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Abstract: This paper deals with the application of statistical process control techniques 
based on principal component analysis to vibration-based damage diagnosis of structures. 
Principal component analysis of the sensor time-responses allows to extract principal 
directions (i.e. features) which define a subspace that is representative of the dynamics of 
the instrumented structure. Any change in the response of a single sensor will affect the 
subspace spanned by the complete sensor response set. It follows that the subspace 
corresponding to the current state of the structure can be compared to the subspace of the 
initial state of the structure, assumed to be healthy, in order to diagnose possible damage. 
Principal component analysis may also be performed for every potential subset of 
damaged sensors in order to identify the involved sensor, and, therefore, the damaged 
substructure. In this paper, the problem of structural damage detection is addressed in the 
case of environmental vibration testing. A direct application is presented for a test item 
submitted to random vibration testing by means of an electro-dynamic shaker.  
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Introduction: Mechanical equipments in operational use are subjected to various 
excitations that may result in significant vibration levels and consequently may cause 
structural damages and/or fatigue failures. In order to ensure that the equipment is able to 
withstand its dynamic environment, fatigue testing is often performed using vibration 
exciters. Fig. 1 gives the general layout of an electro-dynamic vibration exciter system 
showing the test item instrumented with accelerometers, the acquisition system, the 
controller and the power amplifier, which drives the vibration exciter. The acceleration 
measured at the driving point is used by the controller as a feedback to ensure the 
prescribed vibration level. 
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Figure 1.  Typical set-up for vibration testing 
 
Depending on vibration standards, the test item may be submitted to different kinds of 
excitation signals e.g. sine sweep, sine dwell, random, shock, etc. Classically, structural 
damages are identified by visual inspection and/or by comparing frequency spectra at 
chosen locations before and after the test. In practice, this methodology may present 
drawbacks such as the difficulty to manage a large amount of data and the fact that 
spectra comparison are only performed after the test. It follows that vibration 
qualification tests are usually time-consuming. 
 
The goal of this paper is to propose a damage detection method that may be used during 
the test duration to check the structural integrity of the test item. The proposed method is 
based on the principal component analysis (PCA) of the vibration signals. PCA, also 
known as Karhunen-Loève decomposition or Proper Orthogonal Decomposition (POD), 
is a multi-variate statistical technique that has been first used in the mechanics 
community by Lumley [1]. It has also been used recently for several purposes including 
model reduction [2], dynamic characterization [3], sensor validation [4], modal analysis 
[5], parameter identification [6] or damage detection [7]. 
 
It is important to note that the proposed method does not require the knowledge of the 
excitation. 
 
 
Principal Component Analysis of Vibration Data: Let us consider a mechanical 
structure instrumented by nS sensors, e.g. vibration transducers (accelerometers, 
displacement and velocity transducers), strain gauges, temperature sensors, etc. The 
measured data (a snapshot) are collected in a vector q and are supposed to be gathered at 



b instants. Accordingly, the observation matrix Q of dimension nS × b (with b >> nS) is 
formed: 
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When various transducers are used and when the measured variables are of different kind 
(displacement, velocity, acceleration, pressure, temperature, etc), a data normalization 
procedure is usually required to lead to normalized variables with zero-mean and unitary 
standard deviation. 
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where n nq ,σ  are the mean value and the standard deviation of each data set measured at 
sensor n respectively, i.e. 
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PCA of measurement data allows to seek for a linear mapping of the high-dimensional 
data to a lower dimensional space. The first principal direction corresponds to the optimal 
vector (in a least square sense) to characterize the ensemble of snapshots. The second 
principal direction is the optimal vector to characterize the ensemble of snapshots but 
restricted to the space orthogonal to the first principal direction, and so forth. Fig. 2 
illustrates the principle of the method in the case of two sensors (nS=2).  
 
 

 
 

Fig. 2.  Principal component analysis in the two-dimensional case 
 



The singular value decomposition (SVD) constitutes an effective way of calculating the 
principal components of the observation matrix Q. 

  (4) TQ = U Σ V

where U is an orthonormal matrix (nS × nS); its columns form the hyperplane spanned by 
the principal directions in which lie all the observations q(tj). Σ is an (nS × b) pseudo-
diagonal and semi-positive definite matrix with diagonal entries containing the singular 
values, sorted in descending order. V is an (b × b) orthonormal matrix whose each 
column contains the time modulation of the corresponding principal direction. The SVD 
of the observation matrix, seen as a collection of column vectors (or snapshots), provides 
important insight into the oriented energy distribution of this set of vectors. Roughly 
speaking, each singular value represents the relative importance of the associated 
principal direction in the dynamic response of the structure. In other words, it means that 
the structural motions will preferentially be directed according to the principal directions 
related to the greatest singular values. It follows that the lowest singular values, which are 
related to noise effects, may be discarded. 
 
In most cases, the number of measurement samples may be very large (b >>) so that the 
principal directions are most easily computed as the eigenvectors of the covariance 
matrix Q QT: 
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Structural damage detection: The observation matrix Q may be expressed in terms of 
mode-shape vectors in the form: 
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where m is the number of modes Φ(i) in the frequency band of interest; S is the sensor 
influence matrix, R is the residual vector associated with the modes located outside the 
frequency band and  αi (t), αr (t) are modal coordinates. 
 
On the other hand, equation (4) may be rewritten in the form: 
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where u(i) is the ith principal direction (column of matrix U) and βi (t) is a time-dependent 
coefficient.  
 
The comparison between equations (6) and (7) shows that the subspace (or hyperplane) 
covered by the principal directions u(i) is identical to the invariant subspace covered by 
the modes Φ(i). Geometrically speaking, we observe that the principal directions extracted 
from the test data always span the subspace (also called hyperplane) generated by the 



mode-shape vectors, as shown in Fig. 3 in the two-dimensional case. Mathematically 
speaking, it means that the hyperplane spanned by the principal directions of the 
observation matrix is an invariant feature of the structure, even if the directions of the 
principal vectors are dependent on the excitation. This invariance property renders the 
PCA of the observation matrix useful for structural damage detection. The key idea of the 
method is to compare the hyperplanes associated respectively with the reference 
(undamaged) state of the structure and with the current (potentially damaged) state of the 
structure. 
 
One way to compare hyperplanes is to use the concept of angles between two subspaces 
as illustrated in Fig. 3 in the two-dimensional case. This concept, introduced by Jordan 
[8] allows to quantify the spatial coherence between two time-history blocks of an 
oscillating system. Let nS p×∈ℜA  and n qS ×∈ℜB  ( p q≥ ) be two non singular 
matrices. The QR factorization of the matrices allows to compute their orthonormal 
bases: 
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Thus, the singular values of  Q  define q cosines of the principal angles θT
A BQ i  between 

A and B: 
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It follows that the largest angle may be used as an indicator to quantify how much the 
subspaces defined by the columns of matrices A and B are globally different. 
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Fig. 3.  The principal components and the concept of angle between subspaces 
 
 
Damage localization: Once damage has been detected using the concept of angles 
between the reference and the current hyperplanes the idea pursued here for its 
localization is to identify which sensor set mostly affects the current hyperplane 
(corresponding to the damaged state). For this purpose, sensors are separated into two 
groups: the assumed “damaged” set and the undamaged one. It is assumed here that a 



small damage localized in a substructure is not responsible for a significant change in the 
dynamics of the whole structure but significantly affects the response of the involved 
substructure, so that the subspace spanned by the undamaged sensors will not exhibit 
appreciable differences between the reference and the damaged states. In that case, the 
identification of the damaged substructure may be performed by computing the subspace 
angle between the pre- and post-damaged states; it follows that the angle remains small 
when the sensors located on the damaged substructure are removed from the working 
sensor subset. 
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Fig. 4.  (a) Assembly of capacitors              (b) mounted on the electro-dynamic exciter 

 
 
Vibration testing of capacitors: The test item considered here consists of an assembly 
of electrical capacitors mounted fixed on an interface plate as shown in Fig. 4.(a). The 
capacitor assembly is mounted on the slip-table of the electro-dynamic shaker (26.6 kN) 
as illustrated in Fig. 4.(b). The test specifications consist in a random excitation of 
magnitude 2.5 gRMS in the [5-200 Hz] frequency range and the total test duration is ten 
minutes. Each capacitor is instrumented with an accelerometer. During the test, a crack is 
initiated at the fixation of one of the capacitors and the fixation breaks after a few 
minutes as shown in Fig. 5. 
 

 
 

Fig. 5. Mode of failure 
 



For the purpose of damage detection, the principal component analysis was performed on 
the whole set of accelerometers using overlapped windows of 4 seconds. For each data 
block acquisition, the hyperplane corresponding to the current state of the structure was 
compared with the hyperplane corresponding to the reference (undamaged) state of the 
structure using the concept of angles between subspaces. The results are shown in Fig. 6. 
(a) where the time evolution of the angle is depicted. Note that the damage detection 
criterion based on the angle between subspaces clearly indicates the damage evolution in 
the capacitor assembly. It can also be observed in Fig. 6. (b) that the angle deviation 
remains low when the data corresponding to the sensors mounted on the damaged 
capacitor are not included in the observation matrix. 
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Fig. 6. (a) Detection of the damage                 (b) Localization of the damage 
 
 
Conclusion: The goal of this paper was to present a damage detection method based on 
the principal component analysis of vibration measurements and on the concept of angle 
between subspaces. The method was illustrated in the case of fatigue vibration testing 
using an electro-dynamic shaker but it may generalized to many other applications in the 
field of structural health monitoring. It has been shown that the proposed method is able 
to detect the apparition of a crack and to follow the evolution of the structural failure. The 
proposed procedure is very easy to implement and remains computationally cheap. 
Therefore, it looks very promising for on-line monitoring implementation. When fatigue 
testing of mechanical structure is to be performed, it would enable the test operator to 
decide to abort or to complete the test. 
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