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The objective of the present study is to mitigate, or even completely eliminate, the limit cycle oscillations
in mechanical systems using a passive nonlinear absorber, termed the nonlinear tuned vibration absorber
(NLTVA). An unconventional aspect of the NLTVA is that the mathematical form of its restoring force is
not imposed a priori, as it is the case for most existing nonlinear absorbers. The NLTVA parameters are
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1 Introduction

Limit cycle oscillations (LCOs) are encountered in a number of real engineering applications including aircraft
[1, 2], machine tools [3, 4] and automotive disk brakes [5]. LCOs often limit the performance and can also
endanger the safety of operation [6].

Active control strategies have been proposed as a means of counteracting LCOs [7–9]. These references have
shown that active control can be used to raise the threshold above which LCOs occur. However, active control
is also limited by its requirements in terms of energy or space for actuators. Furthermore, delay in the feedback
loop can generate unexpected instabilities [10] whereas saturation of the actuators can limit the robustness of
stability [11].

Passive vibration absorbers represent another alternative for mitigating undesired LCOs. Specifically, the
linear tuned vibration absorber (LTVA), which comprises a small mass attached to the host system through
a damper and a spring, has been widely studied in the literature [12–16]. In most of these works, the system
under investigation is the classical Van der Pol (VdP) oscillator. References [13, 14] provide simple rules to
properly tune the LTVA parameters, while references [15,16] study the post-bifurcation behavior of the coupled
system. In [17], a nonlinear damping element was added in parallel with the LTVA to decrease the maximum
LCO amplitude. Other nonlinear vibration absorbers, including the autoparametric vibration absorber [18,19],
the nonlinear energy sink (NES) [20–28] and the hysteretic tuned vibration absorber [29], have also been
considered to increase the effectiveness of vibration attenuation. In particular, the NES exhibited three different
mechanisms to suppress LCOs, namely complete, partial and intermittent suppression. These mechanisms were
studied numerically [23], experimentally [24] and analytically [27].

The main idea of this study is to utilize the nonlinear tuned vibration absorber (NLTVA) for LCO suppres-
sion. This absorber, first introduced in [30], possesses a linear spring and a nonlinear spring whose mathematical
form is determined according to the nonlinearity in the host system. Following references [12–16], the linear
spring coefficient is determined to maximize the stable region of the trivial solution of the host system. Sub-
sequently, the nonlinear spring is designed to ensure supercritical behavior and to mitigate the LCOs in the
postcritical range. A fundamental result of this paper is that, if properly designed, the linear and nonlinear
springs of the NLTVA can complement each other giving rise to a very effective LCO suppression and manage-
ment strategy. The example that will serve to validate the proposed developments is the Van der Pol–Duffing
(VdPD) oscillator [31], which is a paradigmatic model for the description of self-excited oscillations. The bi-
furcation behavior of the VdPD oscillator was studied in [32] whereas its stabilization using active control was
proposed in [33,34].

The paper is organized as follows. Section 2 introduces the three design objectives pursued in this paper.
In Section 3, optimal values for the linear parameters of the NLTVA are determined using stability analysis
of the coupled system. Section 4 investigates the bifurcations occurring at the loss of stability and proposes
an analytical tuning rule for the nonlinear coefficient of the NLTVA. In Section 5, the reduction of the LCO
amplitude in the postcritical range is discussed. In Section 6, the analytical results are validated numerically
using the MATCONT software and the global behavior of the system is also carefully discussed. The NLTVA is
then compared with the NES, highlighting the better performance of the former absorber. Finally, conclusions
are drawn in Section 7.

2 Problem Formulation

The primary system considered throughout this work is the Van der Pol–Duffing (VdPD) oscillator:

m1q
′′
1 + c1

(
q21 − 1

)
q′1 + k1q1 + knl1q

3
1 = 0 (1)
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where m1, c1, k1 and knl1 are the oscillator’s mass, damping and the coefficients of the linear and cubic
springs, respectively. For instance, for an in-flow wing, the terms c1

(
q21 − 1

)
q′1 and knl1q

3
1 would model the

fluid-structure interaction and the structural nonlinearity, respectively. Stability analysis demonstrates that the
trivial equilibrium point of the system loses stability when µ1 = c1/(2

√
k1m1) = 0. Loss of stability occurs

through either a supercritical or a subcritical Hopf bifurcation. This latter scenario is dangerous, because stable
large-amplitude LCOs can co-exist with the stable equilibrium point [37].

The objective of the present study is to mitigate, or even completely eliminate, the LCOs of the VdPD
oscillator through the attachment of a fully passive nonlinear vibration absorber, termed the NLTVA [30]. One
salient feature of the NLTVA compared to existing nonlinear absorbers is that the absorber’s load-deflection
curve is not imposed a priori, but it is rather synthesized according to the nonlinear restoring force of the
primary system. The equations of motion of the coupled VdPD and NLTVA system are:

m1q
′′
1 + c1

(
q21 − 1

)
q′1 + k1q1 + knl1q

3
1 + c2 (q′1 − q′2) +G (qd) = 0

m2q
′′
2 + c2 (q′2 − q′1)−G (qd) = 0 (2)

where m2 and c2 are the absorber’s mass and viscous damping, respectively. The NLTVA is assumed to have a
generic smooth elastic force G(qd) where qd = q1 − q2 with G(0) = 0.

The design problem is as follows. The mass ratio ε = m2/m1 (and, hence, the absorber mass) is prescribed
by obvious practical constraints; ε = 0.05 is considered in the numerical examples of this paper. The damping
coefficient c2 and the absorber’s stiffness G(qd) should be determined so as to:

1. Maximize the region where the trivial equilibrium is stable by displacing the Hopf bifurcation toward large
positive values of µ1 (Fig. 1(a));

2. Avoid a catastrophic bifurcation scenario by transforming the potentially subcritical Hopf bifurcation of
the VdPD into a supercritical Hopf bifurcation of the coupled system (Fig. 1(b));

3. Reduce the amplitude of the remaining LCOs (Fig. 1(c)).

These three design objectives are studied in detail in the next three sections.

3 Maximization of the stable region of the trivial solution

The first design objective is to stabilize the trivial solution of the VdPD oscillator for values of µ1 as great
as possible. Because the stability of an equilibrium point of a nonlinear system is governed only by the local
underlying linear system, the NLTVA should comprise a linear spring for increased flexibility, i.e., G (qd) =
k2 (qd) +Gnl (qd). The system of interest for the stability analysis is therefore

m1q
′′
1 − c1q′1 + k1q1 + c2 (q′1 − q′2) + k2 (q1 − q2) = 0

m2q
′′
2 + c2 (q′2 − q′1) + k2 (q2 − q1) = 0. (3)

Introducing the parameters ω2
n1 = k1/m1, ω2

n2 = k2/m2, µ2 = c2/(2m2ωn2), γ = ωn2/ωn1 and the dimen-
sionless time τ = tωn1, we transform the system into first-order differential equations

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
−1 2µ1 −γ2ε −2µ2γε
0 0 0 1
−1 2µ1 −γ2 (1 + ε) −2µ2γ (1 + ε)



x1
x2
x3
x4

 (4)
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Figure 1: Subcritical VdPD oscillator with an attached NLTVA. (a) Enlargement of the region where the
equilibrium point of the VdPD oscillator is stable; (b) transformation of the subcritical Hopf bifurcation into a
supercritical Hopf bifurcation; (c) reduction of the amplitude of the remaining LCOs. H and LCO stands for
Hopf bifurcation and limit cycle oscillation, respectively. The other labels (stable, unstable, robust) refer to the
situation before the introduction of the NLTVA.

or in compact form ẋ = Wx, where x1 = q1, x2 = q̇1, x3 = qd and x4 = q̇d. The dot indicates derivation with
respect to the dimensionless time τ .

As reported for a similar system in [15], the trivial solution of Eq. (4) is asymptotically stable if and only if
the roots of the characteristic polynomial det (W − zI) = 0 have negative real parts. The roots are computed
by solving z4 +2 ((ε+ 1)γµ2 − µ1) z3 +

(
(ε+ 1)γ2 − 4γµ1µ2 + 1

)
z2 +2γ(µ2−γµ1)z+γ2 = 0, which is rewritten

as a4z
4 +a3z

3 +a2z
2 +a1z+a0 = 0. Fig. 2 depicts the stability chart in the µ1, µ2, γ space obtained from direct

evaluation of the roots. The surface, which represents the stability boundary, peaks along the µ1 axis at point
C, meaning that the trivial solution can no longer be stable beyond this point. The corresponding maximum
value of µ1 is around 0.1, and the other parameters are µ2 ≈ 0.1 and γ ≈ 1.

In order to calculate analytically the coordinates of point C, thus defining optimal parameters for maxi-
mizing stability, the Routh-Hurwitz stability criterion is exploited. The characteristic polynomial has roots
with negative real parts if and only if the coefficients ai > 0, i = 1, ..., 4, e2 = (a3a2 − a4a1) /a3 > 0 and
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µ1

µ2
γ

Figure 2: Stability chart in the µ1, µ2, γ space for ε = 0.05. The surface indicates the stability boundary.

e3 = c2a1 − a3a0 > 0, i.e.,

a4 = 1 > 0 (5)

a3 = 2 ((ε+ 1)γµ2 − µ1) > 0 ⇐⇒ µ1 < (ε+ 1)γµ2 (6)

a2 = (ε+ 1)γ2 − 4γµ1µ2 + 1 > 0 ⇐⇒ µ1 <
(ε+ 1)γ2 + 1

4γµ2
(7)

a1 = 2γ(µ2 − γµ1) > 0 ⇐⇒ µ1 <
µ2

γ
(8)

a0 = γ2 > 0 (9)

e2 =
2 ((ε+ 1)γµ2 − µ1)

(
(ε+ 1)γ2 − 4γµ1µ2 + 1

)
+ 2γ(γµ1 − µ2)

2((ε+ 1)γµ2 − µ1)
> 0 (10)

e3 =
γ(µ2 − γµ1)

(
2 ((ε+ 1)γµ2 − µ1)

(
(ε+ 1)γ2 − 4γµ1µ2 + 1

)
+ 2γ(γµ1 − µ2)

)
(ε+ 1)γµ2 − µ1

−2γ2((ε+ 1)γµ2 − µ1) > 0. (11)

It is not trivial to interpret the physical meaning of these coefficients, however, they give important in-
formation regarding stability. Fig. 3 represents 2D sections of the 3D stability chart for different values
of µ2. The curves a3 = 0 and a1 = 0 intersect at point A, whose coordinates in the (µ1, γ) space are
A =

(
µ2

√
1 + ε, 1/

√
1 + ε

)
. Substituting γ = 1/

√
1 + ε in e3 = 0, point B =

(
ε/
(
4µ2

√
1 + ε

)
, 1/
√

1 + ε
)

is defined. As presented in Figs. 3(a) and (c), A and B mark alternatively the maximal value of µ1 for stability.
Points A and B coincide if and only if µ2 = 1/2

√
ε/(1 + ε), which is therefore the optimal condition for stability;

this scenario is illustrated in Fig. 3(b).
Summarizing, optimal values of the linear parameters are

γopt =
1√

1 + ε
, µ2opt =

1

2

√
ε

1 + ε
(12)

5



µ1

γ

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

B

A

a1

(a)

2

2

2

2

42

2
2

a3, e2, e3
e2

e3

µ1
γ

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

A,B

(b)

2
2

2

2

2

2

2

e3

a3, e2, e3

a1

e2

µ1

γ

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

B
A

a1

(c)

2
2

2
2

2

2

a3, e2, e3
e3

e2

Figure 3: Sections of the stability chart for different values of µ2. (a) µ2 = 0.07; (b) µ2 = 1/2
√
ε/(1 + ε) =

0.1091; (c) µ2 = 0.12. Shaded area: stable, clear area: unstable. Encircled numbers 2 and 4 indicate regions
with 2 or 4 eigenvalues (two pairs of complex conjugate eigenvalues) with positive real parts.

and the corresponding maximal value of µ1 that guarantees stability is

µ1max =

√
ε

2
. (13)

4 Enforcement of Supercritical Hopf Bifurcations through Normal
Form Analysis

The second design objective is to ensure the robustness of the trivial solution, i.e., no stable LCO can coexist
with the stable equilibrium, as depicted in Fig. 1(b). Since supercritical Hopf bifurcations are sought in the
coupled system, a detailed investigation of the bifurcations occurring at the loss of stability is the main focus of
the present section. Because bifurcation characterization depends on the nonlinear coefficient of the NLTVA,
this analysis will allow us to define the optimal value of this coefficient whereas the linear coefficients of the
NLTVA should remain close to their optimal values (12), i.e., γ = 0.976 and µ2 = 0.109 for ε = 0.05.

Another key element that remains to be determined is the mathematical expression of the NLTVA’s elastic
force G(qd). Applying the ’principle of similarity’ between the primary and secondary systems, first proposed
for linear systems [35, 36] and extended to forced nonlinear vibrations in [30], the mathematical form of the
nonlinear spring of the NLTVA is chosen to be also cubic. Hence, the coupled system writes

m1q
′′
1 + c1

(
q21 − 1

)
q′1 + k1q1 + knl1q

3
1 + c2 (q′1 − q′2) + k2 (q1 − q2) + knl2 (q1 − q2)

3
= 0

m2q
′′
2 + c2 (q′2 − q′1) + k2 (q2 − q1) + knl2 (q2 − q1)

3
= 0. (14)

Considering dimensionless coordinates, we transform the system into first-order differential equations
ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
−1 2µ1 −γ2ε −2µ2γε
0 0 0 1
−1 2µ1 −γ2 (1 + ε) −2µ2γ (1 + ε)



x1
x2
x3
x4

+


0

−2µ1x
2
1x2 − α3x

3
1 − β3εx33

0
−2µ1x

2
1x2 − α3x

3
1 − β3(1 + ε)x33

 (15)
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or in compact form ẋ = Wx + b. The variables α3 = knl1/k1 and β3 = knl2/(k1ε) have been introduced in
these equations.

When stability is lost, one or two pairs of complex conjugate eigenvalues of W leave the left half plane, which
corresponds to single or double Hopf bifurcation, respectively. As reported in [15], a double Hopf bifurcation
is likely to occur when γ = γopt and µ2 ≤ µopt. This assertion is confirmed in Fig. 3(a), where it is shown
that losing stability through point A, the system winds up in a region with two pairs of complex conjugate
eigenvalues with positive real part. Referring to the 3D stability chart, the locus of double Hopf bifurcations
is depicted by the black line in Fig. 2. The analysis of the double Hopf bifurcation is of practical importance
because it can generate quasiperiodic solutions, which might compromise the robustness of the stable trivial
solution. However, a detailed study of the double Hopf bifurcations is beyond the scope of this paper.

4.1 Single Hopf bifurcation

The analysis is first focused on the single Hopf bifurcation scenario for which W has a pair of complex conjugate
eigenvalues with zero real part λ1,2 = k1 ± jω1 and two other eigenvalues λ3 and λ4 with negative real parts.
Vectors s1, s2, s3 and s4 are the corresponding eigenvectors. In order to decouple the linear part of the system,
we define the transformation matrix

T =

[
Re(s1) Im(s1) Re(s3) Im(s3)

]
(16)

where, if λ3 and λ4 are real, Re(s3) and Im(s3) are substituted with s3 and s4, respectively. Applying the
transformation x = Ty, Eq. (15) becomes

ẏ = Ay + T−1b (17)

where

A = T−1WT =


k1 ω1 0 0
−ω1 k1 0 0

0 0 Re(λ3) Im(λ3)
0 0 Im(λ4) Re(λ4)

 . (18)

The linear part of Eq. (17) is therefore decoupled.
Variables related to the bifurcation are separated from the other variables using center manifold reduction

[37]. Relations y3 = h3(y1, y2) and y4 = h4(y1, y2) are used to reduce the dimension of the system to two, while
keeping the local dynamics intact. However, since the system has only cubic nonlinearities, h3 and h4 have
only cubic and higher-order terms. Thus, for our purpose, they can be considered identically equal to zero, i.e.,
y3 ≈ 0 and y4 ≈ 0. System (17) reduces to[

ẏ1
ẏ2

]
=

[
k1 ω1

−ω1 k1

] [
y1
y2

]
+

[
d130y

3
1 + d121y

2
1y2 + d112y1y

2
2 + d103y

3
2

d230y
3
1 + d221y

2
1y2 + d212y1y

2
2 + d203y

3
2

]
. (19)

Performing several transformations, namely transformation in complex form, near-identity transformation
and transformation in polar coordinates, the bifurcation can be characterized through its normal form

ṙ = k1r + δr3 (20)

where δ = (3d130 + d112 + d221 + 3d203) /8. Details of this standard procedure can be found in [38]. Eq. (20)
has solutions r0 = 0 and r∗ =

√
−k1/δ. The coefficient δ can be expressed as a linear function of the nonlinear

coefficients α3 and β3:

δ = δ0(ε, γ, µ1, µ2) + δα(ε, γ, µ1, µ2)α3 + δβ(ε, γ, µ1, µ2)β3, (21)
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Figure 4: Values of (a) δ0, (b) δα and (c) δβ along the stability boundary in the µ1, µ2, γ space for ε = 0.05.
The color indicates the value of the corresponding coefficient. To facilitate the visualization, two different views
of the same surface are given (top and bottom plots).

where

δ0 = −1

4
µ1

(
t̂12
(
3t211t21 + 2t11t12t22 + t212t21

)
+ t̂14

(
3t211t21 + 2t11t12t22 + t212t21

)
+(t̂22 + t̂24)

(
t211t22 + 2t11t12t21 + 3t212t22

) )
(22)

δα = −3

8

(
t211 + t212

)
(t̂12t11 + t̂14t11 + t12(t̂22 + t̂24)) (23)

δβ = −3

8

(
t231 + t232

)
(ε(t̂12t31 + t̂14t31 + t32(t̂22 + t̂24)) + t̂14t31 + t̂24t32) (24)

where tij and t̂ij are the elements of T and of its inverse, respectively.
From Eq. (20), we see that the bifurcation is supercritical if δ < 0 and subcritical if δ > 0. Our objective

should therefore be to design the nonlinear spring β3 of the NLTVA to impose negative values of δ. Ideally,
this nonlinear tuning should be carried out in the vicinity of γopt and µ2opt so as to maintain LCO onset at
large values of µ1 (see Section 3). Fig. 4 displays the values of the coefficients δ0, δα and δβ along the stability
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Figure 5: Values of (a) δ0, (b) δα and (c) δβ for µ2 = 0.12 and ε = 0.05.

boundary in the µ1, µ2, γ space. Fig. 5 considers a section of these plots for µ2 = 0.12 (µ2 = 1.1µ2opt) for which
stability is lost through a single Hopf bifurcation.

For a system with no structural nonlinearities (α3 = β3 = 0), i.e., a LTVA connected to a classical VdP
oscillator, δ0 is negative, and the system is always supercritical. We now consider a LTVA connected to a VdPD
oscillator (β3 = 0), Figs. 4(b) and 5(b) evidence a symmetric behavior for δα, i.e., it is positive (negative)
below (above) γ ≈ γopt. This uncertainty on the sign of δα in the region of optimum tuning poses an important
practical difficulty, because a supercritical bifurcation cannot confidently be enforced in this region. For positive
values of α3, the solution to avoid a catastrophic bifurcation scenario is to detune the LTVA toward greater values
of γ, which guarantees negative values of δα. However, Fig. 3(c) indicates that this detuning is associated with
a significant decrease in the value of µ1max. For instance, considering γ = 1 decreases µ1max by approximately
30%. Following a similar reasoning, we conclude that the LTVA should be detuned toward smaller values of γ
for negative values of α3.

The NLTVA presents increased flexibility with respect to the LTVA, because β3 represents an additional
tuning parameter. However, Figs. 4(c) and 5(c) show that the sign of δβ in the optimal tuning region is as
difficult to predict as for δα. Interestingly, δα and δβ have consistently an opposite sign. It can be verified that
δα/δβ ≈ −0.05 close to γopt, thus δαα3 + δββ3 ≈ 0 if β3 ≈ 0.05α3. In other words, the potentially detrimental
effect of the structural nonlinearity of the VdPD on the bifurcation behavior can be compensated through a
proper design of the NLTVA’s nonlinearity. Unlike the LTVA, the NLTVA can therefore be designed to enforce
supercritical bifurcations in the optimal tuning region.

4.2 Two intersecting single Hopf bifurcations

Although the investigation of the double Hopf bifurcation that occurs along the black line in Fig. 2 is beyond
the scope of this paper, the separate analysis of the two intersecting single Hopf bifurcations gives already
some insight into the dynamics. The eigenvalues of W at point C are λ1,2 = ±j and λ3,4 = ±j/

√
1 + ε. By

performing the analysis outlined in the previous section, first considering λ1,2 as the critical eigenvalues and
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Figure 6: Maximal value of α3 below which supercritical bifurcations for the LTVA are guaranteed (ε = 0.05,
β3 = 0). (a) Positive values of α3; (b) negative values of α3. The dashed line corresponds to γ = γopt and the
dot to µ2 = µ2opt.

then λ3,4, we obtain respectively

δ1,2 =
1

8

(
− ε
√
ε

1 + ε
+

3
√
ε

1 + ε
α3 −

3(1 + ε)√
ε

β3

)
(25)

δ3,4 =
3

8

(
−
√
εα3 +

(1 + ε)2√
ε

β3

)
. (26)

The remarkable feature of Eqs. (25) and (26) is that the ratio between δα and δβ is constant

δα
δβ

= − ε

(1 + ε)2
. (27)

The important practical consequence of this result is that the effect of α3 can be locally entirely compensated
by β3 = ε/(1 + ε)2α3. It can be shown in fact that Eq. (27) is valid along the whole line of double Hopf
bifurcations. We also note that Eq. (27) is in excellent agreement with the expression δα/δβ ≈ −0.05 obtained
in the single Hopf case for ε = 0.05.

Although Eq. (27) is exactly valid for the double Hopf bifurcations, it is only approximate in other cases.
Thus, choosing β3 = ε/(1 + ε)2α3 does not necessarily guarantee that the system will lose stability through a
supercritical Hopf bifurcation. Considering that δ = δ0 + δαα3 + δββ3 and imposing β3 = ε/(1 + ε)2α3, it is
possible to calculate the value of α3 such that δ becomes positive, i.e., the critical value of α3 for which the
absorber fails to enforce supercriticality. This value is given by α3cr = −δ0/δα in the case of a LTVA (β3 = 0)
and by α3cr = −δ0/(δα + δβε/(1 + ε)2) for a NLTVA with the proposed tuning rule (27). The critical values
of α3 calculated in both cases are illustrated in Figs. 6 and 7, respectively. To avoid very large values in the
vicinity of double Hopf bifurcations (where αcr →∞), the color maps were trimmed at 1.

Considering the LTVA (Fig. 6), it is seen that the point C of optimal tuning of γ and µ2 lies at the boundary
between 0 and 1, resulting in a design with virtually zero robustness. For positive (negative) values of α3, the
solution for a robust absorber is to increase either γ or µ2 (decrease γ), which necessarily results in an earlier
LCO onset, i.e., µ1max <

√
ε/2. If a NLTVA is adopted (Fig. 7), for positive values of α3, point C lies well
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Figure 7: Maximal value of α3 below which supercritical bifurcations for the NLTVA are guaranteed (ε = 0.05,
β3 = α3ε/(1+ε)2). (a) Positive values of α3; (b) negative values of α3. The dashed line corresponds to γ = γopt
and the dot to µ2 = µ2opt.
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Figure 8: Probability to have a supercritical bifurcation for different values of α3 (in absolute value). (a) LTVA;
(b) NLTVA. γ and µ2 are within ± 1% and ± 5% of the corresponding optimum value, respectively.

inside the region where supercriticality is guaranteed, which clearly highlights the benefit of the NLTVA. For
negative values of α3, the optimal point lies close to the boundary between 0 and 1, which means that there is
much less margin for a robust design than for positive α3. However, compared to the LTVA with negative α3,
the NLTVA still possesses a larger region of supercritical behavior. Specifically, there is a new region γ ≈ γopt
and µ2 < µ2opt in which supercriticality can be guaranteed.

Finally, Fig. 8 presents the probability to have a supercritical bifurcation as a function of α3 (in absolute
value). To reflect a realistic design scenario, uncertainty of ± 1% and ± 5% on the values of γ and µ2 around
point C, respectively, are considered. Again, the superiority of the NLTVA over the LTVA is evident in these
plots.
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Figure 9: LCO iso-amplitude curves along the stability boundary for α3 = 0.08, ε = 0.05, β3 = ε/(1 + ε)2α3 =
0.0036 and µ1 − µ1cr = 0.01.

5 Reduction of the Amplitude of Limit Cycle Oscillations

At this stage, the linear and nonlinear parameters of the NLTVA have been designed through stability (Section
3) and bifurcation (Section 4) analyses, respectively. There is therefore no much freedom left to mitigate the
amplitudes of the LCOs in the post-bifurcation regime. Nevertheless, their amplitude in the vicinity of the
stability boundary can be investigated through the adopted local analysis.

Considering the normal form of a Hopf bifurcation, the amplitude of the generated LCOs is proportional to√
−k1/δ, where k1 is the real part of the eigenvalue related to the bifurcation (see Section 4.1). Because k1 = 0

at the loss of stability, we consider its linear approximation, i.e., k1 ≈ (dk1/dµ1) |µ1=µ1cr
(µ1 − µ1cr). The LCO

amplitude in the vicinity of the loss of stability is therefore

r ≈

√
−dk1

dµ1

∣∣∣∣
µ1=µ1cr

µ1 − µ1cr

δ
, (28)

The maximal value of the LCO in physical space is computed by considering ϕ = tan−1 (t12/t11) in q1 ≈
t11r cos (ϕ) + t12r sin (ϕ), where t11 and t12 are the coefficients of T as expressed in Eq. (16) (t13 and t14 do
not need to be taken into account since y3 ≈ y4 ≈ 0). Iso-amplitude curves of the LCOs along the stability
boundary are represented in Fig. 9. It can be observed that the amplitude of the LCOs is minimized close
to the optimal tuning region, which signifies that the design of the previous sections is also relevant for LCO
mitigation.
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Figure 10: Bifurcation diagrams for µ2 = 0.12 and ε = 0.05. (a) γ = 0.970, (b) γ = 0.985. VdP+LTVA: α3 = 0
and β3 = 0; VdPD+LTVA: α3 = 0.3 and β3 = 0; VdPD+NLTVA: α3 = 0.3 and β3 = 0.0136. Thick dashed
lines: numerical results (MATCONT); thin solid lines: analytical results.

6 Numerical validation of the analytical developments

6.1 Proposed tuning rules for the NLTVA

In the previous sections, a procedure to optimize the parameters of the NLTVA was proposed, namely

γopt =
1√

1 + ε
, µ2opt =

1

2

√
ε

1 + ε
, β3 =

ε

(1 + ε)2
α3. (29)

We recall that the ’principle of similarity’ was adopted for selecting the mathematical form of the NLTVA
nonlinearity. For these parameters, the system will lose stability at µ1 =

√
ε/4 through a supercritical Hopf

bifurcation. Because the double Hopf scenario was not fully analyzed and because this scenario would probably
result in more involved dynamics, it is probably preferable in practice to detune µ2 toward values slightly greater
than µ2opt, in order to ensure a supercritical single Hopf bifurcation. Furthermore, Fig. 9 shows that the LCOs
have smaller amplitude for µ2 > µ2cr rather than for µ2 < µ2cr.

6.2 Local and global bifurcation analysis

Bifurcation diagrams predicted using the analytical developments of Section 4.1 and the numerical continuation
software MATCONT [40] are depicted in Fig. 10. Slightly detuned linear parameters, i.e., µ2 = 0.12, γ =
0.97/0.985, are considered to show the robustness of our findings. Loss of stability occurs through a single
Hopf bifurcation for the two parameter sets. Fig. 10 presents an excellent qualitative agreement between the
analytical and numerical curves; the quantitative differences observed at higher values of q1 are due to the
fact that the analytical results are only valid locally. When there is no structural nonlinearity (α3 = 0 and
β3 = 0), the bifurcation remains supercritical, and the LTVA works effectively on the classical VdP oscillator.
The introduction of the structural nonlinearity (α3 = 0.3) in the VdP oscillator gives rise to a subcritical
or supercritical bifurcation in Figs. 10(a) and (b), respectively. This result confirms the difficulty to predict

13



0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

µ1

q
1

(a)

VdPD+NLTVA

VdPD+LTVA

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

µ1

q
1

(b)

VdPD+LTVA

VdPD+NLTVA

Figure 11: Bifurcation diagrams for µ2 = 0.12, α3 = 0.3 and ε = 0.05. (a) γ = 0.970, (b) γ = 0.985.
VdPD+LTVA: β3 = 0; VdPD+NLTVA: β3 = 0.0136. Squares: fold bifurcations.

the bifurcation behavior of the coupled VdPD and LTVA system in the optimal region; it also highlights the
detrimental role played by the structural nonlinearity of the VdPD oscillator. Conversely, the introduction
of nonlinearity in the absorber (β3 = ε/(1 + ε)2α3 = 0.0136) allows to guarantee a supercritical bifurcation,
as for the system without nonlinearity. The compensation effect brought by the NLTVA is therefore clearly
demonstrated.

The analytical developments are valid only in the neighborhood of the bifurcation leading to LCO onset.
The MATCONT software [40] is now utilized to investigate large-amplitude LCOs. Fig. 11 plots bifurcation
diagrams for the case of a single Hopf bifurcation at the loss of stability. The same parameter values as those in
Fig. 10 are used, but greater values of q1 are investigated. A major difference with the local analysis is that fold
bifurcations that can turn supercritical behavior into subcritical behavior are now encountered, which confirms
the importance of global analysis. If the pair of folds that appears for the NLTVA in Fig. 11(a) cannot be
considered as particularly detrimental, this is not the case for the LTVA in Fig. 11(b), where bistability in a
significant portion of the stable region compromises the robustness of the linear absorber.

Fig. 12 represents the same results for a lower value of µ2 for which a double Hopf bifurcation is expected.
The bifurcation diagrams are more complex with secondary Hopf (or Neimark-Sacker) bifurcations observed
both for the LTVA and NLTVA; their analysis is beyond the scope of this paper. Apart from these new
bifurcations, we note that the general trend of the curves is similar to that in Fig. 11, demonstrating a certain
robustness of the absorbers with respect to parameter variations.

Fig. 13 considers again the single Hopf case, but with a slightly greater value of the nonlinear coefficient
of the NLTVA, i.e., β3 = 0.018 instead of 0.0136. The NLTVA clearly outperforms the LTVA: not only LCO
amplitudes are significantly smaller, but there is the complete absence of dangerous bistable regions. Another
important result is the strong resemblance between the behaviors of the VdP+LTVA and VdPD+NLTVA
systems. This suggests that the compensation of the nonlinearity of the VdPD by the nonlinearity of the
NLTVA, which was observed in previous sections, is also valid at larger amplitudes.
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Figure 12: Bifurcation diagrams for µ2 = 0.097, α3 = 0.3 and ε = 0.05. (a) γ = 0.970, (b) γ = 0.985.
VdPD+LTVA: β3 = 0; VdPD+NLTVA: β3 = 0.0136. Squares: fold bifurcations; circles: secondary Hopf
bifurcations.
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Figure 13: Bifurcation diagrams for µ2 = 0.12 and ε = 0.05. (a) γ = 0.970, (b) γ = 0.985. VdP+LTVA: α3 = 0
and β3 = 0; VdPD+LTVA: α3 = 0.3 and β3 = 0; VdPD+NLTVA: α3 = 0.3 and β3 = 0.018. Squares: fold
bifurcations.
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Figure 14: Bifurcation diagrams for µ2 = 0.12, ε = 0.05 and α3 = 0.03 (VdPD primary system) with an
attached linear (LTVA), quadratic (β2), cubic (NLTVA) or quintic (β5) absorber. (a) γ = 0.970, (b) γ = 0.985.
Solid lines: stable, dashed lines: unstable.

6.3 Validation of the principle of similarity

In Section 4, the nonlinear spring of the NLTVA was chosen to be cubic according to the ’principle of similarity’.
Absorbers with quadratic (β2) and quintic (β5) nonlinearities are also considered in this section. For γ = 0.97
in Fig. 14(a), the NLTVA is the only absorber which loses stability through a supercritical bifurcation. For
greater amplitudes, unlike the other absorbers, the NLTVA does not exhibit any bistability in the region where
the trivial solution is stable. However, besides the NLTVA, the absorber with quintic nonlinearity also exhibits
a beneficial effect with respect to LCOs amplitude. For γ = 0.985 in Fig. 14(b), all absorbers lose stability
through a supercritical bifurcation, but the NLTVA is the only absorber that does not possess a fold bifurcation
that generates subcriticalities at greater amplitudes. The remaining LCOs for the NLTVA have also a much
smaller amplitudes. All the results clearly validate the principle of similarity for the passive control of self-excited
oscillations.

6.4 Comparison with NES

As stated in the introduction, the NES has been widely utilized in the last decade for the passive absorption of
forced and self-excited oscillations. The main difference between the NES and the NLTVA, is that the former
absorber possesses an essentially nonlinear spring, i.e., without a linear component. Domany and Gendelman [39]
showed that the stability boundary of a VdPD oscillator with an attached NES can be approximated by the
curve 2µ1/ε = Λ/(Λ2 + 1), where Λ = c2/(m2ωn1). Thus, the maximal value of µ1 in order to have stability
is obtained for Λ ≈ 1 and it is µ1max,NES ≈ ε/4, which is the square of the value obtainable with the NLTVA
(µ1max =

√
ε/2). For ε = 0.05, µ1max is therefore approximately 10 times greater for the NLTVA than for the

NES. This demonstrates that the presence of a linear spring in the absorber is critical for the enlargement of
the stable region of the trivial solution.

For illustrating the respective performance, a VdPD oscillator with µ1 = 0.025 and α3 = 4/3 is considered.
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Figure 15: Time series for µ1 = 0.025 and α3 = 4/3. (a) No absorber; (b) NES with Λ = 1 and a cubic spring
β3 = 0.5333; (c) NLTVA with optimal linear parameters and a cubic spring β3 = 0.0605.
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Figure 16: Bifurcation diagrams of the VdPD oscillator with an attached NES for α3 = 0.3 and ε = 0.05. (a)
c2 = 0.05 (Λ = 1); (b) knl2 = 0.01. Squares: fold bifurcations; circles: secondary Hopf bifurcations.

Fig. 15(a) depicts its LCO when no absorber is attached. Figs. 15(b,c) show that the NES can only reduce the
LCO amplitude for these parameters whereas the NLTVA can completely eliminate the limit cycle and make
the coupled system converge toward the trivial solution.

The performance of an NES attached to the VdPD oscillator was also investigated using the MATCONT
sofware. In Fig. 16(a), the NES damper coefficient c2 is optimized with respect to stability and knl2 varies,
whereas knl2 = 0.01 and c2 varies in Fig. 16(b). Although a detailed performance analysis is beyond the scope
of this paper, variation of knl2 and c2 are unable to improve significantly the NES performance. The comparison
between Figs. 13 and 16 evidences that, besides a much larger stable region, the NLTVA generates smaller LCO
amplitudes than the NES.
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7 Conclusions

The purpose of this paper was to investigate the performance of the NLTVA for suppression of self-excited
oscillations of mechanical systems. A distinct feature of this absorber is that the mathematical form of its
nonlinearity is selected according to a principle of similarity with the nonlinear primary system. Thanks to
detailed stability and bifurcation analyses, a complete analytical design of the NLTVA was obtained, which was
validated by detailed numerical calculations in the MATCONT software.

Thanks to the complementary roles played by the linear and nonlinear springs of the NLTVA, this absorber
was shown to be effective for LCO suppression and mitigation, as it maximizes the stability of the trivial
equilibrium point, guarantees supercritical bifurcations and reduces the amplitude of the remaining LCOs.
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