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1 IntroductionIn computer system design, we distinguish between closed and open systems [HP85]. A closedsystem is a system whose behavior is completely determined by the state of the system. Anopen system is a system that interacts with its environment and whose behavior depends on thisinteraction. As an example to closed and open systems, we can think of two drink-dispensingmachines. One machine, which is a closed system, repeatedly boils water, makes an internalnondeterministic choice, and serves either co�ee or tea. The second machine, which is anopen system, repeatedly boils water, asks the environment to choose between co�ee and tea,and deterministically serves a drink according to the external choice [Hoa85]. Both machinesinduce the same in�nite tree of possible executions. Nevertheless, while the behavior of the�rst machine is determined by internal choices solely, the behavior of the second machine isdetermined also by external choices, made by its environment. Formally, in a closed system,the environment cannot modify any of the system variables. In contrast, in an open system,the environment can modify some of the system variables.Designing correct open systems is not an easy task. The design has to be correct withrespect to any environment, and often there is much uncertainty regarding the environment[FZ88]. Therefore, in the context of open systems, formal speci�cation and veri�cation ofthe design has great importance. Traditional formalisms for speci�cation of systems relatethe initial state and the �nal state of a system [Flo67, Hoa69]. In 1977, Pnueli suggestedtemporal logics as a suitable formalism for reasoning about the correctness of nonterminatingsystems [Pnu77]. The breakthrough that temporal logics brought to the area of speci�cationand veri�cation arises from their ability to describe an ongoing interaction of a reactive modulewith its environment [HP85]. This ability makes temporal logics particularly appropriate forthe speci�cation of open systems.Two possible views regarding the nature of time induce two types of temporal logics [Lam80].In linear temporal logics, time is treated as if each moment in time has a unique possible future.Thus, linear temporal logic formulas are interpreted over linear sequences and we regard themas describing the interaction of the system with its environment along a single computation.In branching temporal logics, each moment in time may split into various possible futures.Accordingly, the structures over which branching temporal logic formulas are interpreted arein�nite trees, and they describe the possible interactions of a system with its environment. Inboth paradigms, we can describe the design in some formal model, specify its required behaviorwith a temporal logic formula, and check formally that the model satis�es the formula. Hencethe name model checking for the veri�cation methods derived from this viewpoint.We model �nite-state closed systems by programs . We model �nite-state open systems byreactive programs (modules , for short). A module is simply a program with a partition of thestates into two sets. One set contains system states and corresponds to locations where thesystem makes a transition. The second set contains environment states and corresponds to2



locations where the environment makes a transition1. Consider the module M presented on theright. It has three system states (boil, tea, and co�ee), and ithas one environment state (choose). It models the seconddrink-dispensing machine described above. When M is inthe system state boil, we know exactly what its possible nextstates are. It can either stay in the state boil or move tothe state choose. In contrast, when M is in the environmentstate choose, there is no certainty with respect to the envi-ronment and we cannot be sure that both tea and co�ee arepossible next states. For example, it might be that for someusers of the machine, co�ee is not a desirable option. If weignore the partition of M 's states to system and environmentstates and regard it as a program P , then it models the �rstdrink-dispensing machine described above. s es sboilM : co�eetea chooseTo see the di�erence between the semantics of programs and modules, let us consider twoquestions. Is it always possible for the �rst machine to eventually serve tea? This is equivalent toasking whether P satis�es the CTL formula AGEF tea, and the answer is positive. Is it alwayspossible for the second machine to eventually serve tea? Here, the answer is negative. Indeed, ifthe environment always choose co�ee, the second machine will never serve tea. Suppose now thatwe check with current model-checking tools whether it is always possible for the second machineto eventually serve tea, what will be the answer? Unfortunately, existing model-checking toolsdo not distinguish between closed and open systems. They regard M as a program and answerpositively.As discussed in [MP92], when the speci�cation is given in linear temporal logic, there isindeed no need to worry about uncertainty with respect to the environment; since all thepossible interactions of the system with its environment have to satisfy a linear temporal logicspeci�cation in order for M to satisfy the speci�cation, the program P and the module Msatisfy exactly the same linear temporal logic formulas. From the example above we learn thatwhen the speci�cation is given in branching temporal logic, we do need to take into accountthe uncertainty about the environment. There is a need to de�ne a di�erent model-checkingproblem for open systems, and there is a need to adjust current model-checking tools to handleopen systems correctly.We now specify formally the problem of model checking of open systems (module checking ,for short). As with usual model checking, the problem has two inputs. A module M and atemporal logic formula  . For a module M , let VM denote the unwinding of M into an in�nitetree. We say that M satis�es  i�  holds in all the trees obtained by pruning from VMsubtrees whose root is a successor of an environment state. The intuition is that each such1A similar way for modeling open systems is suggested in [LT88, Lar89]. There, Larsen and Thomsen useModal Transition Systems, where some of the transitions are admissible and some are necessary, in order tospecify processes loosely, allowing a re�nement ordering between processes.3



tree corresponds to a di�erent (and possible) environment. We want  to hold in every suchtree since, of course, we want the open system to satisfy its speci�cation no matter how theenvironment behaves. For example, an environment for the second drink-dispensing machineis an in�nite line of thirsty people waiting for their drinks. Since each person in the line caneither like both co�ee and tea, or like only co�ee, or like only tea, there are many di�erentpossible environments to consider. Each environment induces a di�erent tree. For example,an environment in which all the people in line do not like tea, induces a tree that has the leftsubtree of all its choose nodes pruned. Similarly, environments in which the �rst person in linelikes both co�ee and tea induce trees in which the �rst choose node has two successors2. Notethat the way we have de�ned module checking implies that we view the path quanti�ers ofthe branching formula as ranging over the internal choices of the module, whereas the externalchoices are implicitly universally quanti�ed. We believe that, in many circumstances, this isthe natural choice and we justify it further in Section 6. One can generalize from this point ofview and consider that the path quanti�ers of the logic can be interpreted both over internaland external choices. This then implies that the logic should be extended in order to explicitlyspecify over which choices path quanti�ers should be interpreted. This idea is investigatedin [AHK97].We examine the complexity of the module-checking problem for linear and branching tem-poral logics. Recall that for the linear paradigm, the problem of module checking coincides withthe problem of model checking. Hence, the known complexity results for LTL model checkingremain valid. As we have seen, for the branching paradigm these problems do not coincide.We show that the problem of module checking is much harder. In fact, it is as hard as sat-is�ability. Thus, CTL module checking is EXPTIME-complete and CTL? module checking is2EXPTIME-complete, both worse than the PSPACE complexity we have for LTL. Keeping inmind that CTL model checking can be done in linear time [CES86] and CTL? model checkingcan be done in polynomial space [EL85], this is really bad news. We also show that for CTLand CTL?, the program complexity of module checking (i.e., the complexity of this problem interms of the size of the module, assuming the formula is �xed), is PTIME-complete, worse thanthe NLOGSPACE complexity we have for LTL. As the program complexity of model checkingfor both CTL and CTL? is NLOGSPACE [BVW94], this is bad news too.As a consolation for the branching-time paradigm, we show that from a practical pointof view, our news is not that bad. We show that in the absence of existential quanti�cation,module checking and model checking do coincide. Thus, 8CTL module checking can be donein linear time, and its program complexity is NLOGSPACE. More consolation can be foundin \possibly" and \always possibly" properties. These classes of properties are considered anadvantage of the branching paradigm. While being easily speci�ed using the CTL formulasEF� and AGEF�, these properties cannot be speci�ed in LTL [EH86]. We show that modulechecking of the formulas EF� and AGEF� can be done in linear time (though the problems2Readers familiar with game theory can view module checking as solving an in�nite game between the systemand the environment. A correct system is then one that has a winning strategy in this game.4



are PTIME-complete).2 PreliminariesThe logic CTL? is a branching temporal logic. A path quanti�er, E (\for some path") or A(\for all paths"), can pre�x an assertion composed of an arbitrary combination of linear timeoperators. There are two types of formulas in CTL?: state formulas, whose satisfaction isrelated to a speci�c state, and path formulas, whose satisfaction is related to a speci�c path.Formally, let AP be a set of atomic proposition names. A CTL? state formula is either:� true, false, or p, for p 2 AP .� :', ' _  , or ' ^  where ' and  are CTL? state formulas.� E' or A', where ' is a CTL? path formula.A CTL? path formula is either:� A CTL? state formula.� :', ' _  , ' ^  , G', F', X', or 'U , where ' and  are CTL? path formulas.The logic CTL? consists of the set of state formulas generated by the above rules.The logic CTL is a restricted subset of CTL?. In CTL, the temporal operators G, F , X ,and U must be immediately preceded by a path quanti�er. Formally, it is the subset of CTL?obtained by restricting the path formulas to be G', F', X', 'U , where ' and  are CTLstate formulas. Thus, for example, the CTL? formula ' = AGF (p^EXq) is not a CTL formula.Adding a path quanti�er, say A, before the F temporal operator in ' results in the formulaAGAF (p ^ EXq), which is a CTL formula. The logic 8CTL? is a restricted subset of CTL?that allows only universal path quanti�cation. Thus, it allows only the path quanti�er A, whichmust always be in the scope of an even number of negations. Note that assertions of the form:A , which is equivalent to E: , are not possible. Thus, the logic 8CTL? is not closed undernegation. The formula ' above is not a 8CTL? formula. Changing the path quanti�er E in' to the path quanti�er A results in the formula AGF (p ^ AXq), which is a 8CTL? formula.The logic 8CTL is de�ned similarly, as the restricted subset of CTL that allows only universalpath quanti�cation. The logics 9CTL? and 9CTL are de�ned analogously, as the existentialfragments of CTL? and CTL, respectively. Note that negating a 8CTL? formula results in an9CTL? formula. The logic LTL is a linear temporal logic. Its syntax does not allow any pathquanti�cation.The semantics of the logic CTL? (and its sub-logics) is de�ned with respect to a programP = hAP;W;R;w0; Li, where AP is the set of atomic propositions, W is a set of states,R � W � W is a transition relation that must be total (i.e., for every w 2 W there exists5



w0 2 W such that R(w;w0)), w0 is an initial state, and L : W ! 2AP maps each state to aset of atomic propositions true in this state. For w and w0 with R(w;w0), we say that w0 is asuccessor of w and we use bd(w) to denote the number of successors that w has. A path of Pis an in�nite sequence � = w0; w1; : : : of states such that for every i � 0, we have R(wi; wi+1).The su�x wi; wi+1; : : : of � is denoted by �i. We use w j= ' to indicate that a state formula 'holds at state w, and we use � j= ' to indicate that a path formula ' holds at path � (assumingan agreed program P ). The relation j= is inductively de�ned as follows.� For all w, we have that w j= true and w 6j= false.� For an atomic proposition p 2 AP , we have w j= p i� p 2 L(w)� w j= :' i� w 6j= '.� w j= ' _  i� w j= ' or w j=  .� w j= E' i� there exists a path � = w0; w1; : : : such that w0 = w and � j= '.� � j= ' for a state formula ' i� w0 j= '.� � j= :' i� � 6j= '.� � j= ' _  i� � j= ' or w j=  .� � j= X' i� �1 j= '.� � j= 'U i� there exists j � 0 such that �j j=  and for all 0 � i < j, we have �i j= '.The semantics above considers the Boolean operators : (\negation") and _ (\or"), thetemporal operatorsX (\next") and U (\until"), and the path quanti�er A. The other operatorsare superuous and can be viewed as the following abbreviations.� ' ^  = :((:')_ (: )) (\and").� F' = trueU' (\eventually").� G' = :F:' (\always").� A' = :E:' (\for all paths").Formulas of LTL are interpreted over paths in a program. The notation P j= ' indicatesthat the LTL formula ' holds in all the paths of the program P .A closed system is a system whose behavior is completely determined by the state of thesystem. We model a closed system by a program. An open system is a system that interactswith its environment and whose behavior depends on that interaction. We model an opensystem by a module M = hAP;Ws;We; R; w0; Li, where AP;R;w0, and L are as in programs,6



Ws is a set of system states , We is a set of environment states , and we often use W to denoteWs [We.We assume that the states in M are ordered. For each state w 2 W , let succ(w) be anordered tuple of w's R-successors; i.e., succ(w) = hw1; : : : ; wbd(w)i, where for all 1 � i � bd(w),we have R(w;wi), and the wi's are ordered. Consider a system state ws and an environmentstate we. Whenever a module is in the state ws, all the states in succ(ws) are possible nextstates. In contrast, when the module is in state we, there is no certainty with respect tothe environment transitions and not all the states in succ(we) are possible next states. Theonly thing guaranteed, since we consider environments that cannot block the system, is thatnot all the transitions from we are disabled. For a state w 2 W , let step(w) denote theset of the possible (ordered) sets of w's next successors during an execution. By the above,step(ws) = fsucc(ws)g and step(we) contains all the nonempty sub-tuples of succ(we).For k 2 IN, let [k] denote the set f1; 2; : : : ; kg. An in�nite tree with branching degreesbounded by k is a nonempty set T � [k]� such that if x � c 2 T where x 2 [k]� and c 2 [k], thenalso x 2 T , and for all 1 � c0 < c, we have that x � c0 2 T . In addition, if x 2 T , then x � 1 2 T .The elements of T are called nodes , and the empty word " is the root of T . For every nodex 2 T , we denote by d(x) the branching degree of x; that is, the number of c 2 [k] for whichx � c in T . A path of T is a set � � T such that " 2 T and for all x 2 �, there exists a singlec 2 [k] such that x � c 2 �. Given an alphabet �, a �-labeled tree is a pair hT; V i where T isa tree and V : T ! � maps each node of T to a letter in �. A module M can be unwoundinto an in�nite tree hTM ; VMi in a straightforward way3. When we examine a speci�cation withrespect to M , the speci�cation should hold not only in hTM ; VMi (which corresponds to a veryspeci�c environment that never restricts the set of its next states), but in all the trees obtainedby pruning from hTM ; VMi subtrees whose root is a successor of a node corresponding to anenvironment state. Let exec(M) denote the set of all these trees. Formally, hT; V i 2 exec(M)i� the following holds:� V (") = w0.� For all x 2 T with V (x) = w, there exists hw1; : : : ; wni 2 step(w) such that T\(fxg�IN) =fx � 1; x � 2; : : : ; x � ng and for all 1 � c � n we have V (x � c) = wc.Intuitively, each tree in exec(M) corresponds to a di�erent behavior of the environment. Wewill sometimes view the trees in exec(M) as 2AP -labeled trees, taking the label of a node x tobe L(V (x)). Which interpretation is intended will be clear from the context.Given a module M and a CTL? formula  , we say that M satis�es  , denoted M j=r  ,if all the trees in exec(M) satisfy  . The problem of deciding whether M satis�es  is called3Since we assume that the states ofM are ordered, there is indeed only a single such tree. Since temporal-logicformulas cannot distinguish between trees obtained by di�erent orders, we do not lose generality by consideringa particular order. 7



module checking4. We use M j=  to indicate that when we regard M as a program (thusrefer to all its states as system states), then M satis�es  . The problem of deciding whetherM j=  is the usual model-checking problem [CE81, QS81]. It is easy to see that while M j=r  implies that M j=  , the other direction is not necessarily true. Also, while M j=  impliesthat M 6j=r : , the other direction is not true as well. Indeed, M j=r  requires all the treesin exec(M) to satisfy  . On the other hand, M j=  means that the tree hTM ; VMi satis�es  .Finally, M 6j=r : only tells us that there exists some tree in exec(M) that satis�es  .We can de�ne module checking also with respect to linear-time speci�cations. We say thata module M satis�es an LTL formula  i� M j=r A .In order to solve the module-checking problem, we are going to use nondeterministic tree au-tomata. Tree automata run on �-labeled trees. A B�uchi tree automaton isA = h�;D; Q; q0; �; F i,where � is an alphabet, D is a �nite set of branching degrees (positive integers), Q is a setof states, q0 2 Q is an initial state, � : Q � � � D ! 2Q� is a transition function satisfying�(q; �; d) 2 Qd, for every q 2 Q, � 2 �, and d 2 D, and F � Q is an acceptance condition.A run of A on an input �-labeled tree hT; V i with branching degrees in D is a Q-labeled treehT; ri such that r(") = q0 and for every x 2 T , we have that hr(x � 1); r(x � 2); : : : ; r(x � d)i 2�(r(x); V (x); d(x)). If, for instance, r(1 � 1) = q, V (1 � 1) = �, d(1 � 1) = 2, and �(q; �; 2) =fhq1; q2i; hq4; q5ig, then either r(1 � 1 � 1) = q1 and r(1 � 1 � 2) = q2, or r(1 � 1 � 1) = q4 andr(1 � 1 � 2) = q5. Given a run hT; ri and a path � � T , we de�neInf (rj�) = fq 2 Q : for in�nitely many x 2 �; we have r(x) = qg:That is, Inf (rj�) is the set of states that r visits in�nitely often along �. A run hT; ri isaccepting i� for all paths � � T , we have Inf (rj�)\ F 6= ;. Namely, along all the paths of T ,the run visits states from F in�nitely often. An automaton A accepts hT; V i i� there existsan accepting run hT; ri of A on hT; V i. We use L(A) to denote the language of the automatonA; i.e., the set of all trees accepted by A. In addition to B�uchi tree automata, we also refer toRabin tree automata. There, F � 2Q � 2Q, and a run is accepting i� for every path � � T ,there exists a pair hG;Bi 2 F such that Inf (rj�)\ G 6= ; and Inf (rj�)\B = ;.The size of an automaton A, denoted jAj, is de�ned as jQj+ j�j+ jF j, where j�j is the sumof the lengths of tuples that appear in the transitions in �, and jF j is the sum of the sizes ofthe sets appearing in F (a single set in the case A is a B�uchi automaton, and 2m sets in thecase A is a Rabin automaton with m pairs). Note that jAj is independent of the sizes of � andD. Note also that A can be stored in space O(jAj).4A di�erent problem where a speci�cation is checked to be correct with respect to any environment is discussedin [ASSS94]. There, the formula may refer to atomic propositions not in the module and it should hold in allcompositions that contain the module as a component.8



3 Module Checking for Branching Temporal LogicsWe have already seen that for branching temporal logics, the model-checking problem and themodule-checking problem do not coincide. In this section we study the complexity of CTLand CTL? module checking. We show that the di�erence between the model-checking and themodule-checking problems reects in their complexities, and in a very signi�cant manner.Theorem 3.1(1) The module-checking problem for CTL is EXPTIME-complete.(2) The module-checking problem for CTL? is 2EXPTIME-complete.Proof: We start with the upper bounds. Given M and  , we de�ne two tree automata.Essentially, the �rst automaton accepts the set of trees in exec(M) and the second automatonaccepts the set of trees that do not satisfy  . Thus,M j=r  i� the intersection of the automatais empty.Recall that each tree in exec(M) is obtained from hTM ; VMi by pruning some of its subtrees.The tree hTM ; VMi is a 2AP -labeled tree. We can think of a tree hT; V i 2 exec(M) as the(2AP [ f?g)-labeled tree obtained from hTM ; VMi by replacing the labels of nodes pruned inhT; V i by ?. Doing so, all the trees in exec(M) have the same shape (they all coincide withTM), and they di�er only in their labeling. Accordingly, we can think of an environment tohTM ; VMi as a strategy for placing ?'s in hTM ; VMi: placing a ? in a certain node correspondsto the environment disabling the transition to that node. Since we consider environments thatdo not \block" the system, at least one successor of each node is not labeled with ?. Also,once the environment places a ? in a certain node x, it should keep placing ?'s in all the nodesof the subtree that has x as its root. Indeed, all the nodes to this subtree are disabled. The�rst automaton, AM , accepts all the (2AP [ f?g)-labeled tree obtained from hTM ; VMi by sucha \legal" placement of ?'s. Formally, given a module M = hAP;Ws;We; R; w0; Li, we de�neAM = h2AP [ f?g;D; Q; q0; �; Qi, where� D = Sw2W fbd(w)g. That is, D contains all the branching degrees in M (and hence alsoall branching degrees in TM).� Q = W � f>;`;?g). Thus, every state w of M induces three states hw;>i, hw;`i, andhw;?i in AM . Intuitively, when AM is in state hw;?i, it can read only the letter ?.When AM is in state hw;>i, it can read only letters in 2AP . Finally, when AM is in statehw;`i, it can read both letters in 2AP and the letter ?. Thus, while a state hw;`i leavesit for the environment to decide whether the transition to w is enabled, a state hw;>irequires the environment to enable the transition to w, and a state hw;?i requires theenvironment to disable the transition to w. The three types of states help us to makesure that the environment enables all transitions from system states, enables at least9



one transition from each environment state, and disables transitions from states that thetransition to them have already been disabled.� q0 = hw0;>i.� The transition function � : Q � � � D ! 2Q� is de�ned for w 2 W and k = bd(w) asfollows. Let succ(w) = hw1; : : : ; wki.{ For w 2 Ws [We and m 2 f`;?g, we have�(hw;mi;?; k) = hhw1;?i; hw2;?i; : : : ; hwk;?ii:{ For w 2 Ws and m 2 f>;`g, we have�(hw;mi; L(w); k) = hhw1;>i; hw2;>i; : : : ; hwk;>ii:{ For w 2 We and m 2 f>;`g, we have�(hw;mi; L(w); k) = f hhw1;>i; hw2;`i; : : : ; hwk;`ii;hhw1;`i; hw2;>i; : : : ; hwk;`ii;...hhw1;`i; hw2;`i; : : : ; hwk;>ii g:That is, �(hw;mi; L(w); k) contains k k-tuples. When the automaton proceeds ac-cording to the ith tuple, the environment can disable the transitions to all w's suc-cessors, except the transition to wi, which must be enabled.Note that � is not de�ned in the case where k 6= bd(w) or when the input does not meetthe restriction imposed by the >;`, and ? annotations, or by the labeling of w.Let k be the maximal branching degree in M . It is easy to see that jQj � 3 � jW j andj�j � k � jRj. Thus, assuming that jW j � jRj, the size of AM is bounded by O(k � jRj).Recall that a node of hT; V i 2 L(AM ) that is labeled ? stands for a node that actually doesnot exist in the corresponding pruning of hTM ; VMi. Accordingly, if we interpret CTL? formulasover the trees obtained by pruning subtrees of hTM ; VMi by means of the trees recognized by AM ,we should treat a node that is labeled by ? as a node that does not exist. To do this, we de�nea function f : CTL? formulas ! CTL? formulas such that f(�) restricts path quanti�cation topaths that never visit a state labeled with ?. We de�ne f inductively as follows.� f(q) = q.� f(:�) = :f(�).� f(�1 _ �2) = f(�1) _ f(�2). 10



� f(E�) = E((G:?)^ f(�)).� f(A�) = A((F?) _ f(�)).� f(X�) = Xf(�).� f(�1U�2) = f(�1)Uf(�2).For example, f(EqU(AFp)) = E((G:?)^(qU(A((F?)_Fq)))). When  is a CTL formula,the formula f( ) is not necessarily a CTL formula. Still, it has a restricted syntax: its pathformulas have either a single linear-time operator or two linear-time operators connected by aBoolean operator. By [KG96], formulas of this syntax have a linear translation to CTL.Given  , let AD;: be a B�uchi tree automaton that accepts exactly all the tree models off(: ) with branching degrees in D. By [VW86b], such AD;: of size 2k�O(j j) exists.By the de�nition of satisfaction, we have that M j=r  i� all the trees in exec(M) satisfy . In other words, if no tree in exec(M) satis�es : . Recall that the automaton AM accepts a(2AP [f?g)-labeled tree i� it corresponds to a \legal" pruning of hTM ; VMi by the environment,with a pruned node being labeled by ?. Also, the automaton AD;: accepts a (2AP [ f?g)-labeled tree i� it does not satisfy  , with path quanti�cation ranging only over paths thatnever meet a node labeled with ?. Hence, checking whetherM j=r  can be reduced to testingL(AM )\L(AD;: ) for emptiness. Equivalently, we have to test L(AM �AD;: ) for emptiness.By [VW86b], the nonemptiness problem of B�uchi tree automata can be solved in quadratictime, which gives us an algorithm of time complexity O(jRj2 � 2k�O(j j)).The proof is similar for CTL?. Here, following [ES84, EJ88], we have that AD;: is aRabin tree automaton with 2k�2O(j j) states and 2O(j j) pairs. By [EJ88, PR89a], checking theemptiness of L(AM �AD;: ) can then be done in time (k � jRj)2O(j j) � 2k�2O(j j) .It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, wereduce CTL satis�ability, proved to be EXPTIME-complete in [FL79, Pra80], to CTL modulechecking. Given a CTL formula  , we construct a module M and a CTL formula ' such thatthe size of M is quadratic in the length of  , the length of ' is linear in the length of  , and is satis�able i� M 6j=r :'.Consider a CTL formula  . For simplicity, let us �rst assume that  has a single atomicproposition q. Let n be the number of existential quanti�ers in  plus 1. By the su�cientbranching-degree property of CTL,  is satis�able i� there exists a f;; fqgg-labeled tree ofbranching degree n that satis�es  [Eme90]. Let Pn be a clique with n states. By the above, is satis�able i� there exists a possibility to label an unwinding of Pn such that the resultedf;; fqgg-labeled tree satis�es  . This simple idea, due to [Kup97], is the key to our reduction.We de�ne a module Mn such that each tree in exec(Mn) corresponds to a f;; fqgg-labelingof hTPn ; VPni. We then de�ne ' such that there exists a tree satisfying ' in exec(Mn) i�there exists a f;; fqgg-labeling of hTPn ; VPni that satis�es  . It follows that  is satis�able i�M 6j=r :'. Let [n] = f1; : : : ; ng, [n]0 = f10; : : : ; n0g, and let Mn = hAP;Ws;We; R; w; Li, where,11



� AP = fghost, qg.� Ws = [n].� We = [n]0 [ fheaven,hell g.� R = fhi; ji : i; j 2 [n]g [ fhi; i0i : i 2 [n]g [ ([n]0 �fheaven,hell g)[ fhheaven,heavenig [ fhhell,hell ig.� w = 1.� For all i 2 [n], we have L(i) = ; and L(i0) = fghostg.Also, L(heaven) = fqg and L(hell ) = ;.
q1 32The reactive module M320 3010That is, the system states of Mn induce the clique Pn. In addition, each system state has aghost: an environment state with two successors, one labeled with q and one not labeled withq. Intuitively, the ability of the ghost i0 to take an environment transition to heaven in Mn,corresponds to the ability of a node associated with the state i in hTPn ; VPni to be labeled withq. Thus, each tree in exec(Mn) indeed corresponds to a f;; fqgg-labeling of hTPn ; VPni. Wenow have to de�ne ' such that whenever the formula  refers to q, the formula ' will refer toEXEXq. Indeed, since heaven is the only state labeled with q, then a system state satis�esEXEXq i� the transition of its ghost to heaven is enabled. In addition, path quanti�cationin ' should be restricted to computations of Pn. That is, to paths that never meet a ghost.To do this, we again use the function f : CTL? formulas ! CTL? formulas de�ned above, thistime f(�) restricts path quanti�cation to paths that never visit a state labeled with ghost. Forexample, f(EqU(AFp)) = E((G:ghost) ^ (qU(A((Fghost) _ Fq)))). We can now de�ne ' asf( ) with EXEXq replacing q. Note that we �rst apply f and only then do the replacement.When  has more than one atomic proposition, the reduction is very similar. Then, for  over fq1; : : : ; qmg, we havem heavens, one for each atomic proposition. Accordingly, we replacea proposition qi in  with EXEXqi in '. The obtained module has 2n +m + 1 states and ithas n2 + n(m+ 2) +m+ 1 transitions.The proof is the same for CTL?. Here, we do a reduction from satis�ability of CTL?, provedto be 2EXPTIME-hard in [VS85].We note that the problem of CTL module checking is EXPTIME-complete even for thefollowing restricted versions of the problem.� The modules have only environment states. To see this, we de�ne Mn as the clique Pn,adding a transition from each state to heaven (with no ghosts involved). We then forceeach node of a tree in exec(Mn) to have as children at least its n successors in Pn (thiscan be enforced by the formula, having [n] as atomic propositions, and having formulaslike AG(1! EX2^EX3) conjuncted with the original formula), and replace q in  with12



EXq in '. The price of using only environment states is that now the length of ' isquadratic in the length of  .� The modules are of a �xed size. To see this, note that the size of Mn depends on thenumber of atomic propositions in  and on the minimum branching degree of modelsof  . Proving that the satis�ability problem for CTL is EXPTIME-hard, Fisher andLander reduce acceptance of a word x by a linear-space alternating Turing machine tosatis�ability of a CTL formula  x [FL79]. In an alternating Turing machine (with abinary branching degree), each con�guration has two possible successor con�gurations.Some of the con�gurations are classi�ed as universal and some are classi�ed as existential .A computation of an alternating Turing machine is a tree labeled with con�gurations. Anode that is labeled by a universal con�guration should have two successors. A node thatis labeled by an existential con�guration may have only one successor. The computationis accepting i� all the paths in the tree eventually reach an accepting con�guration.A somewhat di�erent reduction, which considers a �xed linear-space Turing machinethat decides an EXPTIME-complete problem, results in  x of length polynomial in jxj,but with a �xed number of atomic propositions, which, if satis�able, has models withbranching degree 2. Such  x induces, for all x, modules of a �xed size.� The formulas are in 9CTL, the existential fragment of CTL. To see this, consider againa �xed linear-space alternating Turing machine T that decides an EXPTIME-completeproblem. The formula  x above encodes all the possible accepting computations of Ton an input word x. Alternation between universal and existential con�gurations inT is handled by alternation between universal and existential path quanti�cation in  x.Another way to handle alternation in T is by alternation between system and environmentstates in the module.To see this, assume that T has a tape of length n. Since T is �xed, then by encoding eachof its con�gurations by a sequence of n states, we can de�ne a module M of size linear inn such that M embodies all the possible computations of T on x (and more trees, thatare not legal computations). Thus, the tree hTM ; VMi embodies the execution of T on xwhen we require all the con�gurations of T , and not only the universal ones, to have twosuccessors in the computation. An environment toM prunes subtrees that correspond tobranches from T 's existential con�gurations. Thus, a state in M that encodes a last nodein an existential con�guration of T is an environment state. On the other hand, sincewe do not want the environment to prune subtrees that branch from T 's universal states,and since neither do we want it to prune a subtree whose root is not the �rst node in asequence of nodes that encode a con�guration, all other states in M are system states. Itfollows that each tree in exec(M) corresponds to a computation of T on x. We de�ne a8CTL formula ' such that T accepts x i� there exists a tree in exec(M) that satis�es '(hence, T accepts x i� M does not satisfy ', which is an 9CTL formula). As in [FL79],the formula ' requires that each branch in the tree encodes a sequence of con�gurations13



that starts at the initial con�guration and ends at an accepting con�guration.4 The Program Complexity of Module CheckingWhen analyzing the complexity of model checking, a distinction should be made between com-plexity in the size of the input structure and complexity in the size of the input formula; it is thecomplexity in size of the structure that is typically the computational bottleneck [LP85]. In thissection we consider the program complexity [VW86a] of module checking; i.e., the complexityof this problem in terms of the size of the input module, assuming the formula is �xed. It isknown that the program complexity of LTL, CTL, and CTL? model checking is NLOGSPACE[VW86a, BVW94]. This is very signi�cant since it implies that if the system to be checked isobtained as the product of the components of a concurrent program (as is usually the case),the space required is polynomial in the size of these components rather than of the order of theexponentially larger composition.We have seen that when we measure the complexity of the module-checking problem interms of both the program and the formula, then module checking of CTL and CTL? formulasis much harder than their model checking. We now claim that when we consider programcomplexity, module checking is still harder.Theorem 4.1 The program complexity of CTL and CTL? module checking is PTIME-completewith respect to logspace reductions.Proof: Since the algorithms given in the proof of Theorem 3.1 are polynomial in the size ofthe module, membership in PTIME is immediate.We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV),proved to be PTIME-hard in [Gol77], to module checking of the CTL formula EFp. In theMCV problem, we are given a monotonic Boolean circuit � (i.e., a circuit constructed solely ofAND gates and OR gates), and a vector hx1; : : : ; xni of Boolean input values. The problem isto determine whether the output of � on hx1; : : : ; xni is 1.Let us denote a monotonic circuit by a tuple � = hG8; G9; Gin; gout; T i, where G8 is the setof AND gates, G9 is the set of OR gates, Gin is the set of input gates (identi�ed as g1; : : : ; gn),gout 2 G8[G9 [Gin is the output gate, and T � G�G denotes the acyclic dependencies in �,that is hg; g0i 2 T i� the output of gate g0 is an input of gate g.Given a monotonic circuit � = hG8; G9; Gin; gout; T i and an input vector ~x = hx1; : : : ; xni,we construct a module M�;~x = hf0; 1g; G8; G9 [ Gin; R; gout; Li, where� R = T [ fhg; gi : g 2 Ging.� For g 2 G8 [G9, we have L(g) = f1g. For gi 2 Gin, we have L(gi) = fxig.14



Clearly, the size of M�;~x is linear in the size of �. Intuitively, each tree in exec(M�;~x)corresponds to a decision of � as to how to satisfy its OR gates (we satisfy an OR gate bysatisfying any nonempty subset of its inputs). It is therefore easy to see that there exists atree hT; V i 2 exec(M�;~x) such that hT; V i j= AG1 i� the output of � on x is 1. Hence, by thede�nition of module checking, we have that M�;~x j=r EF0 i� the output of � on x is 0.Recall that for a CTL formula  , checking that a module M satis�es  reduces to testingemptiness of the automaton AM � AD;: . Checking nonemptiness of a B�uchi tree automatoncan be reduced to calculating a �-calculus expression of alternation depth 2 [Rab69, VW86b].As such, it can be implemented, using symbolic methods, in tools that handle �xed-pointcalculations (e.g., SMV [BCM+90, McM93]).5 PragmaticsHow bad is our news? In this section we show that from a pragmatic point of view, it isnot that bad. We show that in the absence of existential quanti�cation, module checking andmodel checking coincide, and that in the case where there is only a limited use of existentialquanti�cation, module checking can still be done in linear time.5.1 Module Checking for Universal Temporal LogicsLemma 5.1 For universal branching temporal logics, the module-checking problem and themodel-checking problem coincide.Proof: Given a module M and a 8CTL? formula  , we prove that M j=r  i� M j=  .Assume �rst thatM j=r  . Then, all trees in exec(M) satisfy  . Thus, in particular, hTM ; VMisatis�es  and M j=  . Assume now that M j=  . Every tree in exec(M) has less behaviorsthan the tree hTM ; VMi. Thus, formally, the tree hTM ; VMi is simulated by all trees in exec(M).Indeed, for every tree hT; V i 2 exec(M), the relation that maps each node x of T to the nodex of hTM ; VMi is a simulation relation between hT; V i and hTM ; VMi. Therefore, by [GL94], alltrees in exec(M) satisfy  , and M j=r  .In particular, it follows from Lemma 5.1 that module checking and model checking coincides forlinear temporal logics. Theorem 5.2 now follows from the known complexity results for LTL,8CTL, and 8CTL? model checking [SC85, CES86, BVW94, VW94].Theorem 5.2(1) The module-checking problem for 8CTL is in linear time.(2) The module-checking problem for LTL and 8CTL? is PSPACE-complete.(3) The program complexity of module checking for LTL, 8CTL, and 8CTL? is NLOGSPACE-complete. 15



5.2 Module Checking of \Possibly" and \Always Possibly" PropertiesWe have seen that, for each �xed CTL formula  , checking that a module M satis�es  can bechecked in time polynomial in the size of M . Sometimes, we can do even better. Some CTLformulas have a special structure that enables us to module check them in time linear in thesize of M . In this section we show that \possibly" and \always possibly" properties, by far themost popular properties speci�ed in CTL and not speci�able in 8CTL, induce such formulas.Consider the CTL formula EF send. The formula states that it is possible for the system toeventually send a request. We call properties of this form possibly properties . Consider now theCTL formula AGEF send. The formula states that in all computations, it is always possiblefor the system to eventually send a request. We call properties of this form always possiblyproperties . It is easy to see that possibly and always possibly properties cannot be speci�ed inlinear temporal logics, nor in universal branching logics [EH86].Theorem 5.3 Module checking of possibly and always possibly properties can be done in linearrunning time.Proof: We describe an e�cient algorithm that module checks these properties. For simplicity,we assume that system and environment states are labeled with atomic propositions s and e,respectively. Consider a module M = hAP;Ws;We; R; w0; Li and a propositional assertion �.By de�nition, M j=r EF� i� there exists no tree hT; V i 2 exec(M) all of whose nodes satisfy:�. We say that a state w 2W is safe i� every tree hT; V i 2 exec(M) that has a node labeledw is guaranteed to satisfy EF�. In other words, w is safe i� w cannot be a node in a tree allof whose nodes satisfy :�. We check that M j=r EF� by checking that w0 is safe. With everysafe state w we can associate a �nite integer level(w) such that for all trees in exec(M), thelength of the shortest path from a node labeled w to a node that satis�es � is at most level(w).Formally, we de�ne the level of each state by initially assigning the level 0 to states that satisfy� and assigning the level 1 to all other states. We then proceed iteratively. In the ith iterationwe assign the level i to system states that have a successor in level i � 1 and to environmentstates all of whose successors are in level at most i � 1. Clearly, the maximal �nite level thateach state may get is jW j, which also bounds the number of iterations required.Consider the monotone function f : 2W ! 2W where a state w is in f(y) i� one of thefollowing holds:1. w j= �,2. w is a system state that has a successor in y, or3. w is an environment state all of whose successors are in y.We prove that w is safe i� w is in the least �xed-point of f . For that, we use the Tarski-Knaster characterization of least �xed-points and prove thatw is safe i� w 2\fy : f(y) = yg:16



Assume �rst that w 2 Tfy : f(y) = yg. Let S be the set of all safe states. In order to be safe,a state w should satisfy one of the following:1. w j= �,2. w is a system state that has a safe successor, or3. w is an environment state all of whose successors are safe.Hence, f(S) = S, which implies, by the assumption, that w is in S and is therefore safe.Assume now that w is safe. Recall that if w is safe then level(w) = i for some �nite i.We prove that for all �nite i, if level(w) = i, then w 2 Tfy : f(y) = yg. The proof proceedsby induction on i. Consider �rst the case where level(w) = 0. Let y be any set of states forwhich f(y) = y. Since w j= �, then w 2 f(y). Hence, as f(y) = y, we have that w 2 y,and we are done. Assume now that the claim holds for all levels j � i and consider a statew with level(w) = i + 1. Let y be any set for which f(y) = y. We distinguish between twocases. First, if w is a system state, then, by the de�nition of its level, there exists a statew0 such that w0 is a successor of w and level(w0) = i. Then, by the induction hypothesis,w0 2 Tfz : f(z) = zg. In particular, w0 2 y. Therefore, w j= (s ^ EXy) and thus, by thede�nition of f , we have that w 2 f(y). Hence, f(y) = y, we have that w 2 y, and we are done.Second, if w is an environment state then, by the de�nition of its level, all its successor statesw0 have level(w0) � i, implying, by the induction hypothesis, that w0 2 Tfz : f(z) = zg. So,all the successors of w are in y. Therefore, w j= (e^AXy) and thus, by the de�nition of f , wehave that w 2 f(y). Hence, w 2 y, and we are done.Using �-calculus formalism [Koz83], we have that w is safe i� w j= �y:� _ (s ^EXy)_ (e ^AXy). Hence, M j=r EF� ,M j= �y:� _ (s ^ EXy)_ (e ^ AXy):Now,M j=r AGEF� i� there exists no tree hT; V i 2 exec(M) such that hT; V i has a subtreehT 0; V 0i all of whose nodes satisfy :�. We can therefore check that M j=r AGEF� by checkingthat all the reachable states in M are safe. Hence,M j=r AGEF� ,M j= �z:[�y:� _ (s ^ EXy)_ (e ^AXy)]^ AXz:So, we reduced module checking of possibly and always possibly properties to model checkingof an alternation-free �-calculus formula. As the latter can be done in linear running time[Cle93], we are done.Again, as our algorithms involve at most two simple �xed-point computations, they can beeasily implemented symbolically.What about the space complexity of checking these properties? Is there a nondeterministicalgorithm that can check always possibly properties in logarithmic space? As the formula we17



used proving Theorem 4.1 is EF�, the answer for possibly properties is no, unless NLOGSPACE= PTIME. Unsurprisingly, this is also the answer for the more complicated always possiblyproperties, as we claim in the theorem below.Theorem 5.4 Module checking of possibly and always possibly properties is PTIME-complete.Proof: Membership in PTIME follows from Theorem 5.3. To prove hardness in PTIME, wedo the same reduction we did for CTL. For EF�, we need no change. For AGEF� we dothe following change. Instead a self loop, each state associated with an input gate now has atransition to the initial state gout. Let us call the resulting module M 0�;~x. It is easy to see thatthere exists a tree hT; V i 2 exec(M 0�;~x) such that hT; V i j= EFAG1 i� the output of � on x is1. Hence, M 0�;~x j=r AGEF0 i� the output of � on x is 1.6 DiscussionThe discussion of the relative merits of linear versus branching temporal logics is almost asearly as these paradigms [Lam80]. We mainly refer here to the linear temporal logic LTLand the branching temporal logic CTL. One of the beliefs dominating this discussion has been\while specifying is easier in LTL, model checking is easier for CTL". Indeed, the restrictedsyntax of CTL limits its expressive power and many important behaviors (e.g., strong fairness)can not be speci�ed in CTL. On the other hand, while model checking for CTL can be donein time O(jP j � j j) [CES86], it takes time O(jP j � 2j j) for LTL [LP85]. Since LTL modelchecking is PSPACE-complete [SC85], the latter bound probably cannot be improved. Theattractive complexity of CTL model checking have compensated for its lack of expressive powerand branching-time model-checking tools that can handle systems with more than 10120 states[McM93, CGL93] are incorporated into industrial development of new designs [BBG+94].If we examine the history of these issues more closely, we �nd that things are not that simple.On one hand, the inability of LTL to quantify computations existentially is considered by manya serious drawback [EH86]. In addition, the introduction of fair-CTL [CES86] and of manyother extensions to CTL [Lon93, BBG+94, KG96], have made CTL a basis for speci�cationlanguages that maintain the e�ciency of CTL model checking and yet overcome many of itsexpressiveness limitations. On the other hand, the computational superiority of CTL is alsonot that clear. For example, comparing the complexities of CTL and LTL model checking forconcurrent programs, both are in PSPACE [VW86a, BVW94]. As shown in [Var95, KV95],the advantage that CTL enjoys over LTL disappears also when the complexity of modularveri�cation is considered.The distinction between closed an open systems questions the computational superiorityof the branching-time paradigm further. Indeed, the traditional belief of \CTL is easier thanLTL" compares these logics with respect to an ill de�ned setting: the systems are assumedto be nondeterministic, but the nature of the nondeterminism (internal or external) is never18



considered. One might be tempted to answer that model checking deals with complete systems,not with modules, and hence that it is checking closed systems and that all nondeterminism isinternal. This, however, is a fallacy.To see this, let us think about the origin of the nondeterminism in the programs we domodel check. First, there are no good reasons to write inherently nondeterministic programs.Furthermore, this is in fact impossible since, even if one can introduce nondeterministic con-structs in a programming language, any implementation of this language will make the choicesone way or another and hence be deterministic. Similarly, the nondeterminism that comesfrom the modeling of concurrency is also not inherent. Indeed, enough knowledge about theenvironment in which a concurrent program is run (the machine, the operating system,: : :) can,at least in theory, remove all uncertainty about its execution. So, does this mean that a closedsystem is always deterministic and hence always has a single linear execution? It does, but onlyif the system is modeled at a su�cient level of detail. This being almost always impossible,one uses nondeterminism as a representation of the lack of knowledge one has about parts ofthe system or its implementation: if we do not know what the system will do, we assume itcan do anything. If we do not know how processes are scheduled, we assume that scheduling isnondeterministic. But, this is external nondeterminism: the choices are viewed as being madeby an external agent of which the system has no detailed knowledge and does not control. Thesame is true of the \models of the environment" that are often added to systems in order toclose them: not knowing what the environment will do, we model it as being nondeterministic;it makes unpredictable and uncontrollable choices.Form this it follows that, at the level of abstraction at which model checking is usually done,there are no properly closed systems. Indeed, using nondeterminism to model absence of knowl-edge about system components amounts to introducing external nondeterminism and hence todescribing a module, not a closed system. So, what is needed is module checking, and is evenjust linear-time module checking, unless we can identify a source of internal nondeterminism.Suppose that nondeterminism is used not to model a lack of knowledge about a part of thesystem over which one has no control, but to model the fact that some implementation choiceshave not yet been made. For instance, imagine there is a scheduler that will be implementedby the system designer but that does not yet exist. A sound design approach could require thatthe system be model checked with a simple nondeterministic representation of the schedulerbefore it is actually implemented. The nondeterminism used in the scheduler representationis then internal: the choices are under the control of the system; the implementation of thescheduler can contain any desired choice policy. Furthermore, in this context branching-timemodel checking becomes quite natural. One can for instance check the existence of paths thatdo make the implementation of a reasonable scheduling policy feasible. But, what is requiredis module checking: the branching formula has to be satis�ed whatever external choices aremade.Our conclusion thus is that branching-time model checking should essentially always betreated as branching-time module checking. Moreover, the use of existential path quanti�ers is19



especially meaningful when one is checking the possibility of implementing a part of the systemthat has so far been modeled nondeterministically. In other words, when one is checking for thepossibility of synthesizing part of the system. Quite interestingly, the reactive module synthesisproblem studied in [PR89a, PR89b] or the realizability problem of [ALW89] can be describedas CTL? module checking problems. A similar link also exists with the supervisory controlproblem studied in the context of control theory [Ant95].Once one adopts this view that what we need is module checking rather than model checking,the usual argument that, from a complexity point of view, CTL is easier than LTL, topples.Indeed, the situation is then similar to the one existing for validity checking. In both problems,CTL is harder than LTL, and the universal fragment of CTL is easier than its existential one[KV95]. Finally, we note that the additional di�culties that need to be faced when we movefrom veri�cation of closed systems to veri�cation of open systems, do not arise when we considerveri�cation by bisimulation [Mil71]. To see this, consider two modules M and M 0. When welabel the states of the modules by their system/environment classi�cation, then M and M 0 arebisimilar i� every tree in exec(M) is bisimulated by a tree in exec(M 0), and vice versa. Thus,we can check bisimilarity between two modules in linear time, exactly as we check bisimilaritybetween programs. As in [BCG88], two modules are bisimilar i� they agree on satisfaction (inthe module-checking sense) of all CTL? formulas.Our results are summarized in the table below. All the complexities in the table denotetight bounds. program programcomplexity complexitymodel module of model of modulechecking checking checking checking satis�abilityLTL PSPACE PSPACE NLOGSPACE NLOGSPACE PSPACE[SC85] [VW86b] [SC85]CTL linear-time EXPTIME NLOGSPACE PTIME EXPTIME[CES86] [BVW94] [FL79, Pra80]CTL? PSPACE 2EXPTIME NLOGSPACE PTIME 2EXPTIME[EL85] [BVW94] [EJ88, VS85]8CTL linear-time linear-time NLOGSPACE NLOGSPACE PSPACE[CES86] [BVW94] [KV95]9CTL linear-time EXPTIME NLOGSPACE PTIME NPTIME[CES86] [BVW94] [KV95]EF� linear-time linear-time NLOGSPACE PTIME NPTIMEAGEF� [CES86] [BVW94] [GJ79]Acknowledgments. We are grateful to Martin Abadi for fruitful discussions on the veri�cation20
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