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Abstract

In computer system design, we distinguish between closed and open systems. A closed
system 1s a system whose behavior is completely determined by the state of the system. An
open system 1is a system that interacts with its environment and whose behavior depends
on this interaction. The ability of temporal logics to describe an ongoing interaction of a
reactive program with its environment makes them particularly appropriate for the speci-
fication of open systems. Nevertheless, model-checking algorithms used for the verification
of closed systems are not appropriate for the verification of open systems. Correct model
checking of open systems should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment. This is not the case
with current model-checking algorithms and tools.

In this paper we introduce and examine the problem of model checking of open systems
(module checking, for short). We show that while module checking and model checking coin-
cide for the linear-time paradigm, module checking is much harder than model checking for
the branching-time paradigm. We prove that the problem of module checking is EXPTIME-
complete for specifications in CTL and is 2EXPTIME-complete for specifications in CTL*.
This bad news 1s also carried over when we consider the program-complexity of module
checking. As good news, we show that for the commonly-used fragment of CTL (universal,
possibly, and always possibly properties), current model-checking tools do work correctly,
or can be easily adjusted to work correctly, with respect to both closed and open systems.
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1 Introduction

In computer system design, we distinguish between closed and open systems [HP85]. A closed
system is a system whose behavior is completely determined by the state of the system. An
open system is a system that interacts with its environment and whose behavior depends on this
interaction. As an example to closed and open systems, we can think of two drink-dispensing
machines. One machine, which is a closed system, repeatedly boils water, makes an internal
nondeterministic choice, and serves either coffee or tea. The second machine, which is an
open system, repeatedly boils water, asks the environment to choose between coffee and tea,
and deterministically serves a drink according to the external choice [Hoa85]. Both machines
induce the same infinite tree of possible executions. Nevertheless, while the behavior of the
first machine is determined by internal choices solely, the behavior of the second machine is
determined also by external choices, made by its environment. Formally, in a closed system,
the environment cannot modify any of the system variables. In contrast, in an open system,
the environment can modify some of the system variables.

Designing correct open systems is not an easy task. The design has to be correct with
respect to any environment, and often there is much uncertainty regarding the environment
[F788]. Therefore, in the context of open systems, formal specification and verification of
the design has great importance. Traditional formalisms for specification of systems relate
the initial state and the final state of a system [Flo67, Hoa69]. In 1977, Pnueli suggested
temporal logics as a suitable formalism for reasoning about the correctness of nonterminating
systems [Pnu77]. The breakthrough that temporal logics brought to the area of specification
and verification arises from their ability to describe an ongoing interaction of a reactive module
with its environment [HP85]. This ability makes temporal logics particularly appropriate for
the specification of open systems.

Two possible views regarding the nature of time induce two types of temporal logics [Lam80].
In linear temporal logics, time is treated as if each moment in time has a unique possible future.
Thus, linear temporal logic formulas are interpreted over linear sequences and we regard them
as describing the interaction of the system with its environment along a single computation.
In branching temporal logics, each moment in time may split into various possible futures.
Accordingly, the structures over which branching temporal logic formulas are interpreted are
infinite trees, and they describe the possible interactions of a system with its environment. In
both paradigms, we can describe the design in some formal model, specify its required behavior
with a temporal logic formula, and check formally that the model satisfies the formula. Hence
the name model checking for the verification methods derived from this viewpoint.

We model finite-state closed systems by programs. We model finite-state open systems by
reactive programs (modules, for short). A module is simply a program with a partition of the
states into two sets. Omne set contains system states and corresponds to locations where the
system makes a transition. The second set contains environment states and corresponds to



locations where the environment makes a transition!. Consider the module M presented on the
right. It has three system states (boil, tea, and coffee), and it

has one environment state (choose). It models the second
drink-dispensing machine described above. When M is in
the system state boil, we know exactly what its possible next
states are. It can either stay in the state boil or move to
the state choose. In contrast, when M is in the environment
state choose, there is no certainty with respect to the envi-
ronment and we cannot be sure that both tea and coffee are
possible next states. For example, it might be that for some
users of the machine, coffee is not a desirable option. If we

ignore the partition of M’s states to system and environment
states and regard it as a program P, then it models the first
drink-dispensing machine described above.

To see the difference between the semantics of programs and modules, let us consider two
questions. Is it always possible for the first machine to eventually serve tea? This is equivalent to
asking whether P satisfies the CTL formula AGFE Ftea, and the answer is positive. Is it always
possible for the second machine to eventually serve tea? Here, the answer is negative. Indeed, if
the environment always choose coffee, the second machine will never serve tea. Suppose now that
we check with current model-checking tools whether it is always possible for the second machine
to eventually serve tea, what will be the answer? Unfortunately, existing model-checking tools
do not distinguish between closed and open systems. They regard M as a program and answer
positively.

As discussed in [MP92], when the specification is given in linear temporal logic, there is
indeed no need to worry about uncertainty with respect to the environment; since all the
possible interactions of the system with its environment have to satisfy a linear temporal logic
specification in order for M to satisfy the specification, the program P and the module M
satisfy exactly the same linear temporal logic formulas. From the example above we learn that
when the specification is given in branching temporal logic, we do need to take into account
the uncertainty about the environment. There is a need to define a different model-checking
problem for open systems, and there is a need to adjust current model-checking tools to handle
open systems correctly.

We now specify formally the problem of model checking of open systems (module checking,
for short). As with usual model checking, the problem has two inputs. A module M and a
temporal logic formula 1. For a module M, let V3; denote the unwinding of M into an infinite
tree. We say that M satisfies ¢ iff 1) holds in all the trees obtained by pruning from Vjs
subtrees whose root is a successor of an environment state. The intuition is that each such

!A similar way for modeling open systems is suggested in [LT88, Lar89]. There, Larsen and Thomsen use
Modal Transition Systems, where some of the transitions are admissible and some are necessary, in order to
specify processes loosely, allowing a refinement ordering between processes.



tree corresponds to a different (and possible) environment. We want 1) to hold in every such
tree since, of course, we want the open system to satisfy its specification no matter how the
environment behaves. For example, an environment for the second drink-dispensing machine
is an infinite line of thirsty people waiting for their drinks. Since each person in the line can
either like both coffee and tea, or like only coffee, or like only tea, there are many different
possible environments to consider. Each environment induces a different tree. For example,
an environment in which all the people in line do not like tea, induces a tree that has the left
subtree of all its choose nodes pruned. Similarly, environments in which the first person in line
likes both coffee and tea induce trees in which the first choose node has two successors?. Note
that the way we have defined module checking implies that we view the path quantifiers of
the branching formula as ranging over the internal choices of the module, whereas the external
choices are implicitly universally quantified. We believe that, in many circumstances, this is
the natural choice and we justify it further in Section 6. One can generalize from this point of
view and consider that the path quantifiers of the logic can be interpreted both over internal
and external choices. This then implies that the logic should be extended in order to explicitly
specify over which choices path quantifiers should be interpreted. This idea is investigated
in [AHK97].

We examine the complexity of the module-checking problem for linear and branching tem-
poral logics. Recall that for the linear paradigm, the problem of module checking coincides with
the problem of model checking. Hence, the known complexity results for LTL model checking
remain valid. As we have seen, for the branching paradigm these problems do not coincide.
We show that the problem of module checking is much harder. In fact, it is as hard as sat-
isfiability. Thus, CTL module checking is EXPTIME-complete and CTL* module checking is
2EXPTIME-complete, both worse than the PSPACE complexity we have for LTL. Keeping in
mind that CTL model checking can be done in linear time [CES86] and CTL* model checking
can be done in polynomial space [EL85], this is really bad news. We also show that for CTL
and CTL*, the program complexity of module checking (i.e., the complexity of this problem in
terms of the size of the module, assuming the formula is fixed), is PTIME-complete, worse than
the NLOGSPACE complexity we have for LTL. As the program complexity of model checking
for both CTL and CTL* is NLOGSPACE [BVW94], this is bad news too.

As a consolation for the branching-time paradigm, we show that from a practical point
of view, our news is not that bad. We show that in the absence of existential quantification,
module checking and model checking do coincide. Thus, VCTL module checking can be done
in linear time, and its program complexity is NLOGSPACE. More consolation can be found
in “possibly” and “always possibly” properties. These classes of properties are considered an
advantage of the branching paradigm. While being easily specified using the CTL formulas
EF¢ and AGEFE, these properties cannot be specified in LTL [EH86]. We show that module
checking of the formulas FF¢ and AGEF£ can be done in linear time (though the problems

?Readers familiar with game theory can view module checking as solving an infinite game between the system
and the environment. A correct system is then one that has a winning strategy in this game.



are PTIME-complete).

2 Preliminaries

The logic CTL* is a branching temporal logic. A path quantifier, F' (“for some path”) or A
(“for all paths”), can prefix an assertion composed of an arbitrary combination of linear time
operators. There are two types of formulas in CTL*: state formulas, whose satisfaction is
related to a specific state, and path formulas, whose satisfaction is related to a specific path.
Formally, let AP be a set of atomic proposition names. A CTL* state formula is either:

e true, false, or p, for p € AP.
o 1, Vi, or o A where ¢ and @ are CTL* state formulas.

o Fyor Ap, where p is a CTL* path formula.
A CTL* path formula is either:

o A CTL”* state formula.

o . oV, o ANb, Go, Fo, X, or U, where ¢ and ¢ are CTL* path formulas.

The logic CTL* consists of the set of state formulas generated by the above rules.

The logic C'TL is a restricted subset of CTL*. In CTL, the temporal operators G, F, X,
and U must be immediately preceded by a path quantifier. Formally, it is the subset of CTL*
obtained by restricting the path formulas to be G, Fy, X, oU, where ¢ and 1 are CTL
state formulas. Thus, for example, the CTL* formula ¢ = AGF(pAE X q)is not a CTL formula.
Adding a path quantifier, say A, before the F' temporal operator in ¢ results in the formula
AGAF(p N EX¢q), which is a CTL formula. The logic VCTL* is a restricted subset of CTL*
that allows only universal path quantification. Thus, it allows only the path quantifier A, which
must always be in the scope of an even number of negations. Note that assertions of the form
- A, which is equivalent to F—1), are not possible. Thus, the logic YCTL* is not closed under
negation. The formula ¢ above is not a VCTL* formula. Changing the path quantifier F in
¢ to the path quantifier A results in the formula AGF(p A AXq), which is a VCTL* formula.
The logic YCTL is defined similarly, as the restricted subset of CTL that allows only universal
path quantification. The logics 3CTL* and FCTL are defined analogously, as the existential
fragments of CTL* and CTL, respectively. Note that negating a YVCTL* formula results in an
JCTL* formula. The logic LTL is a linear temporal logic. Its syntax does not allow any path

quantification.

The semantics of the logic CTL* (and its sub-logics) is defined with respect to a program
P = (AP,W,R,wq, L), where AP is the set of atomic propositions, W is a set of states,
R C W x W is a transition relation that must be total (i.e., for every w € W there exists



w' € W such that R(w,w’)), wg is an initial state, and L : W — 24 maps each state to a
set of atomic propositions true in this state. For w and w’ with R(w,w’), we say that w’ is a
successor of w and we use bd(w) to denote the number of successors that w has. A path of P
is an infinite sequence 7 = w?, w!, ... of states such that for every i > 0, we have R(wi, w”’l).
The suffix w', w'*tt, ... of 7 is denoted by 7'. We use w |= ¢ to indicate that a state formula ¢
holds at state w, and we use 7 |= ¢ to indicate that a path formula ¢ holds at path = (assuming

an agreed program P). The relation = is inductively defined as follows.

e For all w, we have that w |= true and w [~ false.

e Lor an atomic proposition p € AP, we have w |= piff p € L(w)

w = - iff wE e.

wEeVYiff wE@orwEp.

w |= Fo iff there exists a path 7 = wg, wy, ... such that wy = w and 7 |= ¢.

T |= ¢ for a state formula ¢ iff w° |= .

T | e iff T £ .

TEeVYiff T = ¢orwlE .

TE Xeiff 7t = .
o 7 |= U iff there exists j > 0 such that 77 |= 1 and for all 0 < i < j, we have 7° |= .
The semantics above considers the Boolean operators — (“negation”) and V (“or”), the

temporal operators X (“next”)and U (“until”), and the path quantifier A. The other operators
are superfluous and can be viewed as the following abbreviations.

o p AP =((p) V (79)) (Fand”).
o Fp =truely (“eventually”).

o Gp=-F-p (“always”).

o Ap = -E-p (“for all paths”).

Formulas of LTL are interpreted over paths in a program. The notation P |= ¢ indicates
that the LTL formula ¢ holds in all the paths of the program P.

A closed system is a system whose behavior is completely determined by the state of the
system. We model a closed system by a program. An open system is a system that interacts
with its environment and whose behavior depends on that interaction. We model an open
system by a module M = (AP, W,,W,, R, wq, L), where AP, R,wq, and L are as in programs,



W, is a set of system states, W, is a set of environment states, and we often use W to denote
W, u W,.

We assume that the states in M are ordered. For each state w € W, let suce(w) be an
ordered tuple of w’s R-successors; i.e., succ(w) = (w1, ..., Wyy(y)), Where for all 1 <@ < bd(w),
we have R(w,w;), and the w;’s are ordered. Consider a system state w, and an environment
state w.. Whenever a module is in the state wy, all the states in succ(wy) are possible next
states. In contrast, when the module is in state w,, there is no certainty with respect to
the environment transitions and not all the states in succ(w.) are possible next states. The
only thing guaranteed, since we consider environments that cannot block the system, is that
not all the transitions from w. are disabled. For a state w € W, let step(w) denote the
set of the possible (ordered) sets of w’s next successors during an execution. By the above,
step(ws) = {suce(w,)} and step(w,.) contains all the nonempty sub-tuples of suce(w,).

For k € IN, let [k] denote the set {1,2,...,k}. An infinite tree with branching degrees
bounded by k is a nonempty set 7' C [k]* such that if 2 - ¢ € T where z € [k]* and ¢ € [k], then
also z € T, and for all 1 < ¢’ < ¢, we have that 2 - ¢’ € T. In addition, if z € T, then 2 -1 € T.
The elements of T are called nodes, and the empty word ¢ is the root of T. For every node
x € T, we denote by d(z) the branching degree of x; that is, the number of ¢ € [k] for which
x-cinT. A path of T is a set # C T such that ¢ € T and for all € 7, there exists a single
¢ € [k] such that z - ¢ € 7. Given an alphabet ¥, a ¥-labeled tree is a pair (T, V) where T is
a tree and V : T — Y maps each node of T to a letter in 3. A module M can be unwound
into an infinite tree (Ths, Vas) in a straightforward way®. When we examine a specification with
respect to M, the specification should hold not only in (Tas, Vas) (which corresponds to a very
specific environment that never restricts the set of its next states), but in all the trees obtained
by pruning from (T, Var) subtrees whose root is a successor of a node corresponding to an
environment state. Let exec(M) denote the set of all these trees. Formally, (7,V) € exec(M)
iff the following holds:

[} V(é) = wWyp.

e Lorall 2 € T with V(2) = w, there exists (w1, ..., w,) € step(w) such that TN({z}xIN) =
{z-1,z-2,...,2-n} and for all 1 < ¢ < n we have V(z - ¢) = w,.

Intuitively, each tree in exec(M) corresponds to a different behavior of the environment. We
will sometimes view the trees in evec(M) as 247 labeled trees, taking the label of a node z to
be L(V(x)). Which interpretation is intended will be clear from the context.

Given a module M and a CTL* formula 1, we say that M satisfies ¢, denoted M |=, v,
if all the trees in exec(M) satisfy 1. The problem of deciding whether M satisfies v is called

?Since we assume that the states of M are ordered, there is indeed only a single such tree. Since temporal-logic
formulas cannot distinguish between trees obtained by different orders, we do not lose generality by considering

a particular order.



module checking*. We use M |= 4 to indicate that when we regard M as a program (thus
refer to all its states as system states), then M satisfies ¢». The problem of deciding whether
M = 1 is the usual model-checking problem [CE81, QS81]. It is easy to see that while M |=, ¢
implies that M |= 4, the other direction is not necessarily true. Also, while M |= 1 implies
that M £, -, the other direction is not true as well. Indeed, M |=, ¢ requires all the trees
in exzec(M) to satisfy ¢». On the other hand, M |= ¢ means that the tree (T, Vas) satisfies 1.
Finally, M [, =% only tells us that there exists some tree in exec( M) that satisfies 1.

We can define module checking also with respect to linear-time specifications. We say that
a module M satisfies an LTL formula ¢ iff M |=, Av.

In order to solve the module-checking problem, we are going to use nondeterministic tree au-
tomata. Tree automata run on X-labeled trees. A Biichi tree automatonis A = (X, D, Q, o, 0, I'),
where ¥ is an alphabet, D is a finite set of branching degrees (positive integers), @ is a set
of states, ¢qo € Q is an initial state, § : Q x ¥ x D — 297 is a transition function satisfying
6(q,0,d) € Q%, for every ¢ € Q, 0 € X3, and d € D, and F C Q is an acceptance condition.

A run of A on an input Y-labeled tree (7', V) with branching degrees in D is a ()-labeled tree
(T',r) such that r(¢) = go and for every z € T, we have that (r(z-1),r(z-2),...,r(z-d)) €
6(r(z),V(x),d(z)). If, for instance, 7(1-1) = ¢, V(1-1) = o, d(1-1) = 2, and 6(¢,0,2) =
{{¢1,92),(qa,q5)}, then either 7(1-1-1) = ¢q and r(1-1-2) = ¢z, or r(1-1-1) = ¢4 and
r(1-1-2)=g¢s. Given a run (7, r) and a path # C 7', we define

Inf(r|r)={q € @ : for infinitely many € 7, we have r(z) = ¢}.

That is, Inf(r|r) is the set of states that r visits infinitely often along m. A run (7,r) is
accepting iff for all paths 7 C T, we have Inf(r|7) N F # (. Namely, along all the paths of T,
the run visits states from F' infinitely often. An automaton A accepts (T, V) iff there exists
an accepting run (7', ) of A on (T, V). We use L(A) to denote the language of the automaton
A; i.e., the set of all trees accepted by A. In addition to Biichi tree automata, we also refer to

Rabin tree automata. There, F' C 2¢ x 29, and a run is accepting iff for every path = C T,
there exists a pair (G, B) € F such that Inf(r|7)N G # 0 and Inf(r|7)N B = 0.

The size of an automaton A, denoted |A|, is defined as |Q| + || + |F|, where |¢] is the sum
of the lengths of tuples that appear in the transitions in 8, and |F| is the sum of the sizes of
the sets appearing in F' (a single set in the case A is a Biichi automaton, and 2m sets in the
case A is a Rabin automaton with m pairs). Note that |A] is independent of the sizes of ¥ and
D. Note also that A can be stored in space O(|A]).

* A different problem where a specification is checked to be correct with respect to any environment is discussed
n [ASSS94]. There, the formula may refer to atomic propositions not in the module and it should hold in all
compositions that contain the module as a component.



3 Module Checking for Branching Temporal Logics

We have already seen that for branching temporal logics, the model-checking problem and the
module-checking problem do not coincide. In this section we study the complexity of CTL
and CTL* module checking. We show that the difference between the model-checking and the
module-checking problems reflects in their complexities, and in a very significant manner.

Theorem 3.1

(1) The module-checking problem for CTL is EXPTIME-complete.

(2) The module-checking problem for CTL* is 2EXPTIME-complete.

Proof: We start with the upper bounds. Given M and 1, we define two tree automata.
Essentially, the first automaton accepts the set of trees in exec(M) and the second automaton
accepts the set of trees that do not satisfy 1. Thus, M |=, ¢ iff the intersection of the automata
is empty.

Recall that each tree in exec(M ) is obtained from (T, Vas) by pruning some of its subtrees.
The tree (Tas, Vas) is a 24P labeled tree. We can think of a tree (T,V) € exec(M) as the
(247 U {L})-labeled tree obtained from (Tas, Vas) by rteplacing the labels of nodes pruned in
(T',V) by L. Doing so, all the trees in exec(M) have the same shape (they all coincide with
Thr), and they differ only in their labeling. Accordingly, we can think of an environment to
(Thr, Var) as a strategy for placing L’s in (Tas, Vas): placing a L in a certain node corresponds
to the environment disabling the transition to that node. Since we consider environments that
do not “block” the system, at least one successor of each node is not labeled with L. Also,
once the environment places a L in a certain node z, it should keep placing L’s in all the nodes
of the subtree that has x as its root. Indeed, all the nodes to this subtree are disabled. The
first automaton, Ays, accepts all the (247 U { L})-labeled tree obtained from (Ths, Vas) by such
a “legal” placement of L’s. Formally, given a module M = (AP, W, W., R, wq, L), we define
Ay = 247 U{L},D,Q, q,6,Q), where

¢ D =U,ewibd(w)}. That is, D contains all the branching degrees in M (and hence also
all branching degrees in Tas).

o () =W x {T,F,L}). Thus, every state w of M induces three states (w, T), (w,F), and
(w, L) in Aps. Intuitively, when Aps is in state (w, L), it can read only the letter L.
When Ay is in state (w, T), it can read only letters in 247 . Finally, when Ay is in state
(w,F), it can read both letters in 2" and the letter L. Thus, while a state (w, F) leaves
it for the environment to decide whether the transition to w is enabled, a state (w, T)
requires the environment to enable the transition to w, and a state (w, L) requires the
environment to disable the transition to w. The three types of states help us to make
sure that the environment enables all transitions from system states, enables at least



one transition from each environment state, and disables transitions from states that the
transition to them have already been disabled.

® (o = <w0, T>

e The transition function é : Q@ x ¥ x D — 297 is defined for w € W and k = bd(w) as

follows. Let succ(w) = (w1, ..., wg).

— For w € WU W, and m € {F, L}, we have
({0, mh, L, k) = {1, L), (s L) -, (g, 1),
— For w € Wy and m € {T,F}, we have
8((w,m), L(w), k) = (w1, T), (wa, T), ..., (wp, T)).
— For w € W, and m € {T,F}, we have

6(<w7 m>7 L(w)v k) = { <<w17 T>7 <w27 '_>7 R <wk7 |_>>7
({wy,F), (wa, T, ..., (wg, F)),

<<w1,|—>,<w2‘,l—>,...,<wk,T>> }.

That is, 6((w, m), L(w), k) contains k k-tuples. When the automaton proceeds ac-
cording to the ith tuple, the environment can disable the transitions to all w’s suc-
cessors, except the transition to w;, which must be enabled.

Note that ¢ is not defined in the case where k # bd(w) or when the input does not meet
the restriction imposed by the T.F, and L annotations, or by the labeling of w.

Let k£ be the maximal branching degree in M. It is easy to see that |Q| < 3 -|W| and
|6] < k-|R|. Thus, assuming that |[W| < |R|, the size of A is bounded by O(k - |R]).

Recall that a node of (T, V') € L(Apr) that is labeled L stands for a node that actually does
not exist in the corresponding pruning of (T'a, Vas). Accordingly, if we interpret CTL* formulas
over the trees obtained by pruning subtrees of (T, Vas) by means of the trees recognized by Ay,
we should treat a node that is labeled by L as a node that does not exist. To do this, we define
a function f: CTL* formulas — CTL* formulas such that f(£) restricts path quantification to
paths that never visit a state labeled with L. We define f inductively as follows.

e flg)=q.
o f(=§)=—f(E).
o f(&1V &)= f(&)V f(&)

10



o f(EE = E(G-L)A f(£))-
o f(AG) = A((FL)V f(£))-
o (X&) =XF(E).

o f(&U&) = F(E)U f(&)-

For example, f(EqU(AFp))= E((G-L)A(qU(A((FL)VFq)))). When ¢ is a CTL formula,
the formula f(7) is not necessarily a CTL formula. Still, it has a restricted syntax: its path
formulas have either a single linear-time operator or two linear-time operators connected by a
Boolean operator. By [KG96], formulas of this syntax have a linear translation to CTL.

Given 1, let Ap —,, be a Biichi tree automaton that accepts exactly all the tree models of
f(=%) with branching degrees in D. By [VWS86b], such Ap - of size 28O exists.

By the definition of satisfaction, we have that M |=, v iff all the trees in exec(M) satisfy
. In other words, if no tree in exec(M ) satisfies =1p. Recall that the automaton Aps accepts a
(24P U{ L})-labeled tree iff it corresponds to a “legal” pruning of (T, Vas) by the environment,
with a pruned node being labeled by L. Also, the automaton Ap —, accepts a (247 U {1})-
labeled tree iff it does not satisfy ¢, with path quantification ranging only over paths that
never meet a node labeled with L. Hence, checking whether M |=, 1) can be reduced to testing
L(Apn)NL(Ap ) for emptiness. Equivalently, we have to test £(Apr x Ap ~y) for emptiness.
By [VWS86b], the nonemptiness problem of Biichi tree automata can be solved in quadratic
time, which gives us an algorithm of time complexity O(|R|? - 25C(¥D),

The proof is similar for CTL*. Here, following [ES84, EJ88], we have that Ap ., is a
Rabin tree automaton with 2¢27"Y states and 20D pairs. By [EJ88, PR89a], checking the

emptiness of L(Apr X Ap ) can then be done in time (k& - |R|)20(|w|) . 9k-20UD

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we
reduce CTL satisfiability, proved to be EXPTIME-complete in [FL79, Pra80], to CTL module
checking. Given a CTL formula v, we construct a module M and a CTL formula ¢ such that
the size of M is quadratic in the length of 4, the length of ¢ is linear in the length of ¢, and
1 is satisfiable iff M [, —o.

Consider a CTL formula . For simplicity, let us first assume that ¢ has a single atomic
proposition g. Let n be the number of existential quantifiers in % plus 1. By the sufficient
branching-degree property of CTL, ¢ is satisfiable iff there exists a {0, {q}}-labeled tree of
branching degree n that satisfies ¢» [Eme90]. Let P, be a clique with n states. By the above,
1 is satisfiable iff there exists a possibility to label an unwinding of P, such that the resulted
{0,{q}}-abeled tree satisfies ¥». This simple idea, due to [Kup97], is the key to our reduction.
We define a module M,, such that each tree in exec(M,) corresponds to a {0, {¢q}}-labeling
of (Ip,,Vp,). We then define ¢ such that there exists a tree satisfying ¢ in exec(M,,) iff
there exists a {0, {¢}}-labeling of (Tp,, Vp,) that satisfies . It follows that ¢ is satisfiable iff
M W, =@ Let [n] =A{1,....n}, [n] ={1,...,n'}, and let M,, = (AP, W,,W,, R,w, L), where,
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o AP = {ghost, q}.
o W, =[n]
o W, = [n]' U{heaven,hell }.

R ={(i,j): 4,5 € my U{(i,?) i € [n]} U ([n] x
{heaven,hell }) U {(heaven,heaven)} U {(hell,hell )}.

o w=1.

For all ¢ € [n], we have L(i) = § and L(¢') = {ghost}.
Also, L(heaven) = {q} and L(hell ) = 0.

The reactive module M,

That is, the system states of M, induce the clique P,. In addition, each system state has a
ghost: an environment state with two successors, one labeled with ¢ and one not labeled with
g. Intuitively, the ability of the ghost ¢’ to take an environment transition to heaven in M,
corresponds to the ability of a node associated with the state i in (T, Vp,) to be labeled with
q. Thus, each tree in exec(M,) indeed corresponds to a {0, {q}}-labeling of (Tp,,Vp,). We
now have to define ¢ such that whenever the formula 1 refers to ¢, the formula ¢ will refer to
FEXFEXq. Indeed, since heaven is the only state labeled with ¢, then a system state satisfies
EXFEXqiff the transition of its ghost to heaven is enabled. In addition, path quantification
in ¢ should be restricted to computations of F,,. That is, to paths that never meet a ghost.
To do this, we again use the function f: CTL* formulas — CTL* formulas defined above, this
time f(&) restricts path quantification to paths that never visit a state labeled with ghost. For
example, f(EqU(AFp)) = E((G-ghost) A (qU(A((F ghost) V Fq)))). We can now define ¢ as
f(¢) with EX F X g replacing g. Note that we first apply f and only then do the replacement.

When 1 has more than one atomic proposition, the reduction is very similar. Then, for
over {qy,...,qmn}, we have m heavens, one for each atomic proposition. Accordingly, we replace
a proposition ¢; in ¢ with FX FX¢q; in ¢. The obtained module has 2n + m + 1 states and it
has n? + n(m + 2) + m 4+ 1 transitions.

The proof is the same for CTL*. Here, we do a reduction from satisfiability of CTL*, proved
to be 2EXPTIME-hard in [VS85]. U

We note that the problem of CTL module checking is EXPTIME-complete even for the

following restricted versions of the problem.

e The modules have only environment states. To see this, we define M, as the clique P,,
adding a transition from each state to heaven (with no ghosts involved). We then force
each node of a tree in exec(M,,) to have as children at least its n successors in P, (this
can be enforced by the formula, having [n] as atomic propositions, and having formulas
like AG(1 — FX2A EX3)conjuncted with the original formula), and replace ¢ in ¢ with
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EXqin ¢. The price of using only environment states is that now the length of ¢ is
quadratic in the length of 1.

The modules are of a fixed size. To see this, note that the size of M, depends on the
number of atomic propositions in ¢ and on the minimum branching degree of models
of 1. Proving that the satisfiability problem for CTL is EXPTIME-hard, Fisher and
Lander reduce acceptance of a word x by a linear-space alternating Turing machine to
satisfiability of a CTL formula ), [FL79]. In an alternating Turing machine (with a
binary branching degree), each configuration has two possible successor configurations.
Some of the configurations are classified as universal and some are classified as existential.
A computation of an alternating Turing machine is a tree labeled with configurations. A
node that is labeled by a universal configuration should have two successors. A node that
is labeled by an existential configuration may have only one successor. The computation
is accepting iff all the paths in the tree eventually reach an accepting configuration.
A somewhat different reduction, which considers a fixed linear-space Turing machine
that decides an EXPTIME-complete problem, results in 1, of length polynomial in |z|,
but with a fixed number of atomic propositions, which, if satisfiable, has models with
branching degree 2. Such 1, induces, for all z, modules of a fixed size.

The formulas are in 3CTL, the existential fragment of CTL. To see this, consider again
a fixed linear-space alternating Turing machine T that decides an EXPTIME-complete
problem. The formula 1, above encodes all the possible accepting computations of T
on an input word z. Alternation between universal and existential configurations in
T is handled by alternation between universal and existential path quantification in .
Another way to handle alternation in T is by alternation between system and environment
states in the module.

To see this, assume that T has a tape of length n. Since T is fixed, then by encoding each
of its configurations by a sequence of n states, we can define a module M of size linear in
n such that M embodies all the possible computations of 7" on # (and more trees, that
are not legal computations). Thus, the tree (Tas, Var) embodies the execution of 7" on x
when we require all the configurations of T', and not only the universal ones, to have two
successors in the computation. An environment to M prunes subtrees that correspond to
branches from 7T"s existential configurations. Thus, a state in M that encodes a last node
in an existential configuration of T is an environment state. On the other hand, since
we do not want the environment to prune subtrees that branch from 7”s universal states,
and since neither do we want it to prune a subtree whose root is not the first node in a
sequence of nodes that encode a configuration, all other states in M are system states. It
follows that each tree in exec(M) corresponds to a computation of T' on z. We define a
VCTL formula ¢ such that 17" accepts z iff there exists a tree in exec(M) that satisfies ¢
(hence, T" accepts z iff M does not satisfy ¢, which is an JCTL formula). As in [FL79],
the formula ¢ requires that each branch in the tree encodes a sequence of configurations
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that starts at the initial configuration and ends at an accepting configuration.

4 The Program Complexity of Module Checking

When analyzing the complexity of model checking, a distinction should be made between com-
plexity in the size of the input structure and complexity in the size of the input formula; it is the
complexity in size of the structure that is typically the computational bottleneck [LL.P85]. In this
section we consider the program complexity [VW86a] of module checking; i.e., the complexity
of this problem in terms of the size of the input module, assuming the formula is fixed. It is
known that the program complexity of LTL, CTL, and CTL* model checking is NLOGSPACE
[VW86a, BVW94]. This is very significant since it implies that if the system to be checked is
obtained as the product of the components of a concurrent program (as is usually the case),
the space required is polynomial in the size of these components rather than of the order of the
exponentially larger composition.

We have seen that when we measure the complexity of the module-checking problem in
terms of both the program and the formula, then module checking of CTL and CTL* formulas
is much harder than their model checking. We now claim that when we consider program
complexity, module checking is still harder.

Theorem 4.1 The program complexity of CTL and CTL* module checking is PTIMFE-complete
with respect to logspace reductions.

Proof: Since the algorithms given in the proof of Theorem 3.1 are polynomial in the size of
the module, membership in PTIME is immediate.

We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV),
proved to be PTIME-hard in [Gol77], to module checking of the CTL formula FFp. In the
MCYV problem, we are given a monotonic Boolean circuit a (i.e., a circuit constructed solely of
AND gates and OR gates), and a vector (z1,...,2,) of Boolean input values. The problem is
to determine whether the output of a on (2q,...,2,) is 1.

Let us denote a monotonic circuit by a tuple a = (Gv, G5, Gin, Gour, T'), where Gy is the set
of AND gates, (3 is the set of OR gates, (G;,, is the set of input gates (identified as g1,...,9x),
Jout € Gy U G3 UGy, is the output gate, and T C G X G denotes the acyclic dependencies in «a,
that is (g, ¢’) € T iff the output of gate ¢’ is an input of gate g.

Given a monotonic circuit a = (Gvy, G3, G, gout, I') and an input vector @ = (x1,...,2,),
we construct a module M, z = ({0,1}, Gv, G3U Gy, R, gout, L), where

e R=TU{{g,9):9 € Gin}.

e lor g € Gy UG43, we have L(g) = {1}. For ¢; € Gy, we have L(g;) = {x;}.
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Clearly, the size of M, z is linear in the size of a. Intuitively, each tree in exec(M, z)
corresponds to a decision of o as to how to satisfy its OR gates (we satisfy an OR gate by
satisfying any nonempty subset of its inputs). It is therefore easy to see that there exists a
tree (T, V) € exec(M, z) such that (T, V) |= AG1 iff the output of @ on z is 1. Hence, by the
definition of module checking, we have that M, z |=, EF0 iff the output of o on x is 0. ]

Recall that for a CTL formula %, checking that a module M satisfies 4 reduces to testing
emptiness of the automaton Ay; X Ap . Checking nonemptiness of a Biichi tree automaton
can be reduced to calculating a p-calculus expression of alternation depth 2 [Rab69, VWS86b].
As such, it can be implemented, using symbolic methods, in tools that handle fixed-point
calculations (e.g., SMV [BCM190, McM93]).

5 Pragmatics

How bad is our news? In this section we show that from a pragmatic point of view, it is
not that bad. We show that in the absence of existential quantification, module checking and
model checking coincide, and that in the case where there is only a limited use of existential
quantification, module checking can still be done in linear time.

5.1 Module Checking for Universal Temporal Logics

Lemma 5.1 For universal branching temporal logics, the module-checking problem and the
model-checking problem coincide.

Proof: Given a module M and a YCTL* formula t, we prove that M |=, ¢ iff M |= 9.
Assume first that M |=, 1. Then, all trees in exzec(M ) satisfy 1p. Thus, in particular, (Tas, Var)
satisfies » and M |= 1. Assume now that M |= 1. Every tree in exzec(M) has less behaviors
than the tree (T, Var). Thus, formally, the tree (Tar, Vas) is simulated by all trees in exec(M ).
Indeed, for every tree (1,V) € exec(M ), the relation that maps each node x of 7' to the node
z of (T, Vi) is a simulation relation between (7', V') and (T, Var). Therefore, by [GL94], all
trees in exec(M ) satisfy ¢, and M |=, 9. L]

In particular, it follows from Lemma 5.1 that module checking and model checking coincides for
linear temporal logics. Theorem 5.2 now follows from the known complexity results for LTL,

VCTL, and YCTL* model checking [SC85, CES86, BVW94, VW94].
Theorem 5.2

(1) The module-checking problem for YCTL is in linear time.

(2) The module-checking problem for LTL and YCTL* is PSPACE-complete.

(3) The program complexity of module checking for LTL,YCTL, and YCTL* is NLOGSPACE-
complete.
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5.2 Module Checking of “Possibly” and “Always Possibly” Properties

We have seen that, for each fixed CTL formula v, checking that a module M satisfies 1) can be
checked in time polynomial in the size of M. Sometimes, we can do even better. Some CTL
formulas have a special structure that enables us to module check them in time linear in the
size of M. In this section we show that “possibly” and “always possibly” properties, by far the
most popular properties specified in CTL and not specifiable in YCTL, induce such formulas.

Consider the CTL formula F Fsend. The formula states that it is possible for the system to
eventually send a request. We call properties of this form possibly properties. Consider now the
CTL formula AGF Fsend. The formula states that in all computations, it is always possible
for the system to eventually send a request. We call properties of this form always possibly
properties. 1t is easy to see that possibly and always possibly properties cannot be specified in
linear temporal logics, nor in universal branching logics [EH&6].

Theorem 5.3 Module checking of possibly and always possibly properties can be done in linear
running time.

Proof: We describe an efficient algorithm that module checks these properties. For simplicity,
we assume that system and environment states are labeled with atomic propositions s and e,
respectively. Consider a module M = (AP, Wy, W., R,wq, L) and a propositional assertion £.
By definition, M |=, FFE iff there exists no tree (T, V) € exec(M) all of whose nodes satisfy
=£. We say that a state w € W is safe iff every tree (T, V) € exec(M) that has a node labeled
w is guaranteed to satisfy K FE. In other words, w is safe iff w cannot be a node in a tree all
of whose nodes satisfy —=¢. We check that M |=, EF¢ by checking that wg is safe. With every
safe state w we can associate a finite integer level(w) such that for all trees in exec(M), the
length of the shortest path from a node labeled w to a node that satisfies £ is at most level(w).
Formally, we define the level of each state by initially assigning the level 0 to states that satisfy
£ and assigning the level oo to all other states. We then proceed iteratively. In the ith iteration
we assign the level ¢ to system states that have a successor in level ¢+ — 1 and to environment
states all of whose successors are in level at most ¢ — 1. Clearly, the maximal finite level that
each state may get is |W|, which also bounds the number of iterations required.

Consider the monotone function f : 2"V — 2" where a state w is in f(y) iff one of the

following holds:
Lowke,
2. w is a system state that has a successor in y, or
3. w is an environment state all of whose successors are in y.

We prove that w is safe iff w is in the least fixed-point of f. For that, we use the Tarski-
Knaster characterization of least fixed-points and prove that

w is safe iff w € ﬂ{y : fly) =y}
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Assume first that w € {y : f(y) = y}. Let S be the set of all safe states. In order to be safe,
a state w should satisfy one of the following:

Lowke,
2. w is a system state that has a safe successor, or

3. w is an environment state all of whose successors are safe.

Hence, f(5) =S5, which implies, by the assumption, that w is in S and is therefore safe.

Assume now that w is safe. Recall that if w is safe then level(w) = i for some finite 7.
We prove that for all finite ¢, if level(w) = 7, then w € N{y : f(y) = y}. The proof proceeds
by induction on 7. Consider first the case where level(w) = 0. Let y be any set of states for
which f(y) = y. Since w |= &, then w € f(y). Hence, as f(y) = y, we have that w € y,
and we are done. Assume now that the claim holds for all levels 7 < 7 and consider a state
w with level(w) = ¢ + 1. Let y be any set for which f(y) = y. We distinguish between two
cases. First, if w is a system state, then, by the definition of its level, there exists a state
w’ such that w’ is a successor of w and level(w’) = i. Then, by the induction hypothesis,
w' € ({z: f(2) = z}. In particular, w’ € y. Therefore, w |= (s A EXy) and thus, by the
definition of f, we have that w € f(y). Hence, f(y) = y, we have that w € y, and we are done.
Second, if w is an environment state then, by the definition of its level, all its successor states
w' have level(w') < ¢, implying, by the induction hypothesis, that w’ € N{z: f(2) = z}. So,
all the successors of w are in y. Therefore, w = (e A AXy) and thus, by the definition of f, we
have that w € f(y). Hence, w € y, and we are done.

Using p-calculus formalism [Koz83], we have that w is safe iff w = uy.£ V(s A EXy)V (e A
AXy). Hence,
ME, FFES M = pylVv(shEXy)V(eN AXy).

Now, M |=, AGEFEiff there exists no tree (T, V) € exec(M ) such that (7', V) has a subtree
(T", V') all of whose nodes satisfy =£. We can therefore check that M |=, AGEF¢ by checking

that all the reachable states in M are safe. Hence,
ME, AGEFéE & M =vzjpyfV(sANEXy)V(eANAXy)|AAXz.

So, we reduced module checking of possibly and always possibly properties to model checking
of an alternation-free p-calculus formula. As the latter can be done in linear running time
[Cle93], we are done. ]

Again, as our algorithms involve at most two simple fixed-point computations, they can be

easily implemented symbolically.

What about the space complexity of checking these properties? Is there a nondeterministic
algorithm that can check always possibly properties in logarithmic space? As the formula we
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used proving Theorem 4.1 is K F¢, the answer for possibly properties is no, unless NLOGSPACE
= PTIME. Unsurprisingly, this is also the answer for the more complicated always possibly
properties, as we claim in the theorem below.

Theorem 5.4 Module checking of possibly and always possibly properties is PTIME-complete.

Proof: Membership in PTIME follows from Theorem 5.3. To prove hardness in PTIME, we
do the same reduction we did for CTL. For FF¢{, we need no change. For AGEFE we do
the following change. Instead a self loop, each state associated with an input gate now has a

transition to the initial state g,,:. Let us call the resulting module Méy 7 It is easy to see that
there exists a tree (T, V) € exec(M! .) such that (T, V) = EFAG1 iff the output of a on 2 is

o,z

1. Hence, M! - =, AGEFO iff the output of & on z is 1. L]

6 Discussion

The discussion of the relative merits of linear versus branching temporal logics is almost as
early as these paradigms [Lam80]. We mainly refer here to the linear temporal logic LTL
and the branching temporal logic CTL. One of the beliefs dominating this discussion has been
“while specifying is easier in LTL, model checking is easier for CTL”. Indeed, the restricted
syntax of CTL limits its expressive power and many important behaviors (e.g., strong fairness)
can not be specified in CTL. On the other hand, while model checking for CTL can be done
in time O(|P| * |¢|) [CESS6], it takes time O(|P|* 2¥l) for LTL [LP85]. Since LTL model
checking is PSPACE-complete [SC85], the latter bound probably cannot be improved. The
attractive complexity of CTL model checking have compensated for its lack of expressive power
and branching-time model-checking tools that can handle systems with more than 1012° states

[McM93, CGL9I3] are incorporated into industrial development of new designs [BBGT94].

If we examine the history of these issues more closely, we find that things are not that simple.
On one hand, the inability of LTL to quantify computations existentially is considered by many
a serious drawback [EH86]. In addition, the introduction of fair-CTL [CES86] and of many
other extensions to CTL [Lon93, BBGT94, KG96], have made CTL a basis for specification
languages that maintain the efficiency of CTL model checking and yet overcome many of its
expressiveness limitations. On the other hand, the computational superiority of CTL is also
not that clear. For example, comparing the complexities of CTL and LTL model checking for
concurrent programs, both are in PSPACE [VWS86a, BVW94]. As shown in [Var95, KV95],
the advantage that CTL enjoys over LTL disappears also when the complexity of modular
verification is considered.

The distinction between closed an open systems questions the computational superiority
of the branching-time paradigm further. Indeed, the traditional belief of “CTL is easier than
LTL” compares these logics with respect to an ill defined setting: the systems are assumed
to be nondeterministic, but the nature of the nondeterminism (internal or external) is never
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considered. One might be tempted to answer that model checking deals with complete systems,
not with modules, and hence that it is checking closed systems and that all nondeterminism is
internal. This, however, is a fallacy.

To see this, let us think about the origin of the nondeterminism in the programs we do
model check. First, there are no good reasons to write inherently nondeterministic programs.
Furthermore, this is in fact impossible since, even if one can introduce nondeterministic con-
structs in a programming language, any implementation of this language will make the choices
one way or another and hence be deterministic. Similarly, the nondeterminism that comes
from the modeling of concurrency is also not inherent. Indeed, enough knowledge about the
environment in which a concurrent program is run (the machine, the operating system,...) can,
at least in theory, remove all uncertainty about its execution. So, does this mean that a closed
system is always deterministic and hence always has a single linear execution? It does, but only
if the system is modeled at a sufficient level of detail. This being almost always impossible,
one uses nondeterminism as a representation of the lack of knowledge one has about parts of
the system or its implementation: if we do not know what the system will do, we assume it
can do anything. If we do not know how processes are scheduled, we assume that scheduling is
nondeterministic. But, this is external nondeterminism: the choices are viewed as being made
by an external agent of which the system has no detailed knowledge and does not control. The
same is true of the “models of the environment” that are often added to systems in order to
close them: not knowing what the environment will do, we model it as being nondeterministic;
it makes unpredictable and uncontrollable choices.

Form this it follows that, at the level of abstraction at which model checking is usually done,
there are no properly closed systems. Indeed, using nondeterminism to model absence of knowl-
edge about system components amounts to introducing external nondeterminism and hence to
describing a module, not a closed system. So, what is needed is module checking, and is even
just linear-time module checking, unless we can identify a source of internal nondeterminism.

Suppose that nondeterminism is used not to model a lack of knowledge about a part of the
system over which one has no control, but to model the fact that some implementation choices
have not yet been made. For instance, imagine there is a scheduler that will be implemented
by the system designer but that does not yet exist. A sound design approach could require that
the system be model checked with a simple nondeterministic representation of the scheduler
before it is actually implemented. The nondeterminism used in the scheduler representation
is then internal: the choices are under the control of the system; the implementation of the
scheduler can contain any desired choice policy. Furthermore, in this context branching-time
model checking becomes quite natural. One can for instance check the existence of paths that
do make the implementation of a reasonable scheduling policy feasible. But, what is required
is module checking: the branching formula has to be satisfied whatever external choices are
made.

Our conclusion thus is that branching-time model checking should essentially always be
treated as branching-time module checking. Moreover, the use of existential path quantifiers is
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especially meaningful when one is checking the possibility of implementing a part of the system
that has so far been modeled nondeterministically. In other words, when one is checking for the
possibility of synthesizing part of the system. Quite interestingly, the reactive module synthesis
problem studied in [PR89a, PR89b] or the realizability problem of [ALW89] can be described
as CTL* module checking problems. A similar link also exists with the supervisory control
problem studied in the context of control theory [Ant95].

Once one adopts this view that what we need is module checking rather than model checking,
the usual argument that, from a complexity point of view, CTL is easier than LTL, topples.
Indeed, the situation is then similar to the one existing for validity checking. In both problems,
CTL is harder than LTL, and the universal fragment of CTL is easier than its existential one
[KV95]. Finally, we note that the additional difficulties that need to be faced when we move
from verification of closed systems to verification of open systems, do not arise when we consider
verification by bisimulation [Mil71]. To see this, consider two modules M and M’. When we
label the states of the modules by their system/environment classification, then M and M’ are
bisimilar iff every tree in exec(M) is bisimulated by a tree in exzec(M'), and vice versa. Thus,
we can check bisimilarity between two modules in linear time, exactly as we check bisimilarity
between programs. As in [BCG88], two modules are bisimilar iff they agree on satisfaction (in
the module-checking sense) of all CTL* formulas.

Our results are summarized in the table below. All the complexities in the table denote
tight bounds.

program program
complexity complexity
model module of model of module
checking checking checking checking satisfiability
LTL PSPACE PSPACE NLOGSPACE | NLOGSPACE | PSPACE
[SC85] [VW86b] [SC85]
CTL linear-time | EXPTIME | NLOGSPACE | PTIME EXPTIME
[CES86] [BYVW94] [FL79, Pra80]
CTL* PSPACE 2EXPTIME | NLOGSPACE | PTIME 2EXPTIME
[EL85] [BYVW94] [EJ88, VS&5]
YCTL linear-time | linear-time NLOGSPACE | NLOGSPACE | PSPACE
[CES86] [BYVW94] [KV95]
JCTL linear-time | EXPTIME | NLOGSPACE | PTIME NPTIME
[CES86] [BYVW94] [KV95]
EFe¢ linear-time | linear-time NLOGSPACE | PTIME NPTIME
AGEF¢ || [CES86) [BYVW94] [GJT9]
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of reactive systems.
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