The development of Structural Fire Engineering over the past 25 years and issues for the future

Jean-Marc Franssen
The development of Structural Fire Engineering over the past 25 years!
and issues for the future

=> Back to 1990.... Or 1982? Or earlier?
STABILITY
OF
STEEL STRUCTURES

PRELIMINARY REPORT

LIEGE
13 - 14 - 15
APRIL 1977

Second International Colloquium
IN CO-OPERATION WITH
STRUCTURAL STABILITY RESEARCH COUNCIL
COLUMN RESEARCH COMMITTEE OF JAPAN
Critical appraisal of the plastic design rules of ECCS on the basis of the numerical investigation of a braced 25-storey building, by Ch. MASSONNET, A. ANSLIJN, A. RIGON - Liège, Belgium 529

Stability of structural members in the French specifications for plastic design of steel structures, by Y. LESCOUARC'H - France 535

Stability of haunched rafters, by L.J. MORRIS, J.A. PACKER - England 539

Ultimate load carrying capacity of steel arches with initial imperfections, by T. SAKIMOTO, S. KOMATSU - Japan ... 545

In-plane strength of arch bridges subjected to vertical and lateral loads, by S. KURANISHI, T. YABUKI - Japan ... 551

Inelastic snap-through buckling of steel reticular tied arches, by A. FONTANA, F. SCIROCCO - Italy ... 557

THEME 10.- Shells ... 563

An engineering approach to the problems of plastic and elastic shells under axial pressure, by M.S. EL NASCHIE - Saudi Arabia 565

Buckling of circular cylindrical shells under combined axial compression and internal pressure, by H. SAAL - Germany ... 573

Buckling of axially compressed thin-walled cylindrical shells with asymmetric imperfections, by Bo L.O. EDLUND - Sweden 579

Some complements to the ECCS design code concerning isotropic cylinders, by M. ESSLINGER, B. GEIER - Germany, J.G.M. WOOD - England 589

Model investigation of the collapse of a steel water tower, by D. VANDEPITTE - Gent, Belgium ... 599

Use of computer programs Bosor 4 and 5 in the stability analysis of two civil engineering steel shell structures, by Ch. MASSONNET, R. BALTUS - Liège, Belgium ... 609

Some experimental results on the elastic-plastic buckling of thin torispherical and ellipsoidal shells subjected to internal pressure, by G.D. Galletty - England ... 619

The stability of buried shells under surface loading, by P.S. Bulson - England 627

THEME 11.- Special problems ... 633

Non linear analysis of metal structures, by F. Frey - Liège, Belgium 635

Dynamical plate buckling with structural damping, by P. Schroeder - Luxembourg 641
The stability of braced and unbraced frames at elevated temperatures,
by J. WITTEVEEN, L. TWILT, F.S.K. BIJLAARD - The Netherlands 647

APPENDIX TO THEME 5. .. 657

Design of cold formed steel stiffened elements, by A. HASEGAWA, Japan
N.C. LIND - Canada ... 659
1) Behaviour of materials

A lot has been done already, at least on « traditional » materials

A lot has been lost (or ignored)

Sonderforschunbsbereich 148
1) Behaviour of materials

A lot is still being done.

Please use published recommendations.

RILEM recommendations
1) Behaviour of materials

Old fashioned approach

- *Take material model at room temperature*
- *List the parameters of the model*
- *Measure these parameters at elevated temperature*

Better approach

- *Choose a material model at elevated temperature*
- *List the parameters of the model*
- *Measure these parameters at elevated temperature*
Material behaviour has been « normalised » (in Eurocodes)

Is it a good thing?

Workshop on material properties at elevated temperatures
ECCS, Arnhem, The Netherland, June 12, 1986
2) Tests on structural members or structures

Tests on small scale structures?

Not for all materials (OK for metals)

Not so popular anymore
2) Tests on structural members or structures

Test on large structures (Cardington)
Very expensive
What to look for?
=> Not so common
2) Tests on structural members or structures

Test on elements?

- Q1: Do we need it or not?
- Q2: ISO fire or not?
- Use of plate thermometer
- ISO 17025?

“General requirements for the competence of testing ... laboratories”
Make your tests in a laboratory that has accreditation ISO 17025
3) Tabulated data

- Have been there for a while
- No significant breakthrough

<table>
<thead>
<tr>
<th>Résistance au feu</th>
<th>Dimensions minimales (mm)</th>
<th>Largeur des poteaux h_{min}</th>
<th>distance axe-parement à des barres principales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Parement en béton précontraint</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poteau exposé sur plus d'un côté</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poteau exposé sur un seul côté</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>μ = 0.6 (\text{cm})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>μ = 0.7 (\text{cm})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>μ = 0.7 (\text{cm})</td>
<td></td>
</tr>
<tr>
<td>R 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum 8 barres
Pour les poteaux en béton précontraint, il convient de noter l'augmentation de la distance de l'axe au parement selon 4.2.2. (4).
4) Simple calculation methods

- Have been there for a while. The little red book? *European Recommendation for the Fire Safety of Steel Structures, ECCS, 1983.*
- No significant breakthrough
5) Advanced calculation models

- **FIRES-T**
 - 1974

- **DOUIN**
 - 1979

- **Dotreppe**
 - 1974

- **TASEF**
 - 1979

- **CEFICOSS**
 - 1979
 - 1982

- **SAFIR**
 - 1982

- **VULCAN**
 - 1992

- **FINELG**
 - 1992

- Commercial codes
Aims and capabilities of numerical modelling

- To reproduce a standard fire test (beam, then column)
- To analyse 2D frames (ISO curves, then other *increasing* curves)
- To represent 3D frames
- To combine different finite element types (beams, shells)
- Dynamic analyses
- Analyse local details (joints – volumic elements)
Q1: Which materials can we use in simulations?

A priori all of them

BUT

on the condition that we know the properties of the model.

⇒ Know your model and its limits
Challenges for thermal calculation

- Contact resistance between two materials.
- Effects of large displacements (the structure moves to the fire).
- Moisture
- Behaviour during cooling
- Changes of geometry (charring, expansion, spalling)
Q2: What kind of structure can we model?

Practically none

except if....

we tested a similar one before
One example: composite steel-concrete column.
The solution is easy:

Just model every possible physical phenomena.

✓ 3D solid elements,
✓ changes of geometry,
✓ contacts,
✓ ...

22
Good luck!
Have we made some progress in structural fire modelling?

✓ Capabilities of the software

✓ What is the direction in the stress-strain plane for the next time step, loading or unloading?

✓ How are the residual stresses in steel sections influenced by a fire?
Some nice examples (made with SAFIR)
Window frame (courtesy: Permasteelisa)
The deck of a concrete bridge (author unknown)
3D eye catcher, Brussels airport
Model: StuBeCo (courtesy Tom Molkens)
Oeiras Valley Convention Center, Oeiras PT
Luis Neto, arch.
Model: Univ. of Aveiro (courtesy Paolo Vila Real & Nuno Lopes)
Loterie romande, Lausanne CH
CHE architecture et Design Arch.
Model: Daniel Willi SA – Montreux CH (courtesy Olivier Burnier)
Model: Ingeni (courtesy Lorenzo Lelli)
Model: Ingeni (courtesy Lorenzo Lelli)
Model: Ingeni (courtesy Lorenzo Lelli)
Misuse of numerical modelling

Results of simulations are sometimes presented which show extremely ductile behaviour, typically for steel structures. If several hypotheses which are at the base of the numerical model have been violated, such as Bernoulli hypothesis, small deformation, limited rotations, infinite strength of joints, interpenetration of adjacent elements, descending branch in the stress-strain diagrams, etc, this is in our view a misuse of numerical modelling.
And the future?

I don’t know.

Probably:
- Simulation during the cooling phase
- New materials ans construction systems.
- Probabilistic aspects
- CFD-FE interaction
- Local fire models

I have some doubts
- Solid mechanics (3D finite elements)
- Prediction of spalling
9th intl Conf. Structures in Fire
8-10 June 2016, Princeton

Extended abstracts before December 14, 2015

https://sif2016.princeton.edu/