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The aim of this work is to investigate conditions for optimal targeted energy transfer (TET) in a 
two – degree-of-freedom (DOF) nonlinear system under condition of 1:1 transient resonance 
capture (TRC) (Arnold, 1988; Quinn et al., 1995). In particular, we consider the following 
weakly damped system, 
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that is, a linear oscillator (LO), described by coordinate x, coupled to a lightweight, essentially 
nonlinear attachment, termed nonlinear energy sink – NES, described by coordinate v. The small 
parameter of the problem, 0 ε< << , scales the mass of the NES. 

This two – DOF system possesses surprisingly complex dynamics (Kerschen et al., 
2006). Moreover, at certain ranges of parameters and initial conditions passive targeted energy 
transfer—TET—is possible, whereby vibration energy initially localized in the linear oscillator 
gets passively transferred to the lightweight attachment in a one-way irreversible fashion where 
it is locally dissipated without ‘spreading back’ to the LO. 

In the first part of this work the topological features of the corresponding Hamiltonian 
dynamics of system (1) (i.e., with no dissipative terms) are discussed. Focusing on an 
intermediate-energy region close to the 1:1 resonance manifold of the Hamiltonian dynamics the 
topological changes of intermediate-energy impulsive orbits (IOs) are studied for varying energy. 
By IOs we denote periodic or quasi-periodic responses of the Hamiltonian system initiated with 
nonzero velocity for the LO and all other initial conditions zero. Specifically, it is found that 
above a critical value of energy, the topology of intermediate-energy IOs changes drastically, as 
these orbits make much larger excursions in phase space, resulting in continuous, strong energy 
exchanges between the LO and the NES, that appear in the form of strong nonlinear beats. It is 
also found that this critical energy of the Hamiltonian system may be directly related to the 
energy threshold required for TET in the corresponding weakly damped system. Hence, a direct 
link between the Hamiltonian and weakly damped dynamics is established. 

In the second part of this work we revisit the intermediate-energy dynamics of the weakly 
damped system (1), in an effort to obtain conditions for realization of optimal TET from the LO 
to the NES. Since our study will be based on perturbation analysis, it will be necessarily 
restricted to the neighborhood of the 1:1 resonance manifold of the underlying Hamiltonian 
dynamics; hence, the damped dynamics will be studied under condition of 1:1 resonance capture. 
However, the ideas and techniques presented here can be extended to study optimal conditions 
for the more general case of  subharmonic TET. :m n

We start with the slow flow analysis of the governing equations through the 
complexification-averaging (CX-A) technique first developed by Manevitch (1999). This will be 
followed by qualitative analysis of the different mechanisms for TET in the system, and an 
analytical study of homoclinic perturbations in the weakly damped system. We will show that 
homoclinic perturbations yield an additional slow-time scale in the averaged dynamics which 



governs optimal TET from the LO to the NES occurring in a single ‘super-slow’ half cycle. 
Thus, we will prove that the existence of the homoclinic orbit is responsible for the jump of 
energy pumping efficiency as the initial energy of the system varies (Fig. 1). We will conclude 
this work by providing numerical results of TET efficiency for a wide range of system 
parameters, which verify the analytical findings. 
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Fig. 1. Percentage of initial energy dissipated in system (1) when intermediate-energy damped 
IOs are excited ( 0.05ε = , ,  and 1C = 0 1ω = 1 2 0.005ελ ελ= = ): solid lines correspond to 
excitation of specific periodic IOs, and the dashed line indicates the instantaneous energy at t = 
25sec.  
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