Coupled MBS-FE Applications

A New Trend in Simulation

Michel Géradin Emeritus Professor University of Liège, Belgium

Outline

- Introduction.
- General kinematics.
- Flexible MBS: a first series of examples.
- General formulation: variational approach, implicit solution methodology.
- Joint modeling: from functional to mesoscopic representation.
- Modal synthesis in multibody dynamics.
- Co-simulation.
- Conclusions.

Introduction

Coupled MBS – FE applications A new trend in simulation or Integrated MBS – FE analysis A long-term trend in simulation?

Some steps

- 1983: Computer Aided Analysis and Optimization of Mechanical System Dynamics. NATO-ASI, University of Iowa. Organizer: Edward J. Haug.
- 1984: Géradin M. Finite element approach to kinematic and dynamic analysis of mechanisms using Euler parameters. In International Conference on Numerical Methods for Nonlinear Problems, Barcelona, Spain, 9-13 April 1984.
- 1991: A. Cardona. *An integrated approach to mechanism analysis*. PhD thesis. Université de Liège, Faculté des Sciences Appliquées.
- 2001: Géradin, M., & Cardona, A. *Flexible multibody dynamics: a finite element approach*. John Wiley.

General kinematics

Cartesian position and orientation of point P: are thus uniquely described by

$$(oldsymbol{x}_P,\ oldsymbol{R}_P)$$

Rotation parameterization

Orthonormality of R

 $\mathbf{R}^T = \mathbf{R}^{-1}$

6 constraints \rightarrow 3 independent parameters

 $oldsymbol{a}^T = egin{bmatrix} lpha_1 & lpha_2 & lpha_3 \end{bmatrix}$

$$R = R(a)$$

Possible choices:

- ✓ Euler angles
- ✓ Bryant angles
- ✓ Rodrigues parameters
- ✓ Euler Parameters
- ✓ Cartesian rotation vector
- Conformal rotation vector
- ✓ …

Choice criteria:

- analytical complexity.
- singular configurations / their handling

✓ redundancy (e.g. Euler parameters: $4 \rightarrow 1$ constraint).

Composition rule (successive rotations).

- ✓ Differentiation (angular velocities, virtual displacements)
- Physical meaning

Infinitesimal motion velocity analysis

 $\boldsymbol{x}_P = \boldsymbol{x}_0 + \boldsymbol{R} \boldsymbol{X}_P$ infinitesimal Infinitesimal displacements rotations $\delta \boldsymbol{x}_P = \delta \boldsymbol{x}_0 + \delta \tilde{\boldsymbol{ heta}} (\boldsymbol{x}_P - \boldsymbol{x}_0)$ $oldsymbol{v}_P = oldsymbol{v}_0 + ilde{oldsymbol{\omega}}(oldsymbol{x}_P - oldsymbol{x}_0)$ Linear Angular velocities velocities

with

$$\delta \tilde{\boldsymbol{ heta}} = \delta \boldsymbol{R} \boldsymbol{R}^T$$

 $\tilde{\boldsymbol{\omega}} = \dot{\boldsymbol{R}} \boldsymbol{R}^T$

In terms of Cartesian rotation vector:

$$\delta \boldsymbol{\theta} = \boldsymbol{T}^{T}(\boldsymbol{\Psi}) \delta \boldsymbol{\Psi}$$
$$\boldsymbol{\omega} = \boldsymbol{T}^{T}(\boldsymbol{\Psi}) \dot{\boldsymbol{\Psi}}$$
$$\boldsymbol{\psi}$$
Tangent operator $\boldsymbol{T}(\boldsymbol{\psi})$:
analytical expression
similar to $\boldsymbol{R}(\boldsymbol{\psi})$

Kinematics summary

- General description of current point *P* motion made in Lagrangian form with the following parameters:
 - Absolute position vector $oldsymbol{x}$
 - Cartesian rotation vector $oldsymbol{\psi}$
- Nonlinear mapping of angular quantities provides *geometrically exact* formalism:

rotations:	$oldsymbol{R} \leftrightarrow oldsymbol{\psi}$
angular velocities:	$oldsymbol{\omega} \leftrightarrow oldsymbol{T}^T(oldsymbol{\Psi}) \dot{oldsymbol{\Psi}}$
angular variations:	$\delta oldsymbol{ heta} \leftrightarrow oldsymbol{T}^T(oldsymbol{\Psi}) \delta oldsymbol{\Psi}$

- Same formalism is applied to any MBS component (rigid bodies, joints, nonlinear 1D/2D/3D deformable members, superelements, subassemblies)
- Updated Lagrangian description of rotations is generally adopted.

Example:

«geometrically exact» beam

Kinematic assumptions

- Beam is initially straight
- Cross sections remain plane and do not deform
- Shear deformation of neutral axis allowed
- Rotational energy of cross sections taken into account

Strains

Stress-strain relationships

Local equilibrium

Virtual work expression

Strain measures

Obtained from position gradients along *s* before and after deformation

Elastic 4-bar mechanism

OUFTI-1 satellite

- Student CubeSat designed in Liège
- 10x10x10 cm
- 1 kg
- D-STAR amateur-radio
- digital-communication protocol
- Two deployable antennas

Deployment of astromast cell

Modeling of transmission belt

Modelling of transmission belt

• Finite element mesh: 7500 nodes, 14600 elements.

Dynamics of transmission belt

General formulation Variational approach

$$\delta \int_{t_1}^{t_2} \left(\mathcal{K} - \mathcal{W} - \mathcal{P} - k \boldsymbol{\lambda}^T \boldsymbol{\Phi} - \frac{p}{2} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \right) dt = \boldsymbol{f}_{nc}^T \delta \boldsymbol{q}$$

- **q** Generalized coordinates.
- $\mathcal{K}(q, \dot{q})$ Kinetic energy.
- $\mathcal{W}(q)$ Strain energy.
- $\mathcal{P}(q)$ Potential energy of external loads.
- $\Phi(q, t)$ Kinematic constraints.
- **** Lagrange multipliers.
- **f**_{nc} Non-conservative forces.
- *p* Penalty coefficient.
- *k* Scaling coefficient.

Summation over elements

Augmented Lagrangian method with scaling \rightarrow improved robustness of linear solution

System assembly

System topology results implicitly from Boolean assembly and constraint description

 $m{q} = {
m DOF}$ at structural level $m{q}_e = {
m DOF}$ at element level $m{L}_e = {
m DOF}$ localization operator(boolean) $m{\lambda} = {
m lagrangian}$ multipliers

Boolean constraints: localization of DOF
 Implicit constraints: algebraic treatment

$$oldsymbol{q}_e = oldsymbol{L}_e oldsymbol{q}$$
 $oldsymbol{\Phi}(oldsymbol{q}_e, \dot{oldsymbol{q}}_e, t) = 0$

Dynamic equilibrium

• Formulation using the Augmented Lagrangian method

 $\begin{cases} \boldsymbol{M}\ddot{\boldsymbol{q}} + \boldsymbol{B}^{T}(k\boldsymbol{\lambda} + p\boldsymbol{\Phi}) = \boldsymbol{g}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \\ p\boldsymbol{\Phi}(\boldsymbol{q}, t) = 0 \end{cases}$

- -M constant with respect to translation DOF.
- Exact treatment of constraints
- Well-conditioned iteration matrix
- Implicit / iterative Solution \rightarrow recast in residual form

$$\begin{cases} \boldsymbol{r}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}, \boldsymbol{\lambda}) = \boldsymbol{g}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) - \boldsymbol{M}\ddot{\boldsymbol{q}} - \boldsymbol{B}^{T}(k\boldsymbol{\lambda} + p\boldsymbol{\Phi}) = 0\\ p\boldsymbol{\Phi}(\boldsymbol{q}, t) = 0 \end{cases}$$

Implicit time integration Newmark type methods

 $\hfill \label{eq:one-step}$ One-step methods \rightarrow obey to the general form

$$egin{bmatrix} oldsymbol{q}_{n+1} \ \dot{oldsymbol{q}}_{n+1} \ \dot{oldsymbol{q}}_{n+1} \end{bmatrix} = oldsymbol{A} egin{bmatrix} oldsymbol{q}_n \ \dot{oldsymbol{q}}_n \ \dot{oldsymbol{q}}_n \end{bmatrix}$$

Can provide unconditional stability over entire frequency range.

- Accuracy /stability properties adjusted through free parameters.
 - Second-order accuracy can be achieved.
 - Stability: governed by spectral radius = highest eigenvalue of

amplification matrix A.

 $ho(oldsymbol{A}) \leq 1$

(Guarantees stability of index-3 DAE system).

Spectral radius of Newmark type methods

23

Modified α –g method

Newmark interpolation of displacements and velocities

$$\dot{\boldsymbol{q}}_{n+1} \simeq \dot{\boldsymbol{q}}_n + (1-\gamma)h\boldsymbol{a}_n + \gamma h\boldsymbol{a}_{n+1}$$

 $\boldsymbol{q}_{n+1} \simeq \boldsymbol{q}_n + h\dot{\boldsymbol{q}}_n + \left(\frac{1}{2} - \beta\right)h^2\boldsymbol{a}_n + \beta h^2\boldsymbol{a}_{n+1}$

• Pseudo-accelerations a_n defined through collocation

$$(1-lpha_m)oldsymbol{a}_{n+1}+lpha_moldsymbol{a}_n=(1-lpha_f)oldsymbol{\ddot{q}}_{n+1}+lpha_foldsymbol{\ddot{q}}_n$$

• Residual form of equilibrium

$$\begin{cases} \boldsymbol{r}(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}, \ddot{\boldsymbol{q}}_{n+1}, \boldsymbol{\lambda}) = 0\\ \boldsymbol{\varPhi}(\boldsymbol{q}_{n+1}, t_{n+1}) = 0 \end{cases}$$

• 4 parameters $(\beta, \gamma, \alpha_f, \alpha_m)$

$$ightarrow \left\{ egin{array}{l} m{r}(m{q}_{n+1},m{\lambda}) = 0 \ m{\Phi}(m{q}_{n+1}) = 0 \end{array}
ight.$$

Nonlinear system to be solved iteratively

Equilibrium iteration

□ Linear solution step

$$\begin{bmatrix} \boldsymbol{S} & k\boldsymbol{B}^T \\ k\boldsymbol{B} & 0 \end{bmatrix} \begin{bmatrix} d\boldsymbol{q} \\ d\boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{r}(\boldsymbol{q}^{\star},\boldsymbol{\lambda}^{\star}) \\ -k\boldsymbol{\Phi}(\boldsymbol{q}^{\star}) \end{bmatrix}$$

with matrix *S* linear combination (coefficients depending upon integration scheme) of matrices

$$\boldsymbol{M}, \ \frac{\partial \boldsymbol{g}}{\partial \boldsymbol{q}}, \ \frac{\partial \boldsymbol{g}}{\partial \dot{\boldsymbol{q}}}, \ p \boldsymbol{B} \boldsymbol{B}^T + \frac{\partial \boldsymbol{B}^T}{\partial \boldsymbol{q}} (k \boldsymbol{\lambda} + p \boldsymbol{\Phi})$$

Sparsity linked to FE mesh topology.

Can be solved using standard linear solver for large sparse systems.

 \Box The λ can be assimilated to ordinary DOF

$$\boldsymbol{S}d\boldsymbol{q}=\boldsymbol{r}(\boldsymbol{q}^{\star})$$

Time step size control

- Drawbacks due to use of predefined, fixed time step size:
 - Time step too large: higher frequencies filtered out \rightarrow loss of detail in the response.
 - Time step too small: increase of computer time, waste of resources.
- Time step adjstment during numerical integration can be based on a measure of integration error computed from

$$e=\left(eta-rac{1}{6}
ight)h^2\Delta\ddot{oldsymbol{q}}$$

- Adequate strategy should:
 - Avoid exceeding prescribed tolerance.
 - Keep time step fixed for sufficiently long periods.

Joint modeling

Level 1: functional description

- purely kinematic model
- description by algebraic constraints
- rigid behavior
- « perfect » interaction

Level 2: macroscopic engineering description

- semi-rigid behavior
- partial description by algebraic constraints.
- Addition of global constitutive laws (e.g.
- compliance, friction).

Level 3: detailed / mesoscopic description

- 3D geometric representation
- Account of structural detailing
- Finite element modeling

Revolute joint: functional description

$$\{ m{\mu}_1', m{\mu}_2', m{\mu}_3' \} \ \{ m{\xi}_1', m{\xi}_2', m{\xi}_3' \} \ m{\mu}_i' = m{R}_A m{\mu}_i \ m{\xi}_i' = m{R}_B m{\xi}_i$$

- \rightarrow Base vectors of body A reference configuration
- \rightarrow Base vectors of body B reference configuration
- \rightarrow Base vectors of body A current configuration
- \rightarrow Base vectors of body B current configuration

Revolute joint: level 2 description

Specialized hinges for deployment of space structures

Desirable characteristics

- Passive motorization (energy release)
 - Adequate torque / rotation relationship.
 - Auto-locking.
- High transverse stiffness
- High precision motion \rightarrow minimum backlash and friction
- High stiffness in folded and locked configurations.
- Minimum size.
- Well-characterized stiffness and damping properties.

Simulation of Cluster satellite boom deployment

- 2 folded booms
- spring actuators
- harnesses

Motorized hinge characteristics

33

Deployment with flexible booms

Deployment with flexible booms

Mesocopic joint modeling: MAEVA hinge

- Improved version of Carpentier joint (patented design).
- Consists of three steel strips with curved cross section.
- Combines guidance (due to anistropic stiffness), actuation (spring effect) and locking (high holding torque in deployed configuration).
- Minimization of mechanical parts.
- No sliding / moving interfaces.
- But: detailed 3D modeling essential to represent non-linear behavior and buckling phenomena.

Sicre, J.et al. Application of MAEVA hinge to Myriade microsatellite deployment needs. *ESMATS* 2005.
Lathuiliere M. et al. Deployment of appendices using MAEVA hinges: progress in dynamic models. *ESMATS* 2009.

Static behavior

Driving torque : 0.194 Nm Holding torque : 6.67 Nm

38

Features of dynamic behavior

2. Low torsional stiffness

2-panel deployment

Modal synthesis in multibody dynamics

Goal

• To represent complex structural members by standard, linear FE models

Method

- Assume linear behavior in local (co-rotational) frame
- Produce reduced model with
 - ^u attachment modes to external system
 - ^u reduced set of internal modes to represent local behavior

Limitations

- Due to linearity assumption
- Recuperation of model components (superelement) from standard linear analysis \rightarrow missing information on inertia.

Modal synthesis: dual approaches

Underlying kinematic assumption

$$oldsymbol{x} = oldsymbol{x}_0 + oldsymbol{R}_0(oldsymbol{X} + oldsymbol{u})$$

 $oldsymbol{\Psi} = oldsymbol{\Psi}_0 \circ oldsymbol{\psi}$

 Solve with respect to elastic displacements

$$\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\psi} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_0^T (\boldsymbol{x} - \boldsymbol{x}_0) - \boldsymbol{X} \\ (-\boldsymbol{\Psi}_0) \circ \boldsymbol{\Psi} \end{bmatrix}$$

- Modal representation of elastic displacements
- Small displacement assumption in local frame

$$\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\psi} \end{bmatrix} = \overline{\boldsymbol{\Phi}} \boldsymbol{y}$$

$$\frac{\|\boldsymbol{u}\|}{\|\boldsymbol{X}\|}$$
, $\|\boldsymbol{\psi}\| \ll 1$

Application example: Gear modeling

Macroscopic gear models [Cardona, 1995]

- Kinematic constraints between wheel centers.
- Gear wheels = rigid bodies.
- Spring-damper along normal pressure line.
- Crude /empirical modeling of meshing defaults:
 (e.g. backlash, friction, load transmission error).

Contact condition between full FE models

- Gear teeth deformation and gear web accurately taken into account.
- Meshing defaults naturally modeled.
- Long simulation times \rightarrow limited use.

Contact condition between superelements

- Gear wheel flexible behavior globally accounted for.
- Determination of actual contact points by means of 3D gear wheel geometry.
- Study of misalignment, backlash, gear hammering,...

Simple gear system

Selection strategy of slave-master flank pairs

Simple gear system simulation Craig & Bampton modal synthesis

	pinion	gear
Number of teeth [-]	16	24
Pitch diameter [mm]	73,2	109,8
Outside diameter [mm]	82,64	118,64
Root diameter [mm]	62,5	98,37
Addendum coef. [-]	0,196	0,125
Tooth width [mm]	15	
Pressure angle [deg]	20	
Module [mm]		4,5

(Lundvall, Strömberg, Klarbring, 2004)

- 1 boundary node per tooth flank 100 internal vibrations modes
 → 695 DOFS << 480171 for FEM
- Parallel rotation axis \rightarrow no misalignment
- Large center distance \rightarrow significant backlash
- At t=0s, ω_1 = -1000 rpm , ω_2 = 667 rpm
- For t > 0s : Viscous torque: $T_1 = -1 \omega_{1} \omega_2 = 667 \text{ rpm}$
- Time step: h=1E.-6s

Eigenfrequencies of internal vibration modes (Hz)				
	pinion	gear		
f ₁	19520	10402		
f ₁₀₀	146068	115469		

Gear system simulation

Co-simulation

Objectives

- Coupling between standard MBD and FEA softwares.
- Co-simulation of mechatronic systems.
- « Domain decomposition » of very large problems for parallel processing \rightarrow multi-model solution.

Methodology

- Generally based on the master / slave concept
- Different coupling levels can be envisaged, depending upon the nature of coupled systems and degree of accuracy of final solution.

Example of multi-model solution

- vehicle dynamics simulation in higher frequency range \rightarrow requires detailed modeling of critical components (e.g. coil springs, torsion bar, tires).
- Necessarily implies fully coupled solution.

Principle of multi-model solution

Example: MBD car model with FE tire models • Car body: rigid.

Car body: rigid.
Tires and twist beam: FE models.
~ 2.10⁶ DOF.

Objective: to capture high frequency response to road roughness.

FEA tire equipped car model

- 2 validation rides at 60 km/h
 - Straight ride with imposed variations of the slip angle
 - Straight ride over a comfort obstacle
- Simulation done in 3 phases
 - Static equilibrium (gravity + tire inflation)
 - Kinematics (initial velocity field)
 - Dynamic ride

Straight ride with slip angle variation

Figure 6. lateral displacement during slalom ride (front view)

Solution / multi-level solution accuracy

Figure 7. Magnitude of the force transmitted by the front left wheel

Figure 8. Global acceleration at front left wheel center

Computation performance

models	Nr of iterations (linear system solutions)	Iteration cost ratio	Total Cost ratio
1 model (6 Proc)	9087	1	1
1 model (12 Proc)	9087	0.62	0.66
1 model (24 proc)	9087	0.69	0.79
Multi-model (4 slave models, 25 proc)	7787	0.29	0.25
Multi-model (5 slave models, 26 proc)	7800	0.23	0.22

Conclusions

- FEA-MBD integration: not a dream, but a reality.
- Complexity of problems being addressed continuously increasing due to progress both in physical model quality, computer technology and numerical methods.
- Numerous topics still open for possible progress (e.g. contact/impact & friction, post-processing, computing performance).

Thank you !

