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Abstract

Modal analysis is extensively used for the analysis and
design of structures. However, a major concern for struc-
tural dynamicists is that its validity is limited to systems
showing a linear behaviour. New developments have thus
been proposed in order to tackle nonlinear systems among
which the theory based on the nonlinear normal modes is
indubitably themost appealing. In this study, a different ap-
proach is adopted and the modes extracted from the proper
orthogonal decomposition are considered for the character-
ization of nonlinear systems.

INTRODUCTION

The proper orthogonal decomposition (POD) is a multi-
variate statistical method that aims at obtaining a com-
pact representation of the data. This method may serve
two purposes, namely order reduction by projecting high-
dimensional data into a lower-dimensional space and fea-
ture extraction by revealing relevant but unexpected struc-
ture hidden in the data.
The key idea of the POD is to reduce a large number of

interdependent variables to a much smaller number of un-
correlated variables while retaining as much as possible of
the variation in the original variables. An orthogonal trans-
formation to the basis of the eigenvectors of the sample
covariance matrix is performed, and the data are projected
onto the subspace spanned by the eigenvectors correspond-
ing to the largest eigenvalues. This transformation decorre-
lates the signal components and maximizes variance.
The most striking property of the POD is its optimality

in the sense that it minimizes the average squared distance
between the original signal and its reduced linear represen-
tation. Although it is frequently applied to nonlinear prob-
lems, it should be borne in mind that the POD only gives
the optimal approximating linear manifold in the configu-
ration space represented by the data. The linear nature of
the method is appealing because the theory of linear oper-
ators is available, but it also exhibits its major limitation
when the data lie on a nonlinear manifold. As stated in
reference [1], the POD is ”a safe haven in the intimidating
world of nonlinearity; although this may not do the physi-
cal violence of linearization methods”.
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The POD, also known as the Karhunen-Loève decom-
position, was proposed independently by several scien-
tists including Karhunen, Kosambi, Loève, Obukhov and
Pougachev and was originally conceived in the framework
of continuous second-order processes. When restricted to
a finite dimensional case, the POD is equivalent to prin-
cipal component analysis (PCA). It is emphasized that the
method appears in various guises in the literature and is
known by other names depending on the area of applica-
tion, namely PCA in the statistical literature, empirical or-
thogonal functions in oceanography and meteorology, and
factor analysis in economics.
The first applications of the POD in nonlinear struc-

tural dynamics date back to the 1990s with the work of
Cusumano and co-authors [2, 3]. It should be noted that,
at the same time, FitzSimons and Rui [4] used it for
modal reduction of structures for control. Since then,
the POD has enjoyed some success (see e.g. references
[5, 6, 7, 8, 9, 10, 11]). The reader is referred to reference
[12] for an overview of the method.
The aim of this paper is to show that the modes extracted

from the POD may be useful for the characterization of
nonlinear systems. Specifically, their utility for model re-
duction and finite element model updating is highlighted.

MATHEMATICAL FORMULATION
OF THE POD

Let θ(x, t) be a random field on a domain Ω. This field
is first decomposed into mean µ(x) and time varying parts
ϑ(x, t):

θ(x, t) = µ(x) + ϑ(x, t) (1)

At time tk, the system displays a snapshot ϑk(x) =
ϑ(x, tk). The POD aims at obtaining the most character-
istic structure ϕ(x) of an ensemble of snapshots of the
field ϑ(x, t). This is equivalent to finding the basis func-
tion ϕ(x) that maximizes the ensemble average of the inner
products between ϑk(x) and ϕ(x):

Maximize 〈|(ϑk, ϕ)|2〉 with ‖ϕ‖2 = 1 (2)

where (f, g) =
∫
Ω f(x)g(x) dΩ is the inner product in

Ω; 〈·〉 denotes averaging; ‖ · ‖ = (·, ·) 1
2 is the norm; | · | is

the modulus. Reference [13] shows that the maximization
reduces to the following integral eigenvalue problem:∫

Ω

〈ϑk(x)ϑk(x′)〉ϕ(x′) dx′ = λϕ(x) (3)



where 〈ϑk(x)ϑk(x′)〉 is the averaged auto-correlation func-
tion. The solution of the optimization problem (2) is thus
given by the orthogonal eigenfunctions ϕ i(x) of the inte-
gral equation (3), called the proper orthogonal modes or
POD modes (POMs). The corresponding eigenvalues λ i

(λi ≥ 0) are the proper orthogonal values (POVs). The
POM associated with the greatest POV is the optimal vec-
tor to characterize the ensemble of snapshots. The POM
associated with the second greatest POV is the optimal vec-
tor to characterize the ensemble of snapshots but restricted
to the space orthogonal to the first POM, and so forth. The
energy ε contained in the data is defined as the sum of the
POVs, i.e., ε =

∑
j λj , and the energy percentage captured

by the ith POM is given by λi/
∑

j λj .
The POMs may thus be used as a basis for the decompo-

sition of the field ϑ(x, t):

ϑ(x, t) =
∞∑

i=1

ai(t)ϕi(x) (4)

where the coefficients ai(t) are uncorrelated, i.e.,
〈ai(t)aj(t)〉 = δij λi, and are determined by ai(t) =
(ϑ(x, t), ϕi(x)).

PRACTICAL COMPUTATION
OF THE POD

In practice, the data are discretized in space and time.
Accordingly, m observations of a n-dimensional vector x
are collected, and an (n × m) response matrix is formed:

X = [x1 · · · xm] =

⎡
⎣ x11 · · · x1m

· · · · · · · · ·
xn1 · · · xnm

⎤
⎦ (5)

Since the data are now discretized and do not necessarily
have a zero mean, the averaged auto-correlation function is
replaced by the covariance matrix S = E[(x − µ)(x −
µ)T ], where E[·] is the expectation and µ = E[x] is the
mean of the vector x. The POMs and POVs are thus char-
acterized by the eigensolutions of matrixS. If the data have
a zero mean, an estimate of the covariance matrix is merely
given by the following expression:

S =
1
m

XXT (6)

It is emphasized that the POD can also be computed
through the singular value decomposition of matrixX:

X = UΣVT (7)

whereU is an (m×m) orthonormal matrix containing the
left singular vectors; Σ is an (m× n) pseudo-diagonal and
semi-positive definite matrix with diagonal entries contain-
ing the singular values σi andV is an (n×n) orthonormal
matrix containing the right singular vectors.

The POMs, defined as the eigenvectors of the covariance
matrix S, are thus equal to the left singular vectors of X.
The POVs are the square of the singular values divided by
the number of samples m. The main advantage in consid-
ering the SVD to compute the POD is that additional infor-
mation is obtained through the matrix V. The column v i

of matrixV contains the amplitude modulation of the cor-
responding POM ui, normalized by the singular value σi.
This information may also provide important insight into
the system dynamics.

MODEL REDUCTION
OF NONLINEAR SYSTEMS

The first application of the POMs considered in this pa-
per is model reduction of nonlinear systems. Specifically,
it is shown that the modes extracted from a chaotic orbit
are more representative of the system dynamics than any
other set of POMs extracted from a non-chaotic response.
Indeed, a chaotic orbit is assumed to cover a portion of the
phase space of higher dimension, and hence of greater mea-
sure [than say a periodic orbit]. This higher dimensional
data is further assumed to contain more information about
the system dynamics than data of a lower-dimensional pe-
riodic orbit.

f(t) = F0 sin(ωt)
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Figure 1: Clamped beam with two permanent magnets.

The procedure is illustrated using the numerical appli-
cation depicted in Figure 1. It is a clamped beam (l =
0.545m and EI = 49.34 10−3 Nm2) under the action of
a sinusoidal force applied at a single point. Magnets are
placed to the left and right of the free end to buckle the
beam. The magnetic field creates forces which are assumed
to be concentrated at the free end of the beam. The system
is simulated with a forcing frequency equal to 5 Hz and
for amplitudes F0 going from 0 up to 3.5 N. To illustrate
the varied dynamics of the system, a bifurcation diagram is
presented in Figure 2. This plot represents the horizontal
displacement at the end of the beam (at the moment when
the sine force is equal to F0) as a function of the amplitude
F0. For a particular amplitude, the number of points is re-
lated to the period. The initial conditions at each amplitude
are equal to zero and the bifurcation diagram is obtained by
checking for any periodicity within the first 800 s. In the



absence of periodicity, the transients are not yet died out
or the dynamics is non-periodic. It is worth pointing out
that the beam can oscillate equally around either a magnet
or the other depending on the initial conditions. This is the
reason why points in the diagram may be associated with
a positive or negative displacement. For some amplitudes,
particularly between 1 and 2.5 N, the number of points is
large, which may be interpreted as a non-periodic oscilla-
tion within the time allowed for the simulation.
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Figure 2: Bifurcation diagram of the full model.

The POMs obtained from a chaotic orbit are used to
build a low-dimensional model of the beam. However, the
system is chaotic for a wide range of amplitudes, and it re-
mains to determine the value of the amplitude for which the
modes are extracted. Interestingly enough, it was observed
that the POMs do not vary significantly as long as the re-
sponse is chaotic. The first five modes corresponding to
an amplitude F0=1 N constitute 99.99 % of the total signal
energy, and were thus chosen. The bifurcation diagram of
the reduced-order model is presented in Figure 3 and is in
remarkable agreement with the diagram obtained from the
full model.
To confirm that the POMs extracted from a chaotic or-

bit represent a convenient choice, the results are also com-
pared to another reduced-order model based on the POMs
of a periodic orbit, i.e., for F0=0.01 N. In this case, only
three POMs are retained in the model in accordance with
the 99.99 % criterion. However, it is worth noticing that
five of these POMs were also used for reduced-order mod-
elling, and the results were not significantly improved. The
reconstructed bifurcation diagram is represented in Figure
4, and it can be observed that this diagram presents severe
distortions in comparison with that obtained using the full
model.

FINITE ELEMENT MODEL UPDATING
OF NONLINEAR SYSTEMS

Model updating involves the tuning of parameter values
based on a comparison between responses in the model
and experiment. The exploitation of the POMs for finite
element model updating is motivated by the fact that, for
non-linear systems, new features must be defined because
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Figure 3: Bifurcation diagram of the reduced-order model
(chaotic orbit).
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Figure 4: Bifurcation diagram of the reduced-order model
(periodic orbit).

classical mode shapes are no longer effective to represent
the system dynamics.
In reference [11], the proposed model updating proce-

dure relies on the solution of an optimization problem that
consists of minimizing the difference between the POMs
of the measured and predicted data. In order to retain the
information contained in matrix V (see equation 7) but
without the drawback of its oscillatory nature, the Wavelet
transform of matrixV is computed. The instantaneous fre-
quencies and envelopes corresponding to the maxima in the
time-frequency plane are then extracted and included into
the objective function together with the POMs.
The investigation of the experimental structure shown

in Figure 5 was performed. The structure consists of a
clamped beam with a geometric non-linearity on its ex-
tremity (see reference [11] for more details). The beamwas
excited using a hammer impact, and transient responses
were measured. The comparison between the POMs ex-
tracted from the measurements and those extracted from
the finite element model shows that the predictive accuracy
of this model is not satisfactory enough (see Figure 6). Sev-
eral parameters need thus to be updated, namely, the rota-
tional and translational stiffnesses at the clamped ends and
at the junction, the coefficient and exponent of the non-
linearity, and the damping ratio of the first four modes of
the underlying linear system. The results obtained after up-



dating are shown in Figure 7 and enable us to conclude that
a model with a good predictive capability has now been ob-
tained. It should be noted that the amplitude modulations
(not represented here) of the experimental and simulated
POMs are also in satisfactory agreement.

CONCLUDING REMARKS

The goal of this paper was to highlight the utility of the
POD for dynamic characterization of nonlinear mechanical
systems. Although the modes extracted from the decompo-
sition do not have the theoretical foundations of the nonlin-
ear normal modes (NNMs), they, however, provide a viable
alternative for purposes such as model reduction and finite
element model updating.
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Figure 5: Experimental set-up.

Figure 6: POMs before model updating.
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