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Abstract. The well-studied semigroup Sg(A) = {b : b = Ax, x ∈ Zn, x ≥ 0} can be
stratified by the sizes of the polyhedral fibers IPA(b) = {x : Ax = b, x ≥ 0, x ∈ Zn}. The
key theme of this paper is a structure theory that characterizes precisely the set Sg≥k(A) of
all vectors b ∈ Sg(A) such that their fiber IPA(b) has at least k-solutions. We demonstrate
that this set is finitely generated, a union of translated copies of a semigroup which can be
computed explicitly via Hilbert bases computations. Related results can be derived for those
right-hand-side vectors b for which IPA(b) has exactly k solutions or fewer than k solutions.
We also show that, when n, k are fixed natural numbers, one can compute in polynomial time
an encoding of Sg≥k(A) as a generating function, using a short sum of rational functions.
As a consequence, one can identify all right-hand-side vectors that have at least k solutions.
Using this tool we prove that for fixed n, k the k-Frobenius number can be computed in
polynomial time, generalizing a well-known result of R. Kannan.

1 Introduction

An affine semigroup is a semigroup (always containing a zero element) which is finitely generated
and can be embedded in Zn for some n. We study here a special kind of affine semigroups that
appears in many interesting problems in combinatorics, commutative algebra, and number theory
and that can be described in very explicit terms. Given an integer matrix A ∈ Zd×n and a vector
b ∈ Zd, we study the semigroup Sg(A) = {b : b = Ax, x ∈ Zn, x ≥ 0}. Geometrically it can
be described as some of the lattice points inside the convex polyhedral cone cone(A) of non-
negative linear combinations of the columns of A. It is well-known that Sg(A) ⊂ cone(A) ∩ Zn,
but the equality is not always true. It is also well-known that cone(A) ∩ Zn is a finitely generated
semigroup, this time with generators given by the Hilbert bases of cone(A) [30, 39]. The study of
the difference between Sg(A) and cone(A) ∩ Zn is quite interesting (e.g., has been part of many
papers in commutative algebra about semigroups and their rings. See e.g., [8, 18, 42, 43] and the
references therein). Practically speaking, membership of b in the semigroup Sg(A) reduces to the
challenge, given a vector b, to find whether the linear Diophantine system

Ax = b, x ≥ 0, x ∈ Zn , (1)

has a solution or not. We will denote the problem (1) by IPA(b). Geometrically, IPA(b) asks whether
there is at least one lattice point inside the parametric polyhedron PA(b) = {x : Ax = b, x ≥ 0}.

Now, for a given integer k there are three natural interesting variations of the classical feasibility
problem above that in a natural way measure the number of solutions of IPA(b):

– Are there at least k distinct solutions for IPA(b)? If yes, we say that the problem is ≥ k-feasible.
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– Are there exactly k distinct solutions for IPA(b)? If yes, we say that the problem is = k-feasible.

– Are there less than k distinct solutions for IPA(b)? If yes, we say that the problem is < k-
feasible.

We call these three problems, the fundamental problems of k-feasibility. Given the integer k
one can decompose Sg(A) taking into account the number of solutions for IPA(b). The original
feasibility problem is just the problem of deciding whether IPA(b) is ≥ 1-feasible. This shows
directly that k-feasibility problems are NP-hard in complexity. Recently Eisenbrand and Hänhle
[26] showed that the related problem of finding the right-hand-side vector b that maximizes the
number of lattice points solutions, when b is restricted to take values in a polyhedron, is NP-hard.

This paper investigates the question of, given an integral matrix A, determining for which
right-hand-side vectors b are the problems IPA(b) ≥ k-feasible, = k-feasible, or < k-feasible. In
what follows we say that b is ≥ k-feasible, or respectively, = k-feasible or < k-feasible if the
corresponding IPA(b) is. The first part of this paper is about a decomposition of the semigroup
Sg(A) into translated semigroups that group together all elements b ∈ Sg(A) that are ≥ k-feasible
(similarly for the other cases). The second part is about the theoretical and practical complexity
of algorithms for finding such decomposition of Sg(A) in practice. A key application is the study
of the k-Frobenius number, a number of interest in combinatorial number theory.

The theory of k-feasibility is useful in applications where a given number of solutions k needs to
be achieved to consider the problem solved or where one cannot allow too many solutions. Naturally
k-feasibility problems have interesting applications in combinatorics and statistics: Consider first
the widely popular recreational puzzle sudoku, each instance can be thought of as an integer linear
program where the hints provided in some of the entries are the given right-hand-sides of the
problem. Of course in that case newspapers wish to give readers a puzzle where the solution is
unique (k = 1). It is not difficult to see that this is a special case of a 3-dimensional transportation
problem that is, the question to decide whether the set of integer feasible solutions of the r× s× t-
transportation problemx ∈ Zrst :

r∑
i=1

xijk = ujk,

s∑
j=1

xijk = vik,

t∑
k=1

xijk = wij , xijk ≥ 0


has a unique solution given right-hand sides u, v, w. Another application of k-feasibility appears in
statistics, concretely in application in the data security problem of multi-way contingency tables,
because when the number of solutions is small, e.g. unique, the margins of the statistical table may
disclose personal information which is illegal [24]. Polyhedra with fixed number of (interior) lattice
points play a role in many areas of pure mathematics including representation theory, algebraic
geometry and combinatorial geometry. Indeed, there has been a lot of work, going back to classical
results of Minkowski and van der Corput, to show that the volume of a lattice polytope P with
k = card(Zn ∩ intP ) ≥ 1 is bounded above by a constant that only depends in n and k (see e.g.,
[33, 35]). Similarly, the supremum of the possible number of points of Zn in a lattice polytope in
Rn containing precisely k points of Zn in its interior, can be bounded by a constant that only
depends in n and k. Such results play an important role in the theory of toric varieties and the
structure of lattice polyhedra (see e.g., [28, 18, 43] and the references therein). The k-feasibility
problems also relate to the growth of the values of Littlewood-Richardson coefficients through the
polyhedral interpretations of those numbers (see [34] and its references).

Finally, our work is a generalization of a classical problem in combinatorial number theory.
Let a be a positive integral n-dimensional primitive vector, i.e., a = (a1, . . . , an)T ∈ Zn>0 with
gcd(a1, . . . , an) = 1. For a positive integer k the k-Frobenius number Fk(a) is the largest number
which cannot be represented in at least k different ways as a non-negative integral combination of



3

the ai’s. Thus, putting A = aT ,

Fk(a) = max{b ∈ Z : IPA(b) is < k − feasible}. (2)

When k = 1 this has been studied by a large number of authors and both the structure and
algorithmic properties are well-understood. Computing F1(a) when n is not fixed is an NP-hard
problem (Ramirez Alfonsin [37]). On the other hand, for any fixed n the classical Frobenius number
can be found in polynomial time by sophisticated deep algorithms due to Kannan [31] and later
Barvinok and Woods [12]. The general problem of finding F1(a) has been traditionally referred to
as the Frobenius problem. There is a rich literature on the various aspects of this question. For
a comprehensive and extensive survey we refer the reader to the book of Ramirez Alfonsin [38].
The k-feasibility generalization of the Frobenius number was introduced and studied by Beck and
Robins in [14]. They gave formulas for n = 2 of the k-Frobenius number, but for general n and k
only bounds on the k-Frobenius number Fk(a) are available (see [3],[5] and [27] for prior work).

Our Results

This paper has five contributions to the study of k-feasibility, the semigroup Sg(A), and the asso-
ciated polyhedra.

Throughout the paper we assume that the cone cone(A) is pointed. The five topics indicate the
structure of this paper:

1. First, we prove a structural result that implies that the set Sg≥k(A) of b’s inside the semigroup
Sg(A) that provide ≥ k-feasible fibers IPA(b) is finitely generated.
Let Sg≥k(A) (respectively Sg=k(A) and Sg<k(A)) be the set of right-hand side vectors b ∈
cone(A)∩Zd that make IPA(b) ≥ k-feasible (respectively = k-feasible, < k-feasible). Note that
Sg≥1(A) is equal to Sg(A), the semigroup generated by the column vectors of the matrix A.
Our first structural theorem gives an algebraic description of the sets Sg≥k(A) and Sg<k(A).
Let e1, . . . , en be the standard basis vectors in Zn≥0. We define the coordinate subspace of Zn≥0
of dimension r ≥ 1 determined by ei1 , . . . , eir with i1 < · · · < ir as the set {ei1z1 + · · ·+ eirzr :
zj ∈ Z≥0 for 1 ≤ j ≤ r}. By the 0-dimensional coordinate subspace of Zn≥0 we understand the
origin 0 ∈ Zn≥0.

Theorem 1. (i) There exists a monomial ideal Ik(A) ⊂ Q[x1, . . . , xn] such that

Sg≥k(A) = {Aλ : λ ∈ Ek(A)} , (3)

where Ek(A) is the set of exponents of monomials in Ik(A).
(ii) The set Sg<k(A) can be written as a finite union of translates of the sets {Aλ : λ ∈ S},

where S is a coordinate subspace of Zn≥0.

By the Gordan-Dickson lemma, the ideal Ik(A) is finitely generated, thus one can conclude

Corollary 1. Sg≥k(A) is a finite union of translated copies of the semigroup AZn≥0.

The proof of Theorem 1 relies on some basic facts on lattice points when we think of them
as generators of monomial ideals. The basic tool is a characterization of the complement of
a monomial ideal (see [20]). Some of the arguments are of interest for the study of affine
semigroups and toric varieties [17, 43].
Theorem 1 extends the earlier decomposition theorem of Hemmecke, Takemura and Yoshida
[29] for k = 1. They investigated the semigroup Sg(A) and the vectors that are not in the
semigroup but still lie within the cone cone(A) generated by the columns of A. Note even
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when there exists a real nonnegative solution for Ax = b, there may not exist an integral
nonnegative solution. Those authors studied Qsat = cone(A) ∩ lattice(A), where lattice(A) is
the lattice generated by the columns of A. They called H = Qsat \ Sg(A) the set of holes of
Sg(A) (in the context of numeric semigroups and the Frobenius number, holes have also been
called gaps, see [36]) The set of holes H may be finite or infinite, but their main result is to
give a finite description of the holes as a finitely-generated set. Our Theorem 1 was inspired
by theirs. For us the holes of [29] are just a special case for k = 1. We can generalize this
notion to consider k-holes, namely those right hand-sides b for which Ax = b has less than k
non-negative integer solutions.
Section 2 gives a proof of Theorem 1 that relies on basic commutative algebra.

2. Second, although traditionally the Frobenius problem has been studied for 1× n matrices, in
Sections 3-5 we discuss Fk(A), a generalization of k-Frobenius number, but this time applicable
to all matrices. We explain the meaning of this generalized k-Frobenius number to the structure
of the set Sg≥k(A) when seen far away from the origin moving toward asymptotic directions
inside the cone(A). Essentially, the set Sg≥k(A) can be decomposed into the set of all integer
points in the interior of a certain translated cone and a smaller complex complementary set.
We discuss the location of such a cone along a given direction c in the interior of cone(A).
The key goal of Sections 3-5 is to derive the lower and upper bounds for Fk(A) under some
mild assumptions for the matrix A. Based on the results obtained in [4], [5] we show that Fk(A)
is bounded from above in terms of det(AAT ) and k.

Theorem 2. Let A be a matrix in Zd×n, 1 ≤ d < n, satisfying

i) gcd (det(AId) : AId is an d× d minor of A) = 1,

ii) {x ∈ Rn≥0 : Ax = 0} = {0} .
(4)

Then the k-Frobenius number associated with A satisfies the inequality

Fk(A) ≤ n− d
2(n− d+ 1)1/2

det(AAT ) +
(k − 1)1/(n−d)

2(n− d+ 1)1/2
(det(AAT ))1/2+1/(2(n−d)) . (5)

In addition, the structural Theorem 1 allows us to obtain the lower and upper bounds for
Fk(A) in terms of a finite basis of the monomial ideal Ik(A). Let || · ||∞ denote the maximum
norm.

Theorem 3. Let xg1 , . . . , xgt be a finite basis for the ideal Ik(A) and let m(A) = min1≤i≤t ||gi||∞
and M(A) = max1≤i≤t ||gi||∞. The number Fk(A) satisfies the inequalities

m(A)− 1 ≤ Fk(A) ≤ n− d
2(n− d+ 1)1/2

det(AAT ) +M(A)

(
det(AAT )

n− d+ 1

)1/2

. (6)

3. Third. In Section 6, we propose a way to compute the k-holes, i.e., Sg<(A), of the semigroup
Sg(A). We give a natural generalization of the proof techniques used in [29] for 1-holes that
relies on Hilbert bases to obtain the following theorem:

Theorem 4. There exists an algorithm that computes for an integral matrix A a finite explicit
representation for the set H of k-holes of the semigroup Sg(A). The algorithm computes (finitely
many) vectors hi ∈ Zd and monoids Mi, each given by a finite set of generators in Zd, i ∈ I,
such that

H =
⋃
i∈I

({hi}+Mi) .
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Here Mi could be trivial, that is, Mi = {0}.
4. Our fourth contribution improves on the computational complexity of the earlier sections. For
n and k fixed integer numbers, we establish an efficient way to detect all the ≥ k-feasible
vectors b’s, not explicitly one by one (as we did in inefficiently in previous sections), but rather
the entire set of k-feasible vectors is encoded as a single multivariate generating function,∑
≥k−feasible t

b.

Theorem 5. Let A ∈ Zd×n, let M be a positive integer. Assuming that n and k are fixed,
there is a polynomial time algorithm to compute a short sum of rational functions G(t) which
efficiently represents a formal sum ∑

b:≥k−feasible in A, bi≤M

tb.

Moreover, from the algebraic formula, one can perform the following tasks in polynomial time:

(a) Count how many such b’s are there (finite because M provides a box).
(b) Extract the lexicographic-smallest such b, ≥ k-feasible vector.
(c) Find the ≥ k-feasible vector b that maximizes the dot product cT b.
(d) Identical results hold for the problem of the form Ax ≤ b, x ∈ Zn .

Let us explain a bit the philosophy of such theorem using generating functions for those not
familiar with this point of view: In 1993 A. Barvinok [11] gave an algorithm for counting
the lattice points in inside a polyhedron P in polynomial time when the dimension of P is
a constant. The input of the algorithm is the inequality description of P , the output is a
polynomial-size formula for the multivariate generating function of all lattice points in P ,
namely f(P ) =

∑
a∈P∩Zn xa where xa is an abbreviation of xa11 x

a2
2 . . . xann . Hence, a long

polynomial with exponentially many monomials is encoded as a much shorter sum of rational
functions of the form

f(P ) =
∑
i∈I
± xui

(1− xc1,i)(1− xc2,i) . . . (1− xcn−d,i)
. (7)

Later on Barvinok and Woods [12] developed a set of powerful manipulation rules for using
these short rational functions in Boolean constructions on various sets of lattice points, as well
as a way to recover the lattice points inside the image of a linear projection of a convex polytope.
It is very interesting that to prove the last item of the theorem we will use a generalization of
a famous results in the theory of integer programming, the theorem of Doignon [25] and Bell
and Scarf [13, 40]. In this paper we rely on Barvinok’s theory to prove Theorem 5.
It must be remarked that from the results of Barvinok [11] for fixed n, but not necessarily fixed
k, one can decide whether a particular b is k-feasible in polynomial time, but more strongly,
as a corollary of Theorem 5, one can prove the following theorem for the computation of
the k-Frobenius number. Recall that given a vector (a1, a2, . . . , an) and a positive integer b a
knapsack problem is a linear Diophantine problem of the form a1x1 + a2x2 + · · · + anxn = b
with xi ≥ 0. The questions about finding the k-Frobenius number is a query over a parametric
family of knapsack problems.

Corollary 2. Consider the parametric knapsack problem aTx = b, x ≥ 0 associated with the
vector a = (a1, . . . , an)T ∈ Zn>0 with gcd(a1, . . . , an) = 1. For a fixed positive integers k and n,
the k-Frobenius number can be computed in polynomial time.

This result is a key contribution of this paper. Corollary 2 greatly generalizes a similar cel-
ebrated theorem of R. Kannan [31]. Section 7 gives proofs of Theorem 5 and its Corollary
2.
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5. The fifth and final contribution of our article is about practical computation and experimental
exploration of the behavior of the k-Frobenius number. In the Section 8 we report on the fast
practical computation of the k-Frobenius number of parametric knapsacks using ideas from
dynamic programming. Using a simple implementation we manage to compute k-Frobenius
numbers in several instances with good time performance (see report on our experiments).
From Corollary 2 one can ask: What is the computational complexity of computing the k-
Frobenius when the dimension n is fixed but k is part of the input? On the basis of the results
of [26] one can suspect that this is an NP-hard problem, but we do not know of the answer. It
is then of interest to experiment with the values of Fk(a) to see the growth for fixed values of n.
The authors of [3] proved that on average Fk(a1, . . . , an) equals to ck,n(a1 · · · an)1/(n−1) where
ck,n is a constant that depends on n and k. But we do not know the size of that constant cn,k
for k > 1. Our final experiments with knapsacks of three variables (n = 3) provided support
for a conjecture on properties for Fk((a1, a2, a3)) and c3,k.

In what follows we assume that the reader has some familiarity with polyhedral convexity,
monomial ideals, toric ideals, semigroup rings, and Gröbner bases as presented in [12] and [20, 43].

2 Proof of Theorem 1

For f ∈ cone(A) ∩ Zd define

LkA,f = {λ ∈ Zn≥0 : IPA(f +Aλ) is ≥ k feasible} ,

so that Sg≥k(A) = {Aλ : λ ∈ LkA,0}. Define then the monomial ideal Ik(A) as follows (with its set

of exponent vectors denoted by Ek(A)).

Ik(A) := 〈xλ : λ ∈ LkA,0〉 .

To see that the equation Sg≥k(A) = {Aλ : λ ∈ Ek(A)} , is satisfied it is enough to check that

for any λ0 ∈ LkA,0 the inclusion λ0 + Zn≥0 ⊂ LkA,0 holds. We will prove the following more general
statement.

Lemma 1. For any f ∈ cone(A) ∩ Zd and λ0 ∈ LkA,f we have the inclusion

λ0 + Zn≥0 ⊂ LkA,f . (8)

Proof. Let λ0 ∈ LkA,f , so that there exist k distinct vectors λ1, . . . , λk ∈ Zn≥0 with

f +Aλ0 = Aλ1 = · · · = Aλk .

Take any vector µ ∈ Zn≥0 and set ν = λ0 + µ. Then, clearly, we have

f +Aν = A(λ1 + µ) = · · · = A(λk−1 + µ) ,

where all vectors λ1 + µ, . . . , λk + µ ∈ Zn≥0 are distinct. Consequently, IPA(f +Aν) is ≥ k feasible

and, thus, ν ∈ LkA,f . Hence (8) holds and the lemma is proved.
Lemma 1 with f = 0 clearly implies the first claim of Theorem 1. Let us now prove the second

claim. Recall that the elements of the set Sg<k(A) are also called k-holes. A k-hole f is fundamental
if there is no other k-hole h ∈ Sg<k(A) such that f − h ∈ Sg≥1(A).

Lemma 2. The set of fundamental k-holes is a subset of the zonotope

P = {Aλ : λ ∈ [0, 1)n} .
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Proof. Let f ∈ Sg<k(A) be a fundamental hole. We can write

f = Aλ , λ ∈ Qn≥0 .

Suppose f /∈ P . Then for some j we must have λj ≥ 1. Thus, denoting by Aj the jth column
vector of A, the element f ′ = f − Aj is a k-hole as any k distinct solutions for IPA(f ′) would
correspond to k distinct solutions for IPA(f). Thus we get a contradiction with our choice of f as
a fundamental k-hole. This implies λj < 1 for all j and, consequently, f ∈ P . The lemma is proved.

Lemma 2 shows, in particular, that the number of fundamental k-holes is finite. Let us fix a
fundamental k-hole f . If the set LkA,f is empty then f + Aλ is a k-holes for all λ ∈ Zn≥0. Assume

now that LkA,f is not empty and consider the monomial ideal IkA,f ⊂ Q[x1, . . . , xn] defined as

IkA,f = 〈xλ : λ ∈ LkA,f 〉 .

Then, in view of (8), f +Aλ is not a k-hole if and only if xλ ∈ IkA,f .

Thus we need to write down the set C(IkA,f ) of exponents of standard monomials for the ideal

IkA,f . Any such exponent λ ∈ C(IkA,f ) corresponds to the k-hole f +Aλ.

By Theorem 3 in Chapter 9 of [20], the set C(IkA,f ) can be written as a finite union of translates
of coordinate subspaces of Zn≥0. Since the number of fundamental k-holes is finite, the second claim
of Theorem 1 is proved.

3 Asymptotic structure of Sg≥k(A)

In this section we assume that A ∈ Zd×n, 1 ≤ d < n, is an integral d× n matrix satisfying

i) gcd (det(AId) : AId is an d× d minor of A) = 1,

ii) {x ∈ Rn≥0 : Ax = 0} = {0} .
(9)

In the important special case d = 1 the matrixA = aT is just a row vector with a = (a1, a2, . . . , an)T ∈
Zn and (9) i) says that gcd(a1, a2, . . . , an) = 1. Due to the second assumption (9) ii) we may as-
sume that all entries of the vector a are positive. It follows that the largest integral value b such
that the problem IPA(b) is < k-feasible, the k-Frobenius number Fk(a), is well-defined. Clearly,
for d = 1 we have the inclusion

int(Fk(a) + R≥0) ∩ Z ⊂ Sg≥k(aT ) , (10)

where int(·) denotes the interior of the set.
In general, the structure of the set Sg≥k(A), apart from a few special cases, is not well under-

stood. It is known that, in analogy with (10), Sg≥k(A) can be decomposed into the set of all integer
points in the interior of a certain translated cone and a complex complementary set. More recent
results (see [5]) attempt to estimate the location of such a cone along the fixed direction vector
v = A1, where 1 is the all-1-vector, in the interior of cone(A). The choice of v as the direction
vector is dated back to the paper of Khovanskii [32] for k = 1.

In this paper we consider a generalization of the Frobenius number that reflects ≥ k-feasibility
properties of the whole family of the problems IPA(b), when b runs over all integer vectors in the
interior of the cone cone(A). Given a direction vector b ∈ int(cone(A)) ∩ Zd put

gk(A, b) = min{t ≥ 0 : int(tb+ cone(A)) ∩ Zn ⊆ Sg≥k(A)}.

We define the k-Frobenius number associated with A as

Fk(A) = max{gk(A, b) : b ∈ int(cone(A)) ∩ Zd} .
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The number gk(A) = gk(A, v) was called in [5] the diagonal k-Frobenius number gk(A) of A. A
lower bound for gk(A) (and thus, by definition of gk(A), for Fk(A)) was given in [5, Theorem 1.3].
Next we derive the lower and upper bounds for Fk(A) presented in Theorem 2 and Theorem 3.

Before we start the proofs it is worth remarking they will be based on the results obtained in
[4], [5] and the structural Theorem 1.

4 Proof of Theorem 2

First we show that the k-Frobenius number Fk(A) is bounded from above by the (suitably nor-
malized) number gk(A).

Lemma 3.

Fk(A) ≤
(

det(AAT )

n− d+ 1

)1/2

gk(A) . (11)

Proof. Put for convenience γ =
(

det(AAT )
n−d+1

)1/2
. As it was shown in the proof of Lemma 1.1 in [4],

for any b ∈ int(cone(A))∩Zd the vector γb is contained in v + cone(A). Therefore γb+ cone(A) ⊂
v + cone(A) and, consequently,

int(gk(A)γb+ cone(A)) ∩ Zn ⊂ int(gk(A)v + cone(A)) ∩ Zn ⊂ Sg≥k(A) .

Hence for any b ∈ int(cone(A)) ∩ Zd we have gk(A, b) ≤ gk(A)γ. Therefore Fk(A) ≤ gk(A)γ and
the lemma is proved.

The diagonal k-Frobenius number gk(A) in its turn is bounded from above in terms of A and k
due to the following result.

Theorem 6 (Theorem 1.2 in [5]). The diagonal k-Frobenius number associated with A satisfies
the inequality

gk(A) ≤ n− d
2

(det(AAT ))1/2 +
(k − 1)1/(n−d)

2

(
det(AAT )

)1/(2(n−d))
. (12)

Combining (11) and (12) we obtain the inequality (5).

5 Proof of Theorem 3

Recall that by Theorem 1 (i), we have

Ek(A) = {λ ∈ Zn≥0 : Aλ ∈ Sg≥k(A)} .

This implies the following observation.

Lemma 4. For any µ ∈ Zn≥0 \ Ek(A) we have Aµ ∈ Sg<k(A)
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The set of exponents Ek(A) of the monomial ideal Ik(A) = 〈xg1 , . . . , xgt〉 has the form

Ek(A) =

t⋃
i=1

(gi + Zn≥0) . (13)

By (13), any g ∈ Ek(A) has ||g||∞ ≥ m(A). Therefore the point (m(A) − 1)1 /∈ Ek(A) and, by
Lemma 4, we obtain A((m(A) − 1)1) = (m(A) − 1)v /∈ Sg≥k(A). Therefore, by the definition of
gk(A),

m(A)− 1 ≤ gk(A) ≤ Fk(A) .

This proves the lower bound in (6).
To derive the upper bound, we will show first that gk(A) satisfies the inequality

gk(A) ≤ g1(A) +M(A) . (14)

Let us choose any y ∈ ((g1(A) +M(A))v+ cone(A))∩Zd. To prove (14), it is enough to show that
y ∈ Sg≥k(A). Consider the point y′ = y −M(A)v. Since y′ ∈ (g1(A)v + cone(A)) ∩ Zd, we have
y′ ∈ Sg≥1(A). Therefore, there exists z ∈ Zn≥0 such that Az = y′. Hence A(z + M(A)1) = Az +

M(A)v = y. Finally, observe that M(A)1 ∈ Ek(A), and hence z+M(A)1 ∈M(A)1+Zn ⊂ Ek(A).
Consequently, y = A(z +M(A)1) ∈ Sg≥k(A) and the inequality (14) is proved. The upper bound
in (6) now follows from (11), (14) and (12) with k = 1.

6 Computing k-holes via Hilbert bases

In this section we combine the results of Hemmecke et al. [29] with our techniques to compute the
elements of Sg<k(A) proving Theorem 4. In contrast to the implicit representation via rational
generating functions that we saw in Section 7, we now present an algorithm to compute an explicit
representation of Sg≥k(A), even for an infinite case using semigroups. We remark that this explicit
representation need not be of polynomial size in the input size of A.

In view of the proof of Theorem 1 (ii), it is enough to compute all fundamental k-holes and
then for each fundamental k-hole f compute the standard monomials of the ideal IkA,f . In view of
Lemma 2, all fundamental k-holes are located in a zonotope P = {Aλ : λ ∈ [0, 1)n}. Thus, with a
straightforward generalization of the approach proposed in Hemmecke et al. [29], the fundamental
k-holes the can be computed by using a Hilbert basis of the cone cone(A). In the special case k = 1
Hemmecke et al. [29] obtained the following result:

Lemma 5. There exists an algorithm that computes for an integral matrix A a finite explicit
representation for the set H of holes of the semigroup Q generated by the columns of A. The
algorithm computes (finitely many) vectors hi ∈ Zd and monoids Mi, each given by a finite set of
generators in Zd, i ∈ I, such that

H =
⋃
i∈I

({hi}+Mi) .

Here Mi could be trivial, that is, Mi = {0}.
Let f be a fundamental k-hole. Recall that for a nonempty set LkA,f the monomial ideal IkA,f ⊂

Q[x1, . . . , xn] is defined as

IkA,f = 〈xλ : λ ∈ LkA,f 〉

and f +Aλ is not a k-hole if and only if xλ ∈ IkA,f .



10

Thus we need to compute the exponents of standard monomials for the ideal IkA,f . Any such
exponent λ ∈ Zn≥0 corresponds to the k-hole f +Aλ.

The exponents of standard monomials can be computed explicitly from a set of generators of
the ideal. Hence, it is enough to find the generators of IkA,f . Let us fix an ordering ≺ in Zn≥0. The

minimal generators for the ideal IkA,f correspond to the ≺-minimal elements of the set

LkA,f = {λ ∈ Zn≥0 : ∃ distinct µ1, . . . , µk ∈ Zn≥0 such that

f +Aλ = Aµ1 = · · · = Aµk} .

For computational purposes it is enough to compute a set of vectors of LkA,f that contains all
the ≺-minimal elements. We will proceed as follows. Let K be a complete graph with the vertex
set V = {1, 2, . . . , k}. By a weighted orientation H of K we will understand a weighted directed
graph H = (V,E) such that any two vertices of H are connected by a directed edge e ∈ E with a
weight w(e) ∈ {1, . . . , n}.

Let S be set of all weighted orientations of K. For each H ∈ S we construct the following two
auxiliary sets: the set

LH = {λ ∈ Zn≥0 : ∃µ1, . . . , µk ∈ Zn≥0 such that f +Aλ = Aµ1 = · · · = Aµk

and (µi)w(e) ≤ (µj)w(e) − 1 for each e = (i, j) ∈ E }

and the set

MH = {(λ, µ1, . . . , µk) ∈ Z(k+1)n
≥0 : f +Aλ = Aµ1 = · · · = Aµk

and (µi)w(e) ≤ (µj)w(e) − 1 for each e = (i, j) ∈ E} .

Then, in particular, LkA,f =
⋃
H∈S LH , where the union is taken over all orientations in H ∈ S.

We will need the following result.

Lemma 6. Let λ0 be a ≺-minimal element of LH . Then there exists a ≺-minimal element of MH

of the form (λ0, µ̂1, . . . , µ̂k) .

Let λ0 be a ≺-minimal element of LH . Suppose on contrary, for every (µ1, . . . , µk) ∈ Zkn≥0 the
vector (λ0, µ1, . . . , µk) is not a ≺-minimal element of MH . Let (µ̂1, . . . , µ̂k) be a ≺-minimal element
of the set

MH |λ=λ0
= {(µ1, . . . , µk) ∈ Zkn≥0 : f +Aλ0 = Aµ1 = · · · = Aµk

and (µi)w(e) ≤ (µj)w(e) − 1 for each e = (i, j) ∈ E} .

By the assumption, there exists a vector (λ′, µ′1, . . . , µ
′
k) ∈ MH such that (λ′, µ′1, . . . , µ

′
k) ≺

(λ0, µ̂1, . . . , µ̂k) and (λ′, µ′1, . . . , µ
′
k) 6= (λ0, µ̂1, . . . , µ̂k). If λ′ 6= λ0 we get a contradiction to the

≺-minimality of λ0 in LH . On the other hand, if λ′ = λ0 we get a contradiction to the ≺-minimality
of (µ̂1, . . . , µ̂k) in MH |λ=λ0

.
In view of Lemma 6, to compute a generating set for LkA,f (or to determine that LkA,f is empty)

it is now enough to compute the set of all minimal elements for MH , H ∈ S and remove the last
kn components from each of them.

7 Proof of Theorem 5

We use the technic of rational generating functions developed by Barvinok and Woods in [11, 12]
(see also the book [10]). We wish to prove a representation theorem of a set of lattice points as a
sum

∑
≥k−feasible t

b. First we need a lemma
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Lemma 7. Let n be a constant. Given a positive integer M and the associated n-dimensional box
BM = [0,M ]n, there exist an integer linear objective function c̄ᵀMx such that c̄ᵀM (yi − yj) 6= 0
for all pairs of non-zero lattice points yi, yj inside the box BM . One can find one such vector in
polynomial time.

Proof: Let s be a single auxiliary (real) variable and the associated vector c(s) = (1, s, s2, s3, . . . , sn−1)T .
Now for each of the L = Mn(Mn − 1)/2 pairs of non-zero lattice vectors yi − yj we construct one
univariate polynomial fi,j(s) = c(s)

ᵀ
(yi − yj) (since yi, yj are distinct the polynomial fi,j is not

identically zero). These are polynomials of degree n− 1 so they can only have at most n− 1 real
roots each. Note also that these are polynomials all of whose coefficients are integer numbers be-
tween −M and M , that means, by the famous Cauchy bound on the absolute values of roots of
univariate polynomials that any of the real roots of any fi,j(s) must be bounded in above by 1+M .
Thus taking, for example, the value s0 = M + 2 gives c̄M = c(s0) as an integer vector that totally
orders all lattice points in the box BM . Note that the bit-size description of c̄M is polynomial in
the input namely n, and log(M) because the entries are the first (n− 1) powers of M .

Now, recall that A is an integral d × n matrix and n, k are constants. Let M be an integer
that bounds the k-Frobenius number of A. We can define the polyhedron (note Xi denotes an
n-dimensional vector so this polytope lives in nk-dimensional space):

Q(A, k,M) =
{

(X1, X2, . . . , Xk) : AX1 = · · · = AXk, c̄
ᵀ
MXi ≥ c̄ᵀMXi+1 + 1, for i = 1, . . . , k −

1 and Xi ≥ 0, M ≥ AX1 ≥ 0
}
.

One can use Barvinok’s algorithm to compute the generating function of the lattice points
of Q(A, k,M). This is a polytope that has the key property that all its integer points represent
distinct k-tuples of integer points that are in some polytope PA(b) = {x : Ax = b, x ≥ 0}. When
we turn to monomials, zX1

1 zX2
2 . . . zXk

k has only those where Xi 6= Xj . Namely, this is precisely
the set of all monomials coming from k-tuples of distinct vectors in Zn≥0 that give the same value
AX1 = AX2 = · · · = AXk.

We can do Boolean operations on the generating functions representing sets of lattice points
by the following result:

Lemma 8 ( Corollary 3.7 in [12]). Let us fix l (the number of sets Si ⊂ Zd) and r (the number
of binomials in each fraction of the generating function f(Si)). Then there exists an s = s(l, r) and
a polynomial time algorithm, which, for any l (finite) sets of lattice points S1, . . . , Sl ⊂ Zd given by
their generating functions f(Si) and a set S ⊂ Zn defined as a Boolean combination of S1, . . . , Sm,
computes f(S) in the form

f(S) =
∑
i∈I

γi
xui

(1− xvi1) · · · (1− xvis)
,

where γi ∈ Q, ui, vij ∈ Zn and vij 6= 0 for all i, j.

Finally another key subroutine introduced by Barvinok and Woods is the following Projection
Theorem. In both Lemmas 8 and 9, the dimension n is assumed to be fixed.

Lemma 9 (Theorem 1.7 in [12]). Assume the dimension n is a fixed constant. Consider a
rational polytope P ⊂ Rn and a linear map T : Zn → Zk. There is a polynomial time algorithm
which computes a short representation of the generating function f

(
T (P ∩ Zn), x

)
.

In this case we apply a very simple linear map T (X1, X2, . . . , Xk) = AX1, by multiplication
with A. This yields of course for each k-tuple (which has Xi 6= Xj) the corresponding right-hand
side vector b = AX1 that has at least k-distinct solutions. The final generating expression will be

f =
∑

b∈projection of Q(A,k,M):with at least k-representations

tb.
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Which is the desired short rational function which efficiently represents the sum
∑
≥k−feasible t

b.
This proves the main result in the body of the paper for ≥ k-feasible. Because if one knows a
description for Sg≥k(A) and Sg≥k+1(A) one knows Sg=k(A) = Sg≥k(A)\Sg≥k+1(A) and Sg<k(A) =
Sg(A)\Sg≥k(A), the Boolean properties of generating functions in Lemma 8 give the theorem in
all three cases.

Now we move to prove Parts (a) to (d) of the theorem.

Part (a) If we have a generating function representation of∑
≥k−feasible

tb,

it has the form

f(t) =
∑
i∈I

αi
tpi

(1− tai1) · · · (1− taik)
.

Note that by specializing at t = (1, . . . , 1), we can count how many b’s are ≥ k-feasible (again
the set is finite because it fits inside a box). Remark the substitution is not immediate since
t = (1, . . . , 1) is a pole of each fraction in the representation of f . This problem is solvable
because it has been shown by Barvinok and Woods that this computation can be handled
efficiently (see Theorem 2.6 in [12] for details) and this proves Part (a).

Part (b) This item is a direct corollary of the following extraction lemma.

Lemma 10 (Lemma 8 in [22] or Theorem 7.5.2 in [23]). Assume the dimension n
is fixed. Let S ⊂ Zn+ be nonempty and finite set of lattice points. Suppose the polynomial
f(S; z) =

∑
β∈S z

β is represented as a short rational function and let c be a cost vector. We can
extract the (unique) lexicographic largest leading monomial from the set {xα : α·c = M, α ∈ S},
where M := max{α · c : α ∈ S}, in polynomial time.

Part (c) Barvinok and Woods developed a way to do monomial substitutions (not just ti = 1 as we
used in Part (a)), where the variable ti in the current series, is replaced by a new monomial
za11 za22 · · · zarr . Note that the rational generating function f =

∑
b∈Q∩Zd bb can give the evalua-

tions of the b’s for a given objective function c ∈ Zd. If we make the substitution ti = zci , the
above equation yields a univariate rational function in z:

f(z) =
∑
i∈I

Ei
zc·ui∏d

j=1(1− zc·vij )
. (15)

Moreover f(z) =
∑
b∈Q∩Zd zc·b. Thus we just need to find the (lexicographically) largest mono-

mial in the sum in polynomial time. But this follows from Part (b).
Part (d) To prove this result we will use a recent generalization of Doignon-Bell-Scarf’s theorem [6]. Any

problem of the form Ax ≤ b can be transferred to a problem of the form Ax+Is = b by adding
slack variables s. Then such a system is in the shape of the main part of Theorem 5 except
we need a fixed number of columns. To see this is possible, by Theorem 1 in [6], if Ax ≤ b
has k-solutions then, exactly the same integer solutions appear in a subsystem ASx ≤ b with
no more than a constant c(n, k) rows. Thus when we add slacks we will only add a constant
number of slacks, only n+c(k, n) many of them. Of course we do not know which rows form the
system but there are only

(
d

c(k,n)

)
possibilities for subsystems ASx + Is = b (each subsystem

has a fixed number of columns now, thus it can be solved in polynomial time). Therefore, we
can also decide for which b’s the polyhedron has k points Ax ≤ b in polynomial time (again
when encoded in a rational function format).
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To conclude we see how to compute the k-Frobenius number efficiently.
Proof of Corollary 2:

We start by observing that there is an upper bound for the k-Frobenius number. Indeed The-
orem 1.1 in [3] gives already an upper bound on that is certainly smaller than M = k(n −
1)!a1a2 · · · an. The k-Frobenius number must be smaller and thus we will use in the bounding
box created in our Theorem 5.

Next we claim the same generating function descriptions obtained in Theorem 5 exist also for
the sets those b which are = k-feasible, ≥ k-feasible, or < k-feasible with the added condition that
bi ≤M . This is because the generating functions of those sets of b’s can be obtained from the set of
b’s encoded by Theorem 5 through Boolean operations (intersection, unions, complements). Indeed
using Barvinok Woods theory about such Boolean expressions, and the fact that Sg≥k+1(A) \
Sg≥k(A) = Sg=k(A) and that Sg<k(A) = Sg≥k(A) \ Sg=k(A). The same identities hold under the

intersection with the box BM = [0,M ]d, thus the claim follows.
We may see now that Corollary 2 follows directly from what we achieved in Theorem 5 and the

Boolean operation Lemma of Barvinok and Woods. Indeed, from Theorem 5 we have a rational
function representation of the k-feasible b for the Knapsack problem f(t) =

∑
i∈I Ei

tc·ui∏d
j=1(1−t

c·vij )
=∑

b∈projection ofQ(A,k,M)∩Zd,≥k−feasible t
c·b. Clearly the k-Frobenius number is simply the largest

(lexicographic) b, such that tb is not in f(t), it is in its complement. Note the choice of bound M
is such that we indeed have the k-Frobenius number inside. Then, for the complement S = Z+ \S,
we compute the generating function f(S;x) = (1 − t)−1 − f(t) and then we compute the largest
such tb in the complement using Lemma 10.

8 Computing the k-Frobenius number by dynamic programming

In this section, we propose a dynamic programming algorithm to compute the k-Frobenius number
in practice. We run some experiments with the algorithm. We first describe the algorithm. There
is a lot of prior work for the computation of F1(a) (see [9] and references therein).

8.1 A simple dynamic programming algorithm for Fk(a)

Definition 1. Given a1, . . . , an ∈ Z+, we introduce Ti(b) as denoting the number of integral solu-
tions of the knapsack

∑n
l=1 alxl = b satisfying xj = 0 for j < i and xi ≥ 1, i. e. Ti(b) counts the

number of integral solutions of the knapsack where the smallest nonzero index is i.

The idea of the algorithm is to update an array Ti(b) for increasing b and for all i. The following
observation allows us to initialize the dynamic programming approach.

Lemma 11. Ti(ai) = 1 and Ti(b) = 0 for all 0 ≤ b ≤ ai − 1.

The following lemma explains how to update the function T .

Lemma 12. Given b 6= ai,

Ti(b) =

n∑
j=i

Tj(b− ai). (16)

Proof. We first prove that (16) holds with ≥ instead of =. Indeed consider any solution x̄ of∑n
l=1 alxl = b − ai with x̄j = 0 for all 1 ≤ j ≤ i − 1, it can be transformed into a solution for
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l=1 alxl = b by considering x̄+ ei. Obviously the first (i− 1) components are still zero and the

ith component is positive.
We now prove that (16) holds with≤. Consider a solution x̂ ∈ Zn+ with x̂j = 0 for all 1 ≤ j ≤ i−1

and x̂i ≥ 1 to
∑n
l=1 alxl = b. By subtracting 1 from the first component, we obtain a solution to∑n

l=1 alxl = b− ai where the first i− 1 components are zero.

Using Lemma 11 and Lemma 12, we can fill in an array Ti(b) starting from b = 0 for increasing
values of b. Obtaining the array T allows us to count the number of different solutions.

Lemma 13. The number of integral solutions to
∑n
l=1 alxl = b is equal to

∑n
i=1 Ti(b).

Proof. This follows from the fact that any integral solution to
∑n
l=1 alxl = b is counted exactly

one in one set corresponding to the smallest index for which xi is nonzero.

To determine the k-Frobenius number, we need to know the largest b that is < k-feasible. It
is therefore important to determine a stopping criterion for the dynamic programming algorithm.
A first obvious criterion is to use the upper bound for b given in Section 4. It turns out that
this upper bound is very often too large compared to the actual k-Frobenius number and leads to
longer computation times. The following lemma allows us to interrupt the computation with the
guarantee for a k-Frobenius number earlier.

Lemma 14. Assume that a1 < a2 < · · · < an and that
∑n
i=1 aixi = b has at least k integral

solutions for all b̄ ≤ b ≤ b̄+ a1. Then
∑n
i=1 aixi = b has at least k integral solutions for all b ≥ b̄.

Proof. This follows from the fact that T1(b) =
∑n
i=1 Ti(b − a1) and that the number of integral

solutions of
∑n
i=1 aixi = b is at least T1(b).

We now have all the necessary ingredients to describe a dynamic programming-based algorithm.

Algorithm 1 DP algorithm for the k-Frobenius number

Require: a1 < a2 · · · < an, k ≥ 1
Ti(ai) = 1 for all i = 1, . . . , n
Ti(b) = 0 for i = 1, . . . , n and b < ai

b := a1 + 1
while ∃b̄ ∈ [b− a1, b− 1] with

∑n
i=1 Ti(b̄) < k do

for i := 1 to n do
Ti(b) :=

∑n
j=i Tj(b− ai)

end for
b := b + 1

end while
Return the largest b that has less than k solutions

8.2 Empirical complexity of the dynamic programming algorithm

In the following, we report on some experiments carried out by implementing the dynamic program-
ming algorithm. We want to check the average time needed to compute the k-Frobenius number for
some common values of n and a1 as well as the dependency on k. We also want to see an average
measure of the k-Frobenius number. Our implementation of the algorithm is in standard C code
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CPU Intel Core i7-975, 4 cores, 8 threads
CPU clock 3.33 GHz
Installed RAM 12 Gb DDR3-1333 SDRAM

Compiler GCC 4.6.3 20120306 (Red Hat 4.6.3-2)
Environment GNU/Linux (Fedora 15)
Kernel linux 2.6.43.8-1.fc15.x86 64

Table 1. Conditions of the experiments

and does not allow for arbitrarily large integers. The conditions of our experiments are detailed in
Table 1.

The first set of experiments aims at evaluating the running time of the algorithm. We ran the
algorithm for different values of n, the number of variables of the knapsack. For each value of n, we
create 20 knapsacks with coefficients in the range [216, 218] and compute the 32-Frobenius number.
In Table 2, we report on the average running time in seconds as well as the average maximum
right-hand-side reached before the stopping criterion (given by Lemma 14) is met. We observe that

Dimension 5 10 15 20 25 30

Average time (s) 12 2 2 3 3 4
Average max rhs (×106) 63.8 2.5 1.5 1.2 0.98 0.89

Table 2. Dependency on the dimension n

the larger n is, the fewer iterations are needed since in this case, the number of solutions grows
quickly. The total time however increases slightly with n as the array T is larger to fill. At some
point, we may expect memory issues as the array T becomes too large to store when n increases.

In the second set of experiments, we investigate the complexity dependent on the value a1. In
particular, we fix k = 32 and the dimension to either 3, 6 or 12. We let the coefficients vary in
an increasing range. For each given interval, we again run 20 different instances and compute the
average running time as well as the maximum right-hand-side reached before the stopping criterion
(given by Lemma 14) is met. The summary of the experiment is reported in Table 3. We observe
a strong dependency on the size of the coefficients. The largest range reported is, for each given
dimension, the largest for which we did not run into memory issues. We observe again that the
k-Frobenius number is larger when the dimension is smaller.

Finally we want to check the dependency on k. We fix the dimension to n = 10 and the range
of values for ai to [214, 216]. For each value of k, we run 20 experiments. In this set of experiments,
we also want to report on how the k-Frobenius number varies with increasing k. We show both
results for n = 5 and n = 10. The summary of the results are reported in Table 4. We observe that
it is not much more complicated to compute a larger value of k with our approach and that the
algorithm is slightly dependent on that parameter (in particular when n = 10). We can also observe
that for a given k, we also automatically compute all smaller values of k during the algorithm. In
particular the 1-Frobenius number is the usual Frobenius number. We refer to [15] for extensive
computational experiments and a survey on most existing algorithms for the Frobenius number in
the usual sense.
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Dimension n = 3

Range ai [26, 27] [28, 29] [210, 211] [212, 213] [214, 215] [216, 217]

Average time (s) 0 0 0 1 13 32
Max rhs (×106) 0.008 0.08 0.8 13 163 359

Dimension n = 6

Range ai [210, 211] [212, 213] [214, 215] [216, 217] [218, 219] [220, 221]

Average time (s) 0 0 0 1 7 52
Max rhs (×106) 0.03 0.2 1 5 28 194

Dimension n = 12

Range ai [210, 211] [212, 213] [214, 215] [216, 217] [218, 219] [220, 221]

Average time (s) 0 0 0 1 6 28
Max rhs (×106) 0.01 0.06 0.3 1.4 7 32

Table 3. Dependency on the range of a

Dimension n = 10

k 1 4 16 64 256 1024 212 214 216

Average time (s) 0 0 0 0 0 0 1 1 1
Average max rhs (×106) 0.39 0.42 0.47 0.54 0.62 0.73 0.91 1.1 1.3
Average k-Frob (×106) 0.34 0.36 0.42 0.49 0.59 0.7 0.84 1.0 1.2

Dimension n = 5

k 1 4 16 64 256 1024 212 214 216

Average time (s) 0 0 0 0 0 0 1 1 1
Average max rhs (×106) 0.79 0.99 1.3 1.7 2.4 3.4 4.9 6.9 9.8
Average k-Frob (×106) 0.78 0.95 1.2 1.6 2.3 3.2 4.6 6.5 9.2

Table 4. Dependency on k
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8.3 Experiments about the k-Frobenius number Fk(a1, a2, a3)

We now want to make several experiments concerning the k-Frobenius number Fk(a) and express
some interesting conjectures for future work. The case of n = 2, i.e., knapsacks with exactly two
variables, is well known and has been studied by Beck and Robins [14]. They prove the following
theorem.

Theorem 7. Given a two-dimensional knapsack a1x1 + a2x2, the k-Frobenius number is

gk−1(a1, a2) = ka1a2 − a1 − a2,

where gk(a1, a2) is the largest right-hand-side b such that a1x1 + a2x2 = b has exactly k integral
solutions.

Note that one can easily express Fk(a) in terms of gk(a). Indeed Fk(a) = max{gi(a) : i ≤ k−1}.
One can then wonder about the behavior of the sequence {gi(a)}∞i=0. For n = 2, [14] shows the
sequence is increasing with respect to i for all index values.

The situation changes drastically for n = 3. There is no known explicit formula for Fk(a1, a2, a3).
It has also been proven that gi(a1, a2, a3) is not necessarily increasing with i. For example, Brown
et al. [16] indicated that g14(3, 5, 8) = 52 whereas g15(3, 5, 8) = 51 and therefore in that particular
case g14 > g15. Furthermore Shallit and Stankewicz [41] proved that for i > 0 and n = 5, the
quantity g0 − gi is arbitrarily large and positive. They also give an example of g0 > g1 for n = 4.
In contrast, we prove the following theorem that, for n = 3, such a discrepancy does not exist and
we always have g0 < g1.

Theorem 8. Given a1 < a2 < a3 ∈ Z+, we have

g0(a1, a2, a3) < g1(a1, a2, a3).

To prove this theorem, we first consider the case in which all coefficients are pairwise relatively
prime.

Lemma 15. Let a1 < a2 < a3 ∈ Z+ be such that all coefficients are pairwise relatively prime.
Then

g0(a1, a2, a3) < g1(a1, a2, a3).

Proof. Let us denote f := g0(a1, a2, a3) as the Frobenius-number of the knapsack. This implies
that

a1x1 + a2x2 + a3x3 = f (17)

has no integral solution. On the other hand

a1x1 + a2x2 + a3x3 = f + a1 (18)

has at least one integral solution. We will prove that it cannot have two or more integral solutions.
Let x̄ be any integral solution to (18). Observe that x̄1 = 0, otherwise we could trivially construct an
integral solution for (17). Therefore x̄ = (0, x̄2, x̄3). Consider by contradiction that x̃ = (0, x̃2, x̃3)
is another integral solution to (18). Then a2(x̄2 − x̃2) + a3(x̄3 − x̃3) = 0. In particular, since
gcd(a2, a3) = 1, this implies |x̄2 − x̃2| = la3 with l a natural number, which in turn implies that
either x̄2 ≥ a3 or x̃2 ≥ a3. Assume wlog that x̄2 ≥ a3, and since x̄2 is an integral solution to (18),
this implies that f + a1 ≥ a2a3 and hence f ≥ a2a3 − a1 which is in contradiction with the fact
that f = g0(a1, a2, a3) ≤ g0(a2, a3) ≤ g0(a2, a3) = a2a3 − a2 − a3.
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The following theorem has been proven by Brown et al. [16] and we use it to our benefit:

Lemma 16. Let d = gcd(a2, a3) and j ∈ Z+ then either gj = dgj(a1,
a2
d ,

a3
d ) + (d − 1)a1 or gj is

not defined, i.e. no right-hand-side achieves exactly j integral solutions.

Proof. (of Theorem 7) Consider a triple (a1, a2, a3). If the coefficients are pairwise relatively prime,
the result follows from Lemma 15. Assume that there is some gcd different from 1 for a pair of
coefficients. From Lemma 16, we can get rid of the gcd and that does not change the relative order
between g0 and g1. By applying at most three times Lemma 16, we come back to the case where
all coefficients are pairwise relatively prime and the result follows.

We now know that g0 < g1 when n = 3. We use our computational tool to conjecture what is
the smallest j such that an inversion gj > gj+1 (monotonicity is broken) occurs for some triple of
coefficients. We have drawn 10000 triples of coefficients in the range [2, 42]. In 54% of the cases, the
gj ’s were increasing with j until j = 1000. The minimum j reached for which gj > gj+1 is j = 14.
This occurred in 15 cases. But all of these cases can be proven to be equivalent, from Lemma 16,
to the case of the triple (3, 5, 8). The same conclusion was reached on another test with coefficients
in the range [2, 1000]. Interestingly, the second smallest j for which gj > gj+1 was j = 17 and all
triples can be proven to be equivalent to (2, 5, 7). Thus we conjecture:

Conjecture: For any triple of positive integers a = (a1, a2, a3) the sequence of numbers the se-
quence {gi(a)}∞i=0 is monotonically increasing with i, for i ≤ 14.

Finally we evaluate empirically how the k-Frobenius number evolves. In particular, it is known
that Fk(a1, a2, a3) ≈ c3,k

√
a1a2a3. We now use the code to observe this behaviour and empirically

obtain a value for c3,k. We have drawn 1000 triples of coefficients in the range [2, 1000]. For each
triple, we have computed the k-Frobenius number for k = 1, 2, 16, 1024, 65536. We observe in this
case that Fk ≈ c3,k

√
a1a2a3 as expected. In Figure 1, we represent, with a logarithmic scale, the

product a1a2a3 on the x-axis and the k-Frobenius on the y-axis for the respective values of k. In
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Fig. 1. Value of the k-Frobenius (over the y-axis) with respect to the product a1a2a3 for ai ∈ [2, 1000] for
k = 1, 2, 16, 1024, 65536.

order to assess an approximate value for c3,k we now perform a linear regression over log(a1a2a3)
and log(Fk(a1, a2, a3)) whose results is shown in the following table.
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Fk(a1, a2, a3) ≈ c3,k(a1a2a3)rk

k c3,k rk
1 0.67 0.56
2 1.12 0.55
16 4.54 0.52
1024 44.7 0.5
65536 362 0.5

Finally, we want to empirically compare the behaviour of Fk(a1, a2, a3) with respect to gk−1(a1, a2, a3).
For 1000 triples of coefficients respectively drawn in the interval [2, 100] and [2, 1000], we count
the proportion of times that gk is undefined and the proportion of times that Fk(a1, a2, a3) =
gk−1(a1, a2, a3) for different values of k. The results are proposed in the following table.

Proportion of times that
a k gk undefined Fk = gk−1 Fk 6= gk−1

[2, 100] 100 6% 93% 1%
[2, 100] 1000 19% 78% 3%
[2, 100] 10000 43% 53% 4%
[2, 100] 30000 53% 44% 3%
[2, 100] 60000 63% 35% 2%
[2, 1000] 100 0.1% 99.9% 0
[2, 1000] 1000 1.3% 98.2% 0.5%
[2, 1000] 10000 5% 92% 3%
[2, 1000] 30000 7% 89% 4%
[2, 1000] 60000 9% 85% 6%

Finally in Figure 2, we report the difference F60000−g59999 for all cases in which the two values are
different and where the coefficients are drawn in [2, 1000]. The x-axis is again the product a1a2a3.
We observe that the difference is very often very small with respect to Fk.
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27. L. Fukshansky, A. Schürmann, Bounds on generalized Frobenius numbers, European J. Combin., 3

(2011), 361–368.
28. C. Haase, B. Nill, and S. Payne, Cayley decompositions of lattice polytopes and upper bounds for

h∗-polynomials, J. Reine Angew. Math. 637 (2009), 207–216.
29. R. Hemmecke, A. Takemura, and R. Yoshida Computing holes in semi-groups and its application to

transportation problems. Contributions to Discrete Mathematics, 4 (2009), 81–91.
30. M. Henk, R. Weismantel, On Hilbert bases of polyhedral cones, Preprint SC 96-12, Konrad-Zuse-

Zentrum fr Informationstechnik, Berlin, April 1996. www.zib.de/bib/pub/pw/index.en.html.
31. R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica, 12(2)(1992),

161–177.
32. A. G. Khovanskii, The Newton polytope, the Hilbert polynomial and sums of finite sets , Funktsional.

Anal. i Prilozhen. 26 (1992), no. 4, 57–63.
33. J.C. Lagarias and G.M. Ziegler, Bounds for lattice polytopes containing a fixed number of interior

points in a sublattice. Canad. J. Math. 43 (1991), no. 5, 1022–1035.
34. I. Pak and E. Vallejo, Combinatorics and geometry of Littlewood-Richardson cones, Europ. J. Com-

binatorics, vol. 26 (2005), 995–1008
35. O. Pikhurko, Lattice points in lattice polytopes. Mathematika 48 (2001), no. 1-2, 1524 (2003).
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