 ± 72 cm⁻¹) has been measured and assigned to 3v₅ or 3 x 0.108 eV (2613 cm⁻¹), in very good agreement with the value proposed in this work for the fundamental wavenumber of the v₅ CH₃ rocking vibration. In CD₃Br an energy interval Δ (*hcw*) = 0.249 ± 0.004 meV (2008 ± 32 cm⁻¹) has consistently been assigned to 3v₅ or 3 x 0.083 eV (2007 cm⁻¹), i.e., the CD₃ rocking vibration. Intensity arguments are difficult to invoke because peaks often overlap or are burried in stronger transitions. The situation is even worse at higher energies.

As shown in Section 4, the wavenumber associated with all the vibrational normal modes have been predicted by ab initio calculations. Despite the limitations of the method used when applied to molecules containing a heavy atom like Br, they show to be reliable for the prediction of all the fundamental vibrational wave-numbers of the neutral ground state. Discrepancies between the best experimental [20] and theoretical values of +4% for low ω values and -3% for the highest ω values are observed in CH₃Br. These are smaller, i.e., about 2% or less, for CD₃Br. For the CH₃Br⁺ cation the calculations proved to be useful for the three lowest wavenumbers. In the case of the v₂ vibrational normal mode the predicted wavenumber is $\omega_2 = 2953 \text{ cm}^{-1}$. This value is much higher, and outside the allowed error limits, than the proposed experimental value [5,6]. Lugez et al. [8] using the MP2 calculations determined $\omega_2 = 2912$ and 3056 cm⁻¹ using QCISD. In their infrared spectrum of CH₃Br⁺ cation trapped in a neon matrix [8] these authors consistently assigned the feature observed at 2909.5 cm⁻¹ to the v₂ C-H symmetric stretching vibration. Furthermore, no signal at about 2600 cm⁻¹ has been observed in this spectrum. All these arguments seem to converge to support the present interpretation.

5.3. The $CH_3Br^+(\tilde{x}^2E)$ photoelectron band [9]

The analysis of the vibrational structure of the Rydberg series in the vacuum UV photoabsorption spectrum of CH_3Br and CD_3Br allows us to reconsider the high resolution \tilde{x}^2E photoelectron band of CH_3Br^+ and to compare the assignments proposed in [9].

Table 5 summarizes the measurements (column 1) and their analysis (column 2) presented by Karlsson et al. [9]. In the third column, we listed our assignments based on the Rydberg series analyses. For the ${}^{2}E_{3/2}$ component both works agree fairly well: CBr-stretching, CH₃-rocking and CH₃-umbrella mode, overtones and combinations are observed. However, the CH-symmetric and antisymmetric stretching have not been observed in the present work.

Owing to partial overlap, the comparison is more difficult for the ${}^{2}E_{1/2}$ component. Overtones and/or combinations of C-H symmetric stretching and CH₃-umbrella modes are identified by Karlsson et al. [9]. In the present work, the observations are mainly assigned to the CH₃-rocking and umbrella vibrations.

Ionization energy [9]	Assignment [9] (in C _{3v} symmetry)	Assignment [this work] (in C _s symmetry)
10.543	$(^{2}E_{3/2})$	$({}^{2}E_{3/2})$
10.601 ^a	$v_3(a_1)$	v ₆ (a')
10.648	$v_6(e)$	v ₅ (a')
10.703	$v_2(a_1)$	v ₄ (a')
10.751	$2v_6(a_1)$	$2v_5/v_4 + v_6$
10.862	$({}^{2}E_{1/2})$	$(^{2}E_{1/2})/(^{2}E_{3/2})3v_{5}$
10.931	$(^{2}\text{E}_{3/2})v_{4}(e)$	$(^{2}E_{3/2})2v_{4} + v_{5}$
11.021	$v_2(a_1)$	$(^{2}E_{3/2})v_{4} + 3v_{5}/v_{5} + v_{6}$
11.090	$({}^{2}\mathrm{E}_{3/2})\mathbf{v}_{2} + \mathbf{v}_{4}$	$2v_5 + v_6$
11.179	$2v_2(a_1)$	2v ₄ (a')
11.22	$v1(a_1)$	3v ₅ (a')
11.29	$({}^{2}E_{3/2})2v_{4}(a_{1})$	3v ₄ (a')

Table 5-Analysis of the $CH_3Br^+(\tilde{X}^2E)$ photoelectron band as measured (eV) by Karlsson et al. [9] and the alternative assignments derived from Rydberg series analysis

^a The Rydberg series convergence limit is calculated to be 10.611 eV.

6. CONCLUSIONS

The abundant fine structure observed in the 6.9-10.2 eV photon energy range in the vacuum UV spectrum of CH₃Br and CD₃Br has been analyzed in terms of short vibrational progressions. To support the assignments, the geometry and all the vibrational wavenumbers of the neutral molecule and of the cation in their ground electronic states were calculated by ab initio quantum mechanical methods for CH₃Br and CD₃Br. The Jahn-Teller distortion upon ionization has also been considered and calculated. The fairly good agreement between experimental and predicted wavenumbers, as well as the isotope effect, allowed us to assign the observed progressions to three vibrational normal modes. These were identified as $v_6 (\omega_6 = 572 \pm 32 \text{ cm}^{-1})$ (C-Br stretching), $v_5 (\omega_5 = 863 \pm 48 \text{ cm}^{-1})$ (CH₃ rocking) and $v_4 (\omega_4 = 1178 \pm 48 \text{ cm}^{-1})$ (CH₃ umbrella). A discrepancy between previous works [5,6] and the present study is related to the assignment of $\Delta(hc\omega) \approx 2670 \text{ cm}^{-1}$ to v_2 or to $3v_5$. Several arguments are suggested converging to assign this energy to $3v_5$. Finally, alternative assignments are proposed for the interpretation of the CH₃Br⁺(\tilde{x}^2E) photoelectron band.

Acknowledgements

We are indebted to the University of Liège, the Freie Universität Berlin and the Bundesministerium fur Fors-chung und Technologie for financial support. H.B. acknowledges the Fonds der Chemischen Industrie for financial support. R.L. and B.L. gratefully acknowledge the European Community for its support through its TMR program (Contract EU-TMR-ERBFMGE-CT-970123). This work has also been supported by the Direction de la Recherche Scientifique de la Communauté Française de Belgique through an Action de Recherche Concertée (ARC). D.D.'s contribution was supported by the Belgian Programme of Pôles dAttraction Interuniversitaires (PAI no. P4/03) initiated by the Belgian state, the Prime Minister's Office, the Federal Office of Scientific, Technical and Cultural Affaires. We also thank the BESSY II staff for the outstanding maintenance of the equipment.

References

[1] R. Locht, B. Leyh, A. Hoxha, D. Dehareng, H.W. Jochims, H.Baumgärtel, Chem. Phys. 257 (2000) 283.

[2] R. Locht, B. Leyh, A. Hoxha, H.W. Jochims, H. Baumgärtel, Chem. Phys. 272 (2001) 259.

[3] R. Locht, B. Leyh, A. Hoxha, D. Dehareng, H.W. Jochims, H. Baumgärtel, Chem. Phys. 272 (2001) 277.

[4] R. Locht, B. Leyh, H.W. Jochims, H. Baumgärtel, Chem. Phys., this issue, doi:10.1016/j.chemphys.2005.06.002.

[5] G.C. Causley, B.R. Russell, J. Chem. Phys. 62 (1975) 848.

[6] S. Felps, P. Hochmann, P. Brint, S.P. McGlynn, J. Mol. Spectrosc. 59 (1976) 355.

[7] A. Hoxha, R. Locht, B. Leyh, K. Hottmann, H.W. Jochims, H. Baumgärtel, Chem. Phys. 260 (2000) 237.

[8] C.L. Lugez, D. Forney, M.E. Jacox, K.K. Ikura, J. Chem. Phys. 106 (1997) 489.

[9] L. Karlsson, R. Jadrny, L. Mattsson, F.T. Chau, K. Siegbahn, Phys. Scripta 16 (1977) 225.

[10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, MA. Robb, J.R. Cheeseman, JA. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V.Barone, B. Mennucci, M. Cossi, G Scalmani, N. Rega, GA.Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, P.Y. Ayala, K. Morokuma, GA. Voth, P. Salvdor, J.J. Dannenberg, V.G Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Karkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.V. Ortiz, J.B. Foresman, Q. Cui, A.G Baboul, S.Clifford, J. Ciolowski, B.B. Stefanow, G Liu, A. Liashenko, P.Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, MA.Al-Laham, CY. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, JA. Pople, Gaussian-03 (Revision B04), Gaussian, Inc., Pittsburgh, PA, 2003.

[11] (a) C. Moller, M.S. Plesset, Phys. Rev. 46 (1934) 618; (b) M. Head-Gordon, JA. Pople, M.J. Frisch, Chem. Phys. Lett. 153 (1988) 503.

[12] JA. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87 (1987) 5968.

[13] G.E. Scuseria, H.F. Schaefer III, J. Chem. Phys. 90 (1989) 3700.

[14] R.G Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[15] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

[16] (a) R. Krishnan, J.S. Blinkley, R. Seeger, JA. Pople, J. Chem. Phys. 72 (1980) 650; (b) M.J. Frisch, JA. Pople, J.S. Binkley, J. Chem. Phys. 80 (1984) 3265.

[17] D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98 (1993) 1358.

[18] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.

[19] G Herzberg, Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, D. Van Nostrand, Princeton, NJ, 1967.

[20] G Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polymotic Molecules, D. Van Nostrand, New York, 1945.

[21] R. Locht, E. Gridelet, to be published.

[22] E.R. Cohen, B.N. Taylor, J. Phys. Chem. Ref. Data 37 (1973) 663.

[23] P. Venkateswarlu, Can. J. Phys. 47 (1969) 2525.