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1 Introduction 

Structural dynamics using the finite element method and multibody dynamics have generally been 
regarded as independent disciplines in the engineering offices, because they were initially addressing 
different specialists to solve different classes of problems. The users of multibody dynamics tools are 
mainly interested in the global dynamic behavior of a mechanical system, focusing thus their attention 
mainly to the lower frequency spectrum, while the finite element analysts concentrate their attention on 
local / detailed behavior of the components and thus, on phenomena that are governed by the higher 
frequency response. 
More and more it is expected from multibody dynamics that it will extend his range of investigation, 
taking into account the flexibility of most components to capture the higher frequency range that it 
generates and to provide increased detailing in the behavior of a component inserted in its global 
environment. 
Meeting this objective cannot be achieved in practice as long as the present frontier between 
multibody dynamics and finite element analysis is maintained. Real integration has to be achieved, 
which implies revisiting the methods classically used in both disciplines. A long list of topics have to be 
addressed, some of them being briefly summarized hereafter. 

2 General kinematics and parameterization of finite rotation 

In rigid multibody dynamics a wide choice of methods exists to describe the kinematics of a kinematic 
chain undergoing arbitrary motion [1, 2]. Most of them take advantage of the existence of a minimum 
set of parameters to describe the system to maximize computing performance. Describing the 
deformation of components using the finite element concept immediately generates an additional set 
of unknowns whose number exceeds by one or several orders of magnitude the number of 
parameters of the associated rigid system. 
In a limited number of cases it can be justified to make the assumption of local linearity, in which case 
the set of elastic unknowns can be treated more or less independently from the rigid ones. Such 
approach - which is the basis for the superelement formulation [3, 4] (see also Section 7) - cannot be 
justified in all generality since it results in neglecting the nonlinear geometric effects that can result 
from coupling between global motion and local deformation. 
Therefore a global frame approach has necessarily to be adopted in which rigid body motion and 
elastic motion are no longer dissociated. The resulting set of unknowns used to describe both rigid 
components and elastic components consists of absolute node positions and rotation about these 
nodes. Node positions contribute linearly to the global kinematics, while rotations are expressed by the 
rotation operator from material to global frame and are mathematically described by an independent 
set of parameters. The geometric nonlinearity results essentially from the nonlinear relationship 
between components of the rotation operator and rotation parameters.  
 

3 Variational formulation 

Adopting Hamilton’s principle as a starting point to derive the system equations of motion helps in 
addressing the problem of flexible multibody dynamics in the most general manner. The term of 
potential energy results from the summation of the potential energy contribution of the conservative 
forces and possibly of the gravity field with the strain energy of the deformable components. The term 
of kinetic energy combines the contribution of both rigid bodies and elastic elements. Contribution of 
non-conservative forces can also be taken into account by adding a corresponding expression of 
virtual work. 
The overall connectivity of the system results from two different inputs: 
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− mechanical joints, which can be mathematically described as kinematic constraints between 
DOFs, 

− Connection between individual finite elements, which results directly from identification of 
corresponding DOFs. 

Assembly of the system results thus from two distinct operations: 
− Boolean identification of all DOFs that can be treated through direct assembly,  
− Introduction of the remaining constraints (generally, essentially between rotation DOFs) by the 

method of Lagrange multipliers (or augmented Lagrangian method [1]). 
The methods of solution to be adopted in the time domain are thus quite similar to those of nonlinear 
structural dynamics, the main differences being the presence of mathematical constraints and the high 
transients that can be induced by fast configuration changes.  

4 Linearized equations of motion 

Expressing the variation Hamilton’s functional provides the resulting set of motion equations. They 
take the form of a differential-algebraic system (DAE) [8] in which the first subset expresses dynamic 
equilibrium (part of which is the contribution of the FE model), while the second one restores the 
mathematical constraints. It is a DAE system with differential index 3 type since the constraints are 
kept at displacement level.  
The high frequency content of the model justifies using an implicit method of solution (see Section 8). 
Therefore the motion equations are expressed in residual form and linearized to be solved using a 
Newton-Raphson iteration type process. The linearized expression of the residual is expressed in 
terms of tangent mass, stiffness and damping matrices and the Jacobian matrix of the constraints. 

5 Geometrically nonlinear finite elements 

Geometrically nonlinear finite elements [5, 6] can be formulated along the same principles as generally 
done in nonlinear finite analysis, using nodal coordinates and rotation parameters as unknowns. The 
main difficulty in their development arises from the nonlinearity in the relationship between rotation 
increments (or angular velocities) and increments of rotation parameters (or time derivatives of rotation 
parameters) which leads to complex expressions of the tangent matrices. In practice, an updated 
Lagrangian formulation is generally adopted to keep the rotations moderate with respect to the 
reference configuration. An example of ’geometrically exact’ beam element is presented in [7] which 
has shown to be very effective for the modeling and simulation of quite complex articulated structures 
such as deployable space structures [1].  

6 Mechanical joints 

Mechanical joints can be modeled at two different levels, the most obvious and elementary one being 
its ideal representation using a set of mathematical constraints. A very simple example is the hinge 
joint which, in theory, expresses the fact that relative motion between two adjacent bodies is 
constrained to rotation around a defined axis. It can thus be modeled by assuming that reference 
nodes attached to both bodies undergo same displacements (constraints treated at Boolean level) 
while rotation parameters are linked by two orthogonality constraints. This is of course an idealized 
representation which neglects the compliance that affects the joint in the directions orthogonal to 
relative motion. Other effects of increased complexity such as application or generation of a local 
torque (spring-driven hinges), local friction and backlash in various directions can also be added. 
There are many cases where such discrete representation of interconnection between bodies in a 
complex system does not allow capturing accurately local phenomena that can affect the behavior of 
the entire system.  
 

 
Fig. 1. 3-D modeling of the MAEVA hinge allows capturing the nonlinear phenomena responsible for 

generation of the elastic torque (Courtesy of AREVA and 01-METRAVIB). 
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A typical example is the modeling of the elastic hinges that are classically used in the design of 
deployable space structures. Figure 1 displays the so-called MAEVA elastic hinge.  It is in fact a 
bistable system made of 3 elastic shells. The strain energy accumulated in the stowed configuration is 
sufficient to provide the torque needed to deploy the structure. The shell with opposite curvature acts 
as a brake at the end of the deployment. It is a typical example where 3-D elastic modeling (using 
geometrically nonlinear shell elements) is essential to capture the local nonlinear and buckling 
phenomena intervening during hinge deployment and responsible for generation of the elastic torque. 

7 Superelements 

Superelements can be used whenever it can be assumed that the component under consideration has 
linear behavior in a co-rotational frame and may thus be modeled as a linear elastic body. In which 
case, dynamic reduction [14] can be applied to describe it in terms of two sets of modes: a set of static 
modes selected for expressing the interaction with adjacent bodies and a set of vibration modes 
covering the dynamic behavior of the component up to an upper frequency limit. The superelement is 
then described in terms of two sets of parameters: displacement or force unknowns on the interface 
and intensities of the internal vibration modes. 
The most popular dynamic reduction method is the Craig & Bampton component mode synthesis 
(CMS) in which the static modes result from the imposition of unit displacements on the boundary and 
the vibration modes are obtained in fixed boundary condition. It is the most appropriate reduction 
method whenever the interaction with the rest of the system results from sharing common nodes. 
The dual approach to CMS - referred to as McNeal dynamic reduction - consists to describe the 
interaction between bodies in terms of interaction forces as occurring in case of contact. In which 
case, the static modes are the so-called attachment modes (obtained from local application of forces), 
and they are complemented with eigenmodes in free-free configuration. 
An interesting example of application of the superelement concept is the modeling of gear trains [9]. 
The current approach to model gear trains consists to express the kinematic constraints existing 
between gear components and try to include into the model complex effects such as teeth elasticity, 
backlash and friction, misalignment, etc. Most of the problems are overcome when constructing 
detailed, but linear finite element models of the gear components directly from their CAD geometric 
representation. All complex effects linked to geometry (such as misalignment) and linear elastic 
deformation are then automatically present in the model. Attention may then be focused on the 
problems of detecting in time the current contacting surfaces and adopting an appropriate 
contact/friction model. Contact in a gear pair is a typical example where McNeal dynamic reduction 
seems more appropriate than CMS. 
 

 
 

Fig. 2. Superelement modeling of a gear pair. 
 

Figure 2 displays an instantaneous stress distribution in a gear pair modeled by superelements and 
the time evolution of the contact force between teeth flanks.  

8 Implicit time integration 

Time integration is an essential aspect for the successful merge of multibody dynamics and finite 
element technology in the same context. On one hand, the presence of the high frequency spectrum 
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brought into the model by finite element discretization implies the adoption of an integration scheme 
that remains stable over the entire frequency range. On the other hand, it can be shown that the index 
3 DAE equations that result from linearization of the equilibrium residual are characterized by a pair of 
eigenvalues at infinity for each constraint in the system. Therefore the time integration to be adopted 
has to be characterized by a spectral radius ρ < 1 over the entire frequency interval. It can be shown 
that, with appropriate choice of free parameters,  the so-called α-generalized method has the 
remarkable property of remaining second-order accurate while offering the possibility of delivering a 
spectral radius 0 ≤ ρ  < 1. A suitable formulation of the α-generalized method for flexible multibody 
dynamics is described and its properties discussed in [12]. 
The fast configuration changes (e.g. due to intermittent contact) that often arise in multibody systems 
render necessary the implementation of an adaptive time step strategy to capture high transient 
behavior while maintaining acceptable computational times. It is generally based on a monitoring of 
the local truncation error generated by the time integration algorithm [11].  
Recent work also shows that it might be possible to complement the time integration algorithm with 
separate treatment of discontinuities in time due to contact / impact [13].  

9 Co-simulation 

Co-simulation can have different objectives. On the one hand, it can allow to organize communication 
and interaction between different softwares (e.g. multibody dynamics, finite element analysis, control) 
running on different processors to simulate in a concurrent manner different aspects of a same project. 
On the other hand, it can also be regarded as domain decomposition tool for parallel processing. 
Different parts of the system are then simulated in a concurrent manner by different processes with 
the same software [10]. Co-simulation consists then in organizing the exchange of information 
between processes so as to reproduce the solution in time of the complete system. 
 In both cases, co-simulation implies the definition of a master process that runs its own part of the 
model but also controls the time marching process, manages the exchange of information on the 
interfaces with the slave processors and verifies the convergence of the iteration process within the 
time step. Each slave process simulates a different part or aspect of the model and exchanges 
information on its own interface with the master process. 
An example of co-simulation as domain decomposition tool is illustrated by Figure 3. It consists of a 
car model of adequate complexity to simulate standardized maneuvers for evaluating the handling and 
stability performances of vehicles in the higher frequency range, and to predict accurate loads for 
durability analysis. In this model the car body is still assumed rigid, and suspensions are defined by a 
mix of rigid bodies, joints and force elements, but the tires are represented by the FE model displayed 
on the right. Non-linear flexibility of the twist beam is considered by meshing it with shell elements. 
 

 

Fig. 3 MBD car model with FE model of tires 
 
The resulting model numbers 2.E06 DOFs. The high resolution of the FE tire model is motivated by 
the objective to capture the high frequency response of the suspension system to road roughness. Full 
details both on the co-simulation method and on the example can be found in [10]. Let us simply 
mention that this example has been run on a parallel machine offering variable number of processors. 
On the one hand, the running time for the simulation of 5 s. maneuver at 70 km/h with one single 
process using 6 processors has taken 70 hours of computing time. The same problem has then been 
split into 1 master and 5 slave processes distributed on 26 processors as follows: 
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− Master process: car body + wheel centers (1 processor); 
− Slave process 1: twist beam (FE) + suspension models (1 processor); 
− Slave processes 2 to 5: 4 tire FE models (24 processors). 

The computing time has been reduced by a factor of 0.23, which corresponds to linear speedup and 
thus maximal use of computing resources. 

10 Conclusions 

The purpose of this keynote presentation was to show that full integration of finite element analysis 
with multibody dynamics can be achieved provided that the appropriate environment for numerical 
simulation is put into place. Some key aspects have been briefly described in the previous sections, 
among which the most important ones are to use the same description of finite motion kinematics for 
all system components, the construction of a library of flexible elements suitable for large 
displacement analysis and the adoption of an implicit method of solution based upon a time integration 
scheme providing numerical stability over the entire frequency range.  Other aspects such as the use 
of superelements to represent large components whenever feasible and the use of co-simulation to 
extend the range of current computational tools have also been discussed.  
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