Milk biomarkers to detect ketosis and negative energy balance using MIR spectrometry

C. Grelet¹, C. Bastin², M. Gelé³, J.-B. Davière⁴, M. Johan⁴, A. Werner⁵, R. Reding⁶, C. Darimont¹, S. Baugnies⁷, J.A. Fernandez Pierna¹, F.G. Colinet², P. Dardenne¹, X. Massart⁷, N. Gengler², H. Soyeurt², F. Dehareng¹

¹ Walloon Agricultural Research Center, Belgium
² University of Liège, Gembloux Agro-Bio Tech, Belgium
³ French Livestock Institute (IDELE), France
⁴ CLASEL, France
⁵ LKV Baden Württemberg, Germany
⁶ CONVIS S.C., Luxembourg
⁷ AWE, Belgium

c.grelet@cra.wallonie.be
Negative energy balance and ketosis

In early lactation:
energy intake $<$ energy output

- fertility
- health

(Collard et al., 2000; Butler, 2003)
In early lactation: energy intake < energy output

Negative energy balance

Body fat mobilisation

If excessive
- imbalance in hepatic carbohydrate and fat metabolism
- ↑ of ketone bodies in blood

= Ketosis type I

↓ fertility
↓ health
(Collard et al., 2000; Butler, 2003)

Prevalence: 7 to 43% (Suthar et al., 2013)

↓ milk yield
↓ reproductive performances
↓ displaced abomasum

... (Duffield, 2000)
Negative energy balance and ketosis

In early lactation:
energy intake < energy output

Negative energy balance

Body fat mobilisation

If excessive
⇒ imbalance in hepatic carbohydrate and fat metabolism
⇒ ↑ of ketone bodies in blood

= Ketosis type I

¶ fertility
¶ health
(Collard et al., 2000; Butler, 2003)

Prevalence: 7 to 43% (Suthar et al., 2013)

¶ milk yield
¶ reproductive performance
¶ displaced abomasum...

(Dufffield, 2000)

BHB and Acetone known as biomarkers
(Enjalbert et al., 2001)
Citrate?

- Krebs cycle molecule
- Present in milk
Citrate?

- Krebs cycle molecule
- Present in milk

Induced nutrient restriction
Citrate?

- Krebs cycle molecule
- Present in milk
- BHBA in milk

Induced nutrient restriction

NEFAs in blood

Citrates in milk
• Bjerre-Harpoth (2012)
 « ...greatest increase (58%) during restriction for all cows »
 « ...promising early indicator of physiological imbalance »

• Baticz et al. (2002)
 « Sodium citrate should be measured by easy and automated method such as FT-MIR technology to evaluate the energy status of cows »
Mid Infra Red (MIR)

- MIR spectrum reflect milk composition
- World-wide used for milk recording, payment
- Fast, cheap
 - 1 sample → X predicted values
 - Fatty acids
 - Minerals
 - Methane
 - Cows state
 - Technical properties
 - ...
- Limit of detection : 100 ppm (Dardenne, 2015)
Previous studies in link with MIR

Acetone: ketosis biomarker

<table>
<thead>
<tr>
<th>Reference method</th>
<th>Calibration</th>
<th>Cross validation</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>RMSE</td>
<td>R²</td>
<td>SECV</td>
</tr>
<tr>
<td>Hansen 1999 Vanilin test</td>
<td>302</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heuer 2001 Gas chromatography</td>
<td>180</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>De Roos 2007 Continuous flow analyer</td>
<td>1063</td>
<td>-</td>
<td>0.184</td>
</tr>
<tr>
<td>Hanus 2011 Microdiffusion photometric</td>
<td>14</td>
<td>-</td>
<td>0.65</td>
</tr>
<tr>
<td>Hanus 2014 Microdiffusion photometric</td>
<td>89</td>
<td>-</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Previous studies in link with MIR

Acetone: ketosis biomarker

<table>
<thead>
<tr>
<th>Reference method</th>
<th>N</th>
<th>RMSE</th>
<th>R²</th>
<th>SECV</th>
<th>RMSE</th>
<th>R²</th>
<th>N</th>
<th>RMSE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen 1999 Vanilin test</td>
<td>302</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.240</td>
<td>0.80</td>
<td>58</td>
<td>0.270</td>
<td>0.81</td>
</tr>
<tr>
<td>Heuer 2001 Gas chromatography</td>
<td>180</td>
<td>-</td>
<td>-</td>
<td>0.210</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>De Roos 2007 Continuous flow analyer</td>
<td>1063</td>
<td>-</td>
<td>-</td>
<td>0.184</td>
<td>-</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hanus 2011 Microdiffusion photometric</td>
<td>14</td>
<td>-</td>
<td>0.65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hanus 2014 Microdiffusion photometric</td>
<td>89</td>
<td>-</td>
<td>0.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BHB: ketosis biomarker

<table>
<thead>
<tr>
<th>Reference method</th>
<th>N</th>
<th>RMSE</th>
<th>R²</th>
<th>SECV</th>
<th>RMSE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Roos 2007 Continuous flow analyer</td>
<td>1069</td>
<td>-</td>
<td>0.065</td>
<td>-</td>
<td>0.63</td>
<td>-</td>
</tr>
</tbody>
</table>
Previous studies in link with MIR

Acetone: ketosis biomarker

<table>
<thead>
<tr>
<th>Reference method</th>
<th>Calibration</th>
<th>Cross validation</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen 1999 Vanilin test</td>
<td>302</td>
<td>-</td>
<td>0.240</td>
</tr>
<tr>
<td>0.80</td>
<td>58</td>
<td>0.270</td>
<td>0.81</td>
</tr>
<tr>
<td>Heuer 2001 Gas chromatography</td>
<td>180</td>
<td>0.210</td>
<td>-</td>
</tr>
<tr>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>De Roos 2007 Continuous flow analyer</td>
<td>1063</td>
<td>0.184</td>
<td>0.72</td>
</tr>
<tr>
<td>Hanus 2011 Microdiffusion photometric</td>
<td>14</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>Hanus 2014 Microdiffusion photometric</td>
<td>89</td>
<td>0.39</td>
<td>-</td>
</tr>
</tbody>
</table>

BHB: ketosis biomarker

<table>
<thead>
<tr>
<th>Reference method</th>
<th>Calibration</th>
<th>Cross validation</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Roos 2007 Continuous flow analyer</td>
<td>1069</td>
<td>0.065</td>
<td>-</td>
</tr>
<tr>
<td>0.63</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Citrate: energy status of cow/physiological imbalance

- Not very well documented, no target values or thresholds in the literature
- No published MIR calibration (existing FOSS calibration)
Goals of the study

In early lactation: energy intake < energy output

Negative energy balance

Body fat mobilisation

If excessive

⇒ imbalance in hepatic carbohydrate and fat metabolism
⇒ ↑ of ketone bodies in blood = Ketosis type I
Goals of the study

In early lactation: energy intake < energy output

Negative energy balance

Body fat mobilisation

If excessive

⇒ imbalance in hepatic carbohydrate and fat metabolism
⇒ ↑ of ketone bodies in blood

= Ketosis type I

(1) Realize Optimir own MIR calibrations for BHB and acetone, with validation step
Goals of the study

In early lactation:
energy intake < energy output

Negative energy balance

Body fat mobilisation

(2) Evaluate possibility to predict citrate via MIR

If excessive
⇒ imbalance in hepatic carbohydrate and fat metabolism
⇒ ↑ of ketone bodies in blood = Ketosis type I

(1) Realize Optimir own MIR calibrations for BHB and acetone, with validation step
Goals of the study

In early lactation: energy intake < energy output

Negative energy balance

Body fat mobilisation

If excessive
- imbalance in hepatic carbohydrate and fat metabolism
- ↑ of ketone bodies in blood = Ketosis type I

(1) Realize Optimir own MIR calibrations for BHB and acetone, with validation step

(2) Evaluate possibility to predict citrate via MIR

(3) Use samples and spectra from several countries
 → robust equations
Collect of samples

CLASEL: MRO
- France
- Hostein
- Maize silage or fresh grass
- DIM 7-305
- 200 samples

CONVIS: MRO
- Luxembourg
- Hostein
- Maize silage supplemented by grazing in summer
- DIM 5-60
- 110 samples

Poisy: experimental farm
- France (Montain area)
- Abundance and Montbéliarde
- Fresh grass or hay and maize silage
- DIM 7-56
- 174 samples

Neumühle: experimental farm
- Germany
- Hostein
- Maize silage
- DIM 7-56
- 82 samples

- Harmonized protocol by IDELE
- ICAR approved sampling systems
- Morning and evening samples pooled
- 566 * 2 identical samples generated → MIR and chemical analysis
Analysis of samples

- Chemical analysis at CRA-W (Belgium)
- Continuous flow analyzer (Skalar, The Netherlands)
- Enzymatic/chemical reactions
Analysis of samples

- Chemical analysis at CRA-W (Belgium)
- Continuous flow analyzer (Skalar, The Netherlands)
- Enzymatic/chemical reactions

- Spectral analysis locally
- Foss and Bentley
- Standardization of spectra enabling a common database and a common use
Results of chemical analysis

- 566 samples in total
- Removing of missing values
- Same ranges than litterature (Denis-Robichaud et al., 2014; Garnsworthy et al., 2006)

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB</td>
<td>mmol/L</td>
<td>558</td>
<td>0.045</td>
<td>1.596</td>
<td>0.215</td>
<td>0.174</td>
<td>0.005</td>
</tr>
<tr>
<td>Acetone</td>
<td>mmol/L</td>
<td>548</td>
<td>0.02</td>
<td>3.355</td>
<td>0.103</td>
<td>0.26</td>
<td>0.006</td>
</tr>
<tr>
<td>Socium citrate</td>
<td>mmol/L</td>
<td>506</td>
<td>3.88</td>
<td>16.12</td>
<td>9.04</td>
<td>2.21</td>
<td>0.216</td>
</tr>
</tbody>
</table>
Results of chemical analysis

• 566 samples in total
• Removing of missing values
• Same ranges than litterature (Denis-Robichaud et al., 2014; Garnsworthy et al., 2006)

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB</td>
<td>mmol/L</td>
<td>558</td>
<td>0.045</td>
<td>1.596</td>
<td>0.215</td>
<td>0.174</td>
<td>0.005</td>
</tr>
<tr>
<td>Acetone</td>
<td>mmol/L</td>
<td>548</td>
<td>0.02</td>
<td>3.355</td>
<td>0.103</td>
<td>0.26</td>
<td>0.006</td>
</tr>
<tr>
<td>Trisodium Citrate</td>
<td>mmol/L</td>
<td>506</td>
<td>3.88</td>
<td>16.12</td>
<td>9.04</td>
<td>2.21</td>
<td>0.216</td>
</tr>
</tbody>
</table>

• Limit of detection with MIR: 100 ppm

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mmol/L)</th>
<th>Molar mass (g/mol)</th>
<th>Concentration (ppm)</th>
<th>Indirect prediction</th>
<th>Potential for calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB</td>
<td>0.215</td>
<td>104.10</td>
<td>21.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>0.103</td>
<td>58.08</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trisodium Citrate</td>
<td>9.03</td>
<td>258.07</td>
<td>2262.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results of chemical analysis

- 566 samples in total
- Removing of missing values
- Same ranges than litterature (Denis-Robichaud et al., 2014; Garnsworthy et al., 2006)

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB</td>
<td>mmol/L</td>
<td>558</td>
<td>0.045</td>
<td>1.596</td>
<td>0.215</td>
<td>0.174</td>
<td>0.005</td>
</tr>
<tr>
<td>Acetone</td>
<td>mmol/L</td>
<td>548</td>
<td>0.02</td>
<td>3.355</td>
<td>0.103</td>
<td>0.26</td>
<td>0.006</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>mmol/L</td>
<td>506</td>
<td>3.88</td>
<td>16.12</td>
<td>9.04</td>
<td>2.21</td>
<td>0.216</td>
</tr>
</tbody>
</table>

- Limit of detection with MIR: 100 ppm

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mmol/L)</th>
<th>Molar mass (g/mol)</th>
<th>Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB</td>
<td>0.215</td>
<td>104.10</td>
<td>21.7</td>
</tr>
<tr>
<td>Acetone</td>
<td>0.103</td>
<td>58.08</td>
<td>5.8</td>
</tr>
<tr>
<td>Trisodium Citrate</td>
<td>9.03</td>
<td>258.07</td>
<td>2262.5</td>
</tr>
</tbody>
</table>
Editing of data

- Unbalanced distribution for BHB and Acetone
 ➔ Use of Log (10) transformation
• Unbalanced distribution for BHB and Acetone
 → Use of Log (10) transformation
 → Artificial removing of low values (randomly)
Editing of data

• Unbalanced distribution for BHB and Acetone
 → Use of Log (10) transformation
 → Artificial removing of low values (randomly)

558 → 433 samples for BHB
548 → 224 samples for acetone
MIR calibrations

• Spectral pretreatment:

 Absorbance, Standardized, First derivative gap 5, Autoscale

 Area used: 968.1 - 1577.5, 1731.8 - 1762.6, 1781.9 - 1808.9 and 2831.0 - 2966.0 cm\(^{-1}\)
MIR calibrations

- **Spectral pretreatment:**

 Absorbance, Standardized, First derivative gap 5, Autoscale

 Area used: 968.1 - 1577.5, 1731.8 - 1762.6, 1781.9 - 1808.9 and 2831.0 - 2966.0 cm⁻¹

- **Partial Least Square (PLS) regression**

- **Cross-validation using 10 subsets**

- **Validation ¾ - ¼**

- **Use of Matlab and the PLS toolbox**
MIR calibrations

- Criteria observed
 - R^2 (but dependent of the range)
 - RMSE (Root Mean Square Error)

\[
\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} |e_i|^2}{n}}
\]
MIR calibrations

- Criteria observed
 - R^2 (but dependent of the range)
 - RMSE (Root Mean Square Error)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} |e_i|^2}{n}}$$
MIR calibrations

- **Criteria observed**
 - R² (but dependent of the range)
 - RMSE (Root Mean Square Error)

 \[\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} |e_i|^2}{n}} \]
 - RPD = SD (calibration) / RMSE

<table>
<thead>
<tr>
<th>RPD</th>
<th>Class</th>
<th>Application</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Very poor</td>
<td>Allows to compare groups of cows, distinguish high or low values</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
<td>Rough screening</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Fair</td>
<td>Screening</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Good</td>
<td>Quality control</td>
<td>++</td>
</tr>
<tr>
<td>6.5</td>
<td>Excellent</td>
<td>As precise as reference value</td>
<td>+++</td>
</tr>
</tbody>
</table>
MIR calibrations

- Criteria observed
 - R^2 (but dependent of the range)
 - RMSE (Root Mean Square Error)
 \[
 \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} |e_i|^2}
 \]
 - $\text{RPD} = \frac{\text{SD (calibration)}}{\text{RMSE}}$

- Classification
 - 0.20 mmol/L for BHB
 - 0.15 mmol/L for acetone

<table>
<thead>
<tr>
<th>RPD</th>
<th>Class</th>
<th>Application</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Very poor</td>
<td>Allows to compare groups of cows, distinguish high or low values</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
<td>Rough screening</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Fair</td>
<td>Screening</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Good</td>
<td>Quality control</td>
<td>++</td>
</tr>
<tr>
<td>6.5</td>
<td>Excellent</td>
<td>As precise as reference value</td>
<td>+++</td>
</tr>
</tbody>
</table>
Results – BHB

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R²</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>325</td>
<td>8</td>
<td>7</td>
<td>0.045</td>
<td>1.596</td>
<td>0.235</td>
<td>0.193</td>
<td>0.109</td>
<td>0.71</td>
<td>1.77</td>
</tr>
<tr>
<td>Validation</td>
<td>108</td>
<td>-</td>
<td>-</td>
<td>0.058</td>
<td>0.755</td>
<td>0.204</td>
<td>0.136</td>
<td>0.083</td>
<td>0.63</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Validation dataset

- $y = 1.0042x + 0.0071$
- $R^2 = 0.625$
Results – BHB

- **Statistics**

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R²</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>325</td>
<td>8</td>
<td>7</td>
<td>0.045</td>
<td>1.596</td>
<td>0.235</td>
<td>0.193</td>
<td>0.109</td>
<td>0.71</td>
<td>1.77</td>
</tr>
<tr>
<td>Validation</td>
<td>108</td>
<td>-</td>
<td>-</td>
<td>0.058</td>
<td>0.755</td>
<td>0.204</td>
<td>0.136</td>
<td>0.083</td>
<td>0.63</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Validation dataset

\[y = 1.0042x + 0.0071 \]

\[R^2 = 0.625 \]

Allows discriminate high or low levels
Results – BHB

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R²</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHB (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>325</td>
<td>8</td>
<td>7</td>
<td>0.045</td>
<td>1.596</td>
<td>0.235</td>
<td>0.193</td>
<td>0.109</td>
<td>0.71</td>
<td>1.77</td>
</tr>
<tr>
<td>Validation</td>
<td>108</td>
<td>-</td>
<td>-</td>
<td>0.058</td>
<td>0.755</td>
<td>0.204</td>
<td>0.136</td>
<td>0.083</td>
<td>0.63</td>
<td>2.36</td>
</tr>
</tbody>
</table>

y = 1.0042x + 0.0071
R² = 0.625

Validation dataset

<table>
<thead>
<tr>
<th>Low BHB content (<0.200mmol/l)</th>
<th>High BHB content (>0.200mmol/l)</th>
<th>Global good classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>n=77</td>
<td>n=32</td>
</tr>
<tr>
<td>Predicted low</td>
<td>90.90%</td>
<td>9.40%</td>
</tr>
<tr>
<td>Predicted high</td>
<td>9.10%</td>
<td>90.60%</td>
</tr>
</tbody>
</table>

Allows discriminate high or low levels
Results – Acetone

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R^2</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>168</td>
<td>7</td>
<td>2</td>
<td>0.02</td>
<td>3.355</td>
<td>0.19</td>
<td>0.397</td>
<td>0.248</td>
<td>0.73</td>
<td>1.6</td>
</tr>
<tr>
<td>Validation</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>0.021</td>
<td>1.968</td>
<td>0.179</td>
<td>0.306</td>
<td>0.196</td>
<td>0.67</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Validation dataset

\[
y = 1.5033x - 0.0384 \\
R^2 = 0.6723
\]
Results – Acetone

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R²</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>168</td>
<td>7</td>
<td>2</td>
<td>0.02</td>
<td>3.355</td>
<td>0.19</td>
<td>0.397</td>
<td>0.248</td>
<td>0.73</td>
<td>1.6</td>
</tr>
<tr>
<td>Validation</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>0.021</td>
<td>1.968</td>
<td>0.179</td>
<td>0.306</td>
<td>0.196</td>
<td>0.67</td>
<td>2.03</td>
</tr>
</tbody>
</table>

The validation dataset allows to discriminate high or low levels.

The relationship between acetone reference values and predicted values is given by the equation:

\[y = 1.5033x - 0.0384 \]

The coefficient of determination, \(R^2 \), is 0.6723.
Results – Acetone

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R^2</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>168</td>
<td>7</td>
<td>2</td>
<td>0.02</td>
<td>3.355</td>
<td>0.19</td>
<td>0.397</td>
<td>0.248</td>
<td>0.73</td>
<td>1.6</td>
</tr>
<tr>
<td>Validation</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>0.021</td>
<td>1.968</td>
<td>0.179</td>
<td>0.306</td>
<td>0.196</td>
<td>0.67</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Low acetone content (<0.150mmol/l)

High acetone content (>0.150mmol/l)

Global good classification

<table>
<thead>
<tr>
<th>Validation</th>
<th>n=43</th>
<th>n=13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted low</td>
<td>93.00%</td>
<td>23.10%</td>
</tr>
<tr>
<td>Predicted high</td>
<td>7.00%</td>
<td>76.90%</td>
</tr>
</tbody>
</table>

Allows discriminate high or low levels

\[y = 1.5033x - 0.0384 \]

$R^2 = 0.6723$
Results – Citrate

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R²</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium citrate (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>380</td>
<td>9</td>
<td>2</td>
<td>3.88</td>
<td>16.12</td>
<td>9.03</td>
<td>2.26</td>
<td>0.7</td>
<td>0.9</td>
<td>3.21</td>
</tr>
<tr>
<td>Validation</td>
<td>126</td>
<td>-</td>
<td>-</td>
<td>4.44</td>
<td>15.16</td>
<td>9.08</td>
<td>2.03</td>
<td>0.76</td>
<td>0.86</td>
<td>2.96</td>
</tr>
</tbody>
</table>

Validation dataset

\[
y = 0.9919x + 0.0582 \\
R^2 = 0.8575
\]
Results – Citrate

Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>N</th>
<th>No. of LV</th>
<th>No. of Outliers</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>RMSE</th>
<th>R^2</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium citrate (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Cross-validation</td>
<td>380</td>
<td>9</td>
<td>2</td>
<td>3.88</td>
<td>16.12</td>
<td>9.03</td>
<td>2.26</td>
<td>0.7</td>
<td>0.9</td>
<td>3.21</td>
</tr>
<tr>
<td>Validation</td>
<td>126</td>
<td>-</td>
<td>-</td>
<td>4.44</td>
<td>15.16</td>
<td>9.08</td>
<td>2.03</td>
<td>0.76</td>
<td>0.86</td>
<td>2.96</td>
</tr>
</tbody>
</table>

Validation dataset

- $y = 0.9919x + 0.0582$
- $R^2 = 0.8575$

Allows screening, quantitative information
Exemple of use by MROs (Baugnies, 2015)

- Walloon breeding association (AWE) tool
- BHB, acetone, citrate, C18:1 cis 9
- Relative approach
- Cow value compared to population values at same DIM

• Score 0,1 or 2 for each component
• Global score from 0 to 8 as a global approach of metabolic disorders

<table>
<thead>
<tr>
<th>Exploitation</th>
<th>DATE CTRL</th>
<th>n° animal</th>
<th>n² lactation</th>
<th>JEL</th>
<th>Production (dl)</th>
<th>Cellules (*1000/ml)</th>
<th>Urée (mg/l)</th>
<th>Rapport TB/TP</th>
<th>Indice BHB</th>
<th>Indice acétone</th>
<th>Indice citrate</th>
<th>Indice c18:1cis9</th>
<th>Indice GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17/02/2014</td>
<td>15146978</td>
<td>1</td>
<td>15</td>
<td>294</td>
<td>760</td>
<td>30</td>
<td>1.67</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>15/04/2014</td>
<td>14876705</td>
<td>2</td>
<td>59</td>
<td>376</td>
<td>400</td>
<td>179</td>
<td>1.36</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>18/11/2014</td>
<td>15012953</td>
<td>2</td>
<td>69</td>
<td>237</td>
<td>280</td>
<td>179</td>
<td>0.46</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>16/12/2014</td>
<td>13904979</td>
<td>4</td>
<td>167</td>
<td>560</td>
<td>350</td>
<td>2.54</td>
<td>2.12</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>26/02/2014</td>
<td>15876607</td>
<td>1</td>
<td>115</td>
<td>275</td>
<td>10</td>
<td>290</td>
<td>1.12</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>23/05/2014</td>
<td>14022741</td>
<td>3</td>
<td>288</td>
<td>128</td>
<td>380</td>
<td>170</td>
<td>0.93</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4/11/2014</td>
<td>14921815</td>
<td>2</td>
<td>212</td>
<td>203</td>
<td>60</td>
<td>310</td>
<td>1.39</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>9/08/2012</td>
<td>15180867</td>
<td>1</td>
<td>387</td>
<td>152</td>
<td>120</td>
<td>350</td>
<td>1.21</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>8/11/2012</td>
<td>15180793</td>
<td>5</td>
<td>11</td>
<td>258</td>
<td>300</td>
<td>50</td>
<td>1.59</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>6/04/2013</td>
<td>15180840</td>
<td>4</td>
<td>12</td>
<td>110</td>
<td>40</td>
<td>240</td>
<td>1.86</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>6/10/2013</td>
<td>14090385</td>
<td>3</td>
<td>14</td>
<td>226</td>
<td>560</td>
<td>170</td>
<td>1.75</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

• Complex interpretation (ketosis, fat mobilization, fattening, feed effect, mastitis…)
• Preliminary tests in 4 farms
• Good feedback from breeders
• Cows to follow
Conclusions/Implications

• Calibrations for BHB and acetone → distinctions between high and low levels
• Citrate by MIR → good accuracy
• Standardisation of spectra: usable by all Optimir MROs
Conclusions/Implications

- Calibrations for BHB and acetone \rightarrow distinctions between high and low levels
- Citrate by MIR \rightarrow good accuracy
- Standardisation of spectra: usable by all Optimir MROs

- USE ON FIELD
 - Complex interpretation
 - Different way to use it by MROs
 - Interest from breeders
 - Already used in France and Luxembourg
 - Tests in Germany, Belgium
Thank you for your attention

c.grelet@cra.wallonie.be