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Abstract 

A method is proposed to perform structural health monitoring under varying environmental and 
operational conditions. The method is based on principal component analysis (PCA) applied to a data 
set containing vibration characteristics identified during the monitoring of the structure. The advantage 
of the method is that it does not require the measurement of environmental parameters that are taken 
into account as embedded variables. As the influence of environmental effects may be effectively 
eliminated, the residual error of the PCA prediction model remains small if the structure is healthy, and 
increases significantly when structural damage occurs. Novelty analysis on the residual errors provides 
a statistical indication of damage. The PCA-based damage detection method is illustrated using 
experimental data. It will also be shown that when the relationship between the vibration characteristics 
becomes nonlinear, PCA is advantageously replaced by one of its nonlinear generalizations. 

 

Introduction 

Vibration-based structural health monitoring consists in detecting damage in 
structures from changes in some of their features that are extracted from vibration 
data. For example, damage may be characterized by changes in the modal parameters, 
i.e. natural frequencies, modal damping ratios and mode shapes. There is also a large 
amount of research using other damage-sensitive features without the need to identify 
the modal parameters, such as novelty analysis with auto-regressive models (Worden 
et al., 2000; Sohn and Farrar, 2000), χ²-test based on realization analysis (Basseville 
et al., 2000), and more recently a novelty analysis based on a Kalman model (Yan et 
al., 2004a). 
 
In most of the previous analyses, vibration characteristics of structures were estimated 
with the assumption of a constant environment. However, in practical situations, 
structures are often subject to changes in environmental and operational conditions 
(e.g. temperature, temperature gradients, humidity, wind, traffic, etc.), which may 
mask the changes caused by structural damages. If the effect of these environmental 
conditions is not taken into account in the damage detection process, false-positive or 
negative damage diagnosis may occur so that vibration-based health monitoring 
becomes unreliable. Accordingly, during the last years, structural dynamicists have 
become increasingly concerned with modal parameter variability due to 
environmental conditions (see for instance Wahab and De Roeck, 1997; Kullaa, 2001; 
Sohn et al., 2001; Ko et al., 2003) 
 
Sohn et al. (2001) have trained an auto-associative neural network using data 
measured in varying environmental conditions. In this method, target outputs 
correspond to the inputs of the network, and the bottleneck layer captures the 
embedded environmental factors. The method has been used to analyze a simulated 
computer hard disk drive and the vibration features were chosen to be the coefficients 

Yan, Kerschen, De Boe and Golinval 1

mailto:am.yan@ulg.ac.be
mailto:kareem@nd.edu


7th International Conference on Motion and Vibration Control Paper ID114 

of the transfer function. Kullaa (2001) has applied a linear factor analysis consisting 
of an iterative process to eliminate environmental and operational effects from the 
health monitoring system. In this case, natural frequencies are taken as vibration 
features. The method was tested using simulated data and applied to a laboratory 
experiment. The key advantage of these two methodologies is that the measurement 
of the environmental variables is not required, and the underlying physical quantities 
do not need to be known. Instead, environmental effects are treated as embedded 
variables. 
 
In this study, an alternative approach to the second method is proposed based upon 
principal component analysis (PCA). The basic idea is that the changes in the 
measured features due to environmental variations may be taken into account using 
PCA. A further assumption is that they are different from those due to structural 
damage; it is therefore possible to make a distinction between them. To this end, the 
prediction errors of the PCA model may serve as damage indicator, and novelty 
analysis is adopted to decide whether the features indicate departure from previously 
estimated normal conditions or not. It is noted that when the relationship between the 
vibration characteristics becomes nonlinear, PCA is advantageously replaced by one 
of its nonlinear generalizations called vector quantization principal component 
analysis (VQPCA). 
 

Principal Component Analysis 

Methodology 

PCA is a multivariate statistical method, also known as Karhunen-Loève transform or 
proper orthogonal decomposition. In the present work, it will be shown that this 
technique is useful for eliminating environmental effects in a damage detection 
context. 
 
Changes in environmental conditions (e.g. temperature, temperature gradients, 
humidity, wind, etc.) are known to have considerable effects on the measured 
vibration features. Most of the time, environmental variables are not measured but 
their effects are merely observed from the variation of the measured features. Let us 
denote by the n-dimensional vector yk a set of vibration features identified at time tk, 
(k=1…N), N being the number of samplings. All the samples are collected in a (nxN) 
matrix Y. If the natural frequencies are chosen as features, n represents the number of 
selected modes. PCA provides a linear mapping of data from the original dimension n 
to a lower dimension m:  
 
 =X T Y  (1) 
 
where X (mxN) is called the score matrix and T (mxn) the loading matrix; the 
dimension m may be thought as the physical order of the system which corresponds 
here to the number of combined environmental factors that affect the features. Such a 
dimension reduction process forces the system to learn the inherent variables driving 
changes of the features and to capture the embedded relation between the 
environmental factors and the features. 
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Generally, matrix T may be calculated by extracting m eigenvectors of the covariance 
matrix of Y which are associated with the largest eigenvalues. Alternatively, a more 
practical method is to perform singular value decomposition of the covariance matrix: 
 

  where T 2= ΣYY U UT 1

2

0
0

⎡ ⎤Σ
Σ = ⎢ ⎥Σ⎣ ⎦

 (2) 

 
where U is an orthonormal matrix, the columns of which define the principal 
components and form a subspace spanning the data; the singular values given by the 
diagonal terms of matrix Σ represent the active energy of the associated principal 
components. By definition, Σ1=diag (σ1, σ2,, …, σm) and Σ2=diag (σm+1, σm+2, …, σn) 
and the singular values are written in decreasing order 
 
 σ1 ≥ σ2≥  …≥ σm  >> σm+1 ≥ …≥σn → 0 (3) 
 
In most practical situations, the elements of Σ2 are assumed to be small with respect to 
the elements of Σ1, but they are not equal to zero due to the effect of noise and/or to 
the presence of nonlinearity. The reason is that among all the possible environmental 
factors, only a few of them, say m factors, have a strong influence on the vibration 
features and have to be considered. The other factors whose influence is negligible 
(e.g. noise) may be discarded. In practice, temperature might be the only significant 
environmental factor, which means that m is equal to 1.  
 
According to PCA, the vibration features of the structure mainly vary along the 
directions of the principal components associated with the highest energies. In other 
words, the vibration features approximately remain in the hyperplane defined by the 
m principal components adopted. However, the selection of an appropriate dimension 
m is not so critical as it appears. As we are considering the relative change of this 
hyperplane from the reference to the current state, it is possible to obtain stable 
monitoring results with different values of the order m. In practical applications where 
the number of environmental factors is not known a priori or difficult to find by 
observing the singular values, the procedure can be repeated for several values of m. 
 
From the above analysis, the first m columns of U may be used to build matrix T in 
equation (1) in order to project the measured features onto the environmental-factor 
characterized space. The loss of information in the projection can be assessed by re-
mapping the projected data back to the original space 
 
 T Tˆ = =Y T X T T Y  (4) 
 
The residual error matrix E is estimated as 
 
 ˆ= -E Y Y  (5) 
 
In the present work, the residual errors are used as damage indicator. From the 
prediction error vector Ek obtained at time tk, the Novelty Index (NI) (see Worden et 
al., 2000) is defined either using the Euclidean norm: 
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 E
kNI = Ek  (6) 

or the Mahalanobis norm 
 
 M T 1

k kNI −= E R Ek  (7) 
where R=YYT/N is the covariance matrix of the features. If it is further assumed that 
the Euclidean or Mahalanobis indices are normally distributed, statistical analysis 
may be performed. Defining NI  and σ as the mean value and standard deviation of 
NI for the prediction in the reference state, an X-bar control chart (Sohn and Farrar, 
2000) is constructed by drawing a centerline (CL) at NI and two additional horizontal 
lines corresponding to the upper and lower control limits (UCL and LCL) versus the 
identification numbers. In the present work, the control limits are defined as follows: 
 
 CL NI=  (8) 
 UCL NI= + ασ  (9) 
 LCL NI= − ασ  (10) 
 
where coefficient α is taken equal to 3, which corresponds to a confidence interval of 
99.7% if a normal distribution is assumed. Outlier statistics allows to count how many 
prediction errors (in percentage of the total number of identifications) overpass the 
upper limit. In the absence of damage, the vibration features corresponding to the 
current data should lie in the hyperplane spanned by the vibration features 
corresponding to the reference data. The outlier statistics value of the current data 
should thus remain at the same level as for the reference data. Conversely, structural 
damage should cause a departure from the original hyperplane, and the outlier 
statistics of the damaged state should increase significantly. In addition, the ratio 
NId/NIr (d and r denote the damaged and reference states, respectively) may also be 
used as a quantitative indicator of damage level. Whereas NId/NIr →1 means no 
damage, a relatively large ratio NId/NIr corresponds to the opposite situation. 
 

Geometric Interpretation 

To illustrate the method, a geometric interpretation is presented in the two-
dimensional (n=2) case, i.e. when two features y1 and y2 are considered. As shown in 
Figure 1, the features for the reference data set (represented by circles) are distributed 
around their geometric center (point O’). It is assumed here that environmental 
variations are responsible for the dispersion of the features. The application of PCA to 
this data set gives two principal components, namely PC-I and PC-II. PC-I is 
associated to the highest level of energy and is responsible for the biggest variation of 
the features; it corresponds to the main environmental factor or to a combined effect 
of several factors. PC-II represents the effect of secondary factors.  
 
If point Y is considered, the first step is to project it according to equation (1) onto the 
one-dimensional space spanned by PC-I. The result is a scalar equal to the length of 
segment OX1. Re-mapping this data point back to the original two-dimensional space 
results in point Y1, and the corresponding residual error is measured by the length of 
segment . 
 
Let us now examine the features identified from a damaged structure (indicated by a 

1YY
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symbol ‘×’). It is emphasized that the changes due to structural damage are assumed 
to be different from those due to environmental effects; some overlapping, however, 
is possible as illustrated in Figure 1. Taking point Z as an example, it can be observed 
that the residual error ( ) increases significantly with respect to . In such a 
comparison between healthy and damaged states, the effect of the environmental 
factors has been approximately eliminated.  
 
It should be pointed out that the application of PCA generally requires a data 
normalization procedure in order to deal with variables with a zero-mean and a 
unitary standard deviation. The normalization should not be performed in the present 
case; the reader is referred to Yan et al. (2004b) for a more detailed discussion. 
 

1Y Z 1YY

Experimental Application: One year monitoring of the Z24 bridge 

This in-situ experiment was conducted in the framework of the BRITE-EURAM 
program CT96 0277 SIMCES. The Z24-bridge is located in Switzerland; it is a 
classical post-tensioned concrete box girder bridge with a main span of 30 meters and 
2 side-spans of 14 meters. The bridge was monitored during 305 days from November 
1997 until September 1998. 49 sensors were used to capture various environmental 
parameters (temperature, wind characteristics, humidity, etc.). During the monitoring 
period, the bridge was subjected to a series of realistic damage cases. Vibration 
measurements were gathered every hour using accelerometers, and modal parameters 
were identified automatically and examined (see Peeters and De Roeck, 2000). A 
close look at the identified vibration features in Figure 2 reveals that the natural 
frequencies of the first four modes vary significantly with temperature, which is 
assumed to be the environmental factor responsible for most of the observed 
variation.  
 
Let us now apply the proposed PCA-based damage detection method. Numerical tests 
showed that the choice of two principal components (i.e. m =2) is adequate. The 
results of damage detection are shown in Figures 4a and 4b. They are quite 
satisfactory as the introduced various damages are well detected. However, an 
abnormality appears between the 80th and 90th days, during which very cold weather 
caused freezing of the asphalt layer on the bridge surface. It was found that the asphalt 
layer behaves differently during warm and cold periods, which is responsible for the 
presence of nonlinear effects. The relationship between natural frequencies is almost 
bilinear as depicted in Figure 3, the inflexion point corresponding to a temperature 
near 0°C. 
 
At this point, it is important to recall that PCA is in essence a linear technique, i.e. it 
minimizes the average squared distance between the original data and their reduced 
linear representation. To address this issue, researchers in statistics and in the neural 
network community have developed nonlinear extensions of PCA.  
 
In order to improve the results given by PCA, our attention was then focused on a 
local variant of PCA called vector quantization principal component analysis 
(VQPCA). VQPCA involves a two-step procedure, namely a clustering of the data 
space into several regions and the application of PCA within each local region. The 
detailed description of this technique is beyond the scope of this paper, and the reader 

Yan, Kerschen, De Boe and Golinval 5



7th International Conference on Motion and Vibration Control Paper ID114 

is referred to Kambhatla and Leen (1997) or Kerschen and Golinval (2002) for a more 
detailed discussion.  
 
Due to the bilinear characteristic of the data, the space containing the natural 
frequencies was divided in two sub-regions, and PCA was performed within each sub-
region. The results obtained using VQPCA are presented in Figures 5a and 5b. The 
comparison with PCA indicates two improvements: 
 

• The abnormality which was appearing between the 80th and 90th days has 
disappeared as the nonlinearity is now taken into account by VQPCA; 

• The damage detection method based upon VQPCA is more sensitive to 
potential damage. Indeed, the values of NI for the damage states (i.e. between 
the 269th and 305th days) are greater than those given by PCA for the same 
period. 
 

Conclusions 

The purpose of this paper was to perform structural damage diagnosis under changing 
environmental conditions. In a first step, PCA is applied to reference data assumed to 
be healthy in order to capture the implicit effects of environmental variation on the 
features. In a linear or weakly nonlinear case, the number of dominant principal 
components should approximately correspond to the number of independent and 
influent environmental factors. In a second step, PCA is applied to a data set 
representing the current structural state. Under the assumption that the changes due to 
structural damage are different from those due to environmental variation, the residual 
error should increase significantly in the presence of structural damage.  
 
The advantage of the method relies in its simplicity and efficiency. The measurement 
of environmental parameters is not needed, which renders structural health monitoring 
very convenient. The application of the method to experimental data has shown that 
environmental effects were successfully eliminated and that the different levels of 
damage were well detected.  
 
A possible limitation of PCA exists when the relationship between the measured 
features becomes nonlinear. In this case, PCA is advantageously replaced by one of 
its nonlinear generalizations called VQPCA.  
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Figure 1. Geometric interpretation 
 

 

Mode 2 
 
 
 
Mode 1 

Figure 2. Time-variations of the natural frequencies of the first four m
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Figure 4a. PCA for damage detection of Z24-bridge 
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Figure 4b. PCA for damage detection of Z24-bridge (zoom) 
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