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ABSTRACT
With continual interest in expanding the performance envelope of
engineering systems, nonlinear components are increasingly uti-
lized in real-world applications. This causes the failure of well-
established techniques to mitigate resonant vibrations. In partic-
ular, this holds for the linear tuned vibration absorber (LTVA),
which requires an accurate tuning of its natural frequency to the
resonant vibration frequency of interest. This is why the nonlin-
ear tuned vibration absorber (NLTVA), the nonlinear counter-
part of the LTVA, has been recently developed. An unconven-
tional aspect of this absorber is that its restoring force is tai-
lored according to the nonlinear restoring force of the primary
system. This allows the NLTVA to extend the so-called Den Har-
tog’s equal-peak rule to the nonlinear range.

In this work, a fully analytical procedure, exploiting har-
monic balance and perturbation techniques, is developed to de-
fine the optimal value of the nonlinear terms of the NLTVA. The
developments are such that they can deal with any polynomial
nonlinearity in the host structure. Another interesting feature
of the NLTVA, discussed in the paper, is that nonlinear terms
of different orders do not interact with each other in first ap-
proximation, thus they can be treated separately. Numerical re-
sults obtained through the shooting method coupled with pseudo-
arclength continuation validate the analytical developments.
Keywords: principle of similarity, nonlinear resonances, equal-
peak method, vibration absorber.

∗Address all correspondence to this author.

INTRODUCTION

The engineering trend of designing more and more slender
lightweight structure, in order to expand the performance en-
velope, results in an increased appearance of nonlinear behav-
iors in real-world applications. Mitigating the resonant vibra-
tions of nonlinear structures is therefore becoming a problem
of great practical significance [1]. In particular, passive means
for mitigating resonant vibrations generally relay on the invari-
ance of the resonant frequency with respect to variations of the
forcing amplitude, which is the case for the linear tuned vibra-
tion absorber (LTVA). If nonlinearities are involved, frequency-
amplitude invariance is lost, causing the failure of these mitiga-
tion techniques.

In the last decades, several nonlinear vibration absorbers
have been developed, including the autoparametric vibration ab-
sorber [2, 3], the nonlinear energy sink (NES) [4–6], impact
dampers [7, 8] and other similar solutions [9, 10]. In general,
these nonlinear absorbers abandon the principle of tuning accord-
ing to the resonant frequency of interest of the host structure,
instead they exploit a wider frequency range of effectiveness.
This is the case of the NES, an essentially nonlinear absorber,
which can resonate at virtually any frequency of the host struc-
ture, thanks to its increased bandwidth [11]. This makes non-
linear vibration absorbers proper candidates for vibration miti-
gation of nonlinear host structures. Per contra, they present a
critical dependence on the input energy [5], thus, if the energy
content is insufficient, there is no coupling between the primary
system and the absorber, hence no energy is transferred to the ab-
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sorber, nor the dissipation mechanism is activated. Similarly, the
saturation phenomenon, characteristic of autoparametric vibra-
tion absorber, occurs only when the forcing amplitude exceeds a
certain threshold [2].

This paper builds upon previous works [12–15], to develop
a vibration absorber for mitigating a nonlinear resonance, termed
the nonlinear tuned vibration absorber (NLTVA), because its
nonlinear restoring force is tuned according to the nonlinear
restoring force of the host structure. Acknowledging the excel-
lent performance of the LTVA when applied to a linear host struc-
ture [16], almost insurmountable by other passive devices except
in very special conditions [17], the objective of the NLTVA is to
extend the base principle of the LTVA, i.e. Den Hartog’s equal-
peak method [16], to the nonlinear range. The NLTVA is thus
tuned to target a specific resonant frequency of the host structure
and keep a 1:1 resonance condition also in the nonlinear range.
To do so, the NLTVA exploit the ‘principle of similarity’ [18], in
other words, its nonlinear restoring force is not defined a priori,
but it has the same mathematical form of that of the host struc-
ture and it is tuned accordingly. In [13, 15] it was shown that the
NLTVA is able to mitigate a nonlinear resonant frequency, where
the nonlinearity is related to a cubic spring, for a large range
of forcing amplitude, always outperforming the LTVA. Experi-
mental validations of the numerical developments are described
in [19]. In spite of these convincing results, a solid theoretical
basis justifying the effectiveness of the NLTVA is still missing,
most of the results having been obtained with semi-analytical,
numerical or experimental methods. The development of this
theoretical basis is the main focus of the present study.

The primary objective of this work is to define a fully an-
alytical procedure to correctly tune the nonlinear coefficients of
the NLTVA. The initial adimensionalization of the system will
already explain the importance of the application of the ‘prin-
ciple of similarity’. Then, the analytical investigation, adopting
the harmonic balance method and a perturbation technique, will
result in a compact formula relevant for parameter tuning. In the
following, analytical findings will be verified through numerical
evaluation of a case study. The overall procedure will clarify the
effective mitigation mechanisms obtained through the NLTVA.
Another important contribution of this paper is to generalize the
results, traditionally limited to cubic nonlinear restoring force
function, to any polynomial function.

MECHANICAL MODEL
The primary system considered throughout this paper is a har-
monically forced, lightweight undamped nonlinear oscillator
(Fig. 1). The restoring force of the oscillator is considered to be
polynomial. Following the results obtained in [13], an NLTVA
is attached to the primary system. Addressing the ‘principle of
similarity’, the NLTVA posses a restoring force with the same
mathematical form of the primary system.
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FIGURE 1. MECHANICAL MODEL.

The equations of motion of the coupled system are

m1ẍ1 +
n

∑
i=1

k1ixi
1 + c2 (ẋ1− ẋ2)+

n

∑
i=1

k2i (x1− x2)
i = f cosωt

m2ẍ2 + c2 (ẋ2− ẋ1)+
n

∑
i=1

k2i (x2− x1)
i = 0

(1)

where x1 and x2 are the displacement of the primary system
and of the NLTVA; m1, m2, k11 and k21 are the masses and the
linear restoring force coefficients of the primary system and of
the NLTVA, respectively; c2 is the damping coefficient of the
NLTVA, k1i and k2i, i = 2, ...,n, are the nonlinear restoring force
coefficients of the primary system and of the NLTVA, respec-
tively; f and ω are the forcing amplitude and frequency, respec-
tively, and n is the highest order of nonlinearity present in the
primary system.

Defining the dimensionless time τ = tωn1 (ωn1 =
√

k11/m1)
and introducing the variables q1 = x1k11/ f and q2 = x2k11/ f , the
system is transformed into

q′′1 +q1 +2µ2λε
(
q′1−q′2

)
+λ

2
ε (q1−q2)

+
n

∑
i=2

αiqi + ε

n

∑
i=2

biαi (q1−q2)
i = cosγτ

εq′′2 +2µ2λε
(
q′2−q′1

)
+λ

2
ε (q2−q1)

+ε

n

∑
i=2

biαi (q2−q1)
i = 0

(2)

where µ2 = c2/
(
2
√

m2k21
)
, λ = ωn2/ωn1 =

√
k21m1/(k11m2),

ε = m2/m1, γ = ω/ωn1, αi = k1i f i−1/ki
11 and bi = k2i/(εk1i).

The prime indicates derivation with respect to the dimensionless
time τ . It should be noted that in the dimensionless system the
forcing amplitude does not appear explicitly, but it is included in
the coefficient of the nonlinear terms, thus it is equivalent con-
sidering a system strongly excited or strongly nonlinear.

Furthermore, we highlight that the forcing amplitude f , con-
sidering Eqn. (2), appears only in the nonlinear terms; in the
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coefficients of the terms of order i, f has order i− 1. As better
explained in [13], this means that, if the absorber does not have
terms of the same order of the primary system, it cannot be effi-
cient for a large range of forcing amplitude f , since its variations
would affect terms of different order in a different way. Far from
proving its effectiveness, this result suggests that the ‘principle
of similarity’ can be exploited to develop an efficient nonlinear
vibration absorber.

AN ANALYTICAL PROCEDURE TO EXTEND EQUAL-
PEAK CONCEPT TO NONLINEAR RANGE
The objective of the present section is to define a procedure to
identify the optimal values of b ≡ [b2, .,bn] such that the sys-
tem satisfies the equal-peak rule also in the nonlinear range. The
NLTVA is defined by the parameters ε , λ , µ2 and b. ε is gen-
erally given by practical constraints. The values of λ and µ2 are
chosen in order to satisfy the equal-peak rule in the underlying
linear system. These were exactly defined in [20], correcting the
approximate values given by Den Hartog in [16], namely

λ =
2

1+ ε

√
2
(
16+23ε +9ε2 +2(2+ ε)

√
4+3ε

)
3(64+80ε +27ε2)

µ2 =
1
4

√
8+9ε−4

√
4+3ε

1+ ε

(3)

for an undamped primary system. They depend uniquely on the
mass ratio ε .

The set of values b should be chosen in order to extend the
equal-peak rule to the nonlinear range, such that it is verified
for a reasonable range of forcing amplitude f . Considering the
mathematical form chosen for the absorber, this implies that a
constant set of values b should be valid for variations of the set of
parameters αi, i = 2, ...,n, given specific values of the structural
parameters of the host structure (k1i, i = 1, ...,n).

Since this study considers the nonlinear system as an exten-
sion of the underlying linear one, αi can be considered infinites-
imal, significantly simplifying the procedure. This assumption
will not limit the results to small nonlinearities, thanks to the
adoption of the ‘principle of similarity. In [13] it was shown
the validity of this approach for a single nonlinear term of order
three.

Approximate solution of the nonlinear problem
In order to transform the system of nonlinear differential equa-
tions into a system of nonlinear algebraic equations, the har-
monic balance procedure is adopted, i.e., q1 and q2 are expanded

in Fourier series

q1 ≈ A0 +
m

∑
i=1

A1i cos(iγτ)+
m

∑
i=1

A2i sin(iγτ)

q2 ≈ B0 +
m

∑
i=1

B1i cos(iγτ)+
m

∑
i=1

B2i sin(iγτ),

(4)

where m≥ n.
Regardless of the chosen maximal harmonic m, the system

can be expressed in the form

W(γ)y+
n

∑
i=2

αi (di0(y)+bidi1(y)) = c, (5)

where W is related to the linear part of the system, y collects
the amplitude of the different harmonics of the solution, di0 and
di1 contain the nonlinear terms and c is related to the external
forcing.

Exploiting the fact that αi are small parameters, we expand
y with respect to αi at the first order, i.e.

y≈ y0 +
n

∑
i=1

αiyi. (6)

Decomposing Eqn. (5) with respect to the different parameters
αi, the vectors yi can be explicitly defined through the formulas

Wy0 = c→ y0 = W−1c

Wyi +(di0 +bidi1) |y=y0 = 0→ yi =−W−1 (di0 +bidi1)y=y0
.

(7)

The frequency response function h(γ), describing the maximal
value of q1 for different forcing frequency, which is of interest
for the application of the equal-peak rule, can be identified from
the parameters contained in y. For practical reasons, it is con-
venient to consider the square of the frequency response H = h2

and substitute the parameter γ with its square Γ = γ2. Neglecting
terms of order higher than the first with respect to all the coeffi-
cients αi, the square of the frequency response has the form

H = H0 +
n

∑
i=2

αi (Hi0 +biHi1) , (8)

where H0, Hi0 and Hi1 are complicated functions of Γ.
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Identification of the nonlinear resonant frequencies
The squares of the resonant frequencies of the underlying linear
system, as defined in [20], are

Γ̂A, Γ̂B =
1
2
(
1+(1+ ε)λ 2

opt−2(1+ ε)2
λ

2
optµ

2
2,opt
)

∓
√

1
4

(
1+(1+ ε)λ 2

opt−2(1+ ε)2λ 2
optµ

2
2,opt

)2
−λ 2

optr

(9)

where r = 8
(
(4+3ε)3/2− ε

)
/
(
64+80ε +27ε2

)
.

Considering the full nonlinear system, the resonant frequen-
cies ΓA and ΓB are given by the zeros of HΓ = 0, where the sub-
script Γ indicates derivation with respect to Γ. Since we consider
small values of αi, i = 2, ...,n, ΓA and ΓB can be approximated to
small variations of Γ̂A and Γ̂B, which is obtained linearizing HΓ

around Γ̂A and Γ̂B, respectively.
Looking for ΓA we have

HΓ ≈ HΓ|Γ=Γ̂A
+HΓΓ|Γ=Γ̂A

(
Γ− Γ̂A

)
, (10)

where HΓ|Γ=Γ̂A
and HΓΓ|Γ=Γ̂A

are explicitly calculated and given
by

HΓ|Γ=Γ̂A
= H0Γ|Γ=Γ̂A

+
n

∑
i=2

αi (Hi0Γ +biHi1Γ) |Γ=Γ̂A

HΓΓ|Γ=Γ̂A
= H0ΓΓ|Γ=Γ̂A

+
n

∑
i=2

αi (Hi0ΓΓ +biHi1ΓΓ) |Γ=Γ̂A
,

(11)

where H0Γ|Γ=Γ̂A
= 0. Imposing HΓ = 0 we have

δA = ΓA− Γ̂A ≈−
HΓ

HΓΓ

∣∣∣∣
Γ=Γ̂A

. (12)

Linearizing δA with respect to αi = 0, i = 2, ...,n, we have

δA ≈−
n

∑
i=2

Hi0Γ +biHi1Γ

H0ΓΓ

∣∣∣∣
Γ=Γ̂A

αi (13)

and analogously for ΓB

δB = ΓB− Γ̂B ≈−
n

∑
i=2

Hi0Γ +biHi1Γ

H0ΓΓ

∣∣∣∣
Γ=Γ̂B

αi. (14)

Definition of optimal b
The equal-peak condition is verified if and only if the objective
function

F = H|Γ=ΓA −H|Γ=ΓB = 0. (15)

The condition F = 0 is satisfied for the underlying linear system
if λ and µ2 are chosen according to Eqn. (3).

Expanding H in Taylor series around Γ̂A and Γ̂B, F becomes

F =H|
Γ=Γ̂A

+HΓ|Γ=Γ̂A
δA +O(δ 2

A)

−H|
Γ=Γ̂B

−HΓ|Γ=Γ̂B
δB +O(δ 2

B)≈

≈
n

∑
i=2

αi

(
Hi0|Γ=Γ̂A

+biHi1|Γ=Γ̂A

)
+

(
H0Γ|Γ=Γ̂A

+
n

∑
i=2

αi

(
Hi0Γ|Γ=Γ̂A

+biHi1Γ|Γ=Γ̂A

))
δA

−
n

∑
i=2

αi

(
Hi0|Γ=Γ̂A

+biHi1|Γ=Γ̂A

)
−(

H0Γ|Γ=Γ̂A
+

n

∑
i=2

αi

(
Hi0Γ|Γ=Γ̂A

+biHi1Γ|Γ=Γ̂A

))
δA = 0.

(16)

Substituting δA and δB as in Eqns. (13) and (14) and limiting the
analysis to terms of first order of αi, i = 2, ...,n, we obtain

F ≈
n

∑
i=2

αi

(
Hi0|Γ=Γ̂A

+biHi1|Γ=Γ̂A
−H0Γ|Γ=Γ̂A

Hi0Γ +biHi1Γ

H0ΓΓ

∣∣∣∣
Γ=Γ̂A

−Hi0|Γ=Γ̂B
−biHi1|Γ=Γ̂B

+H0Γ|Γ=Γ̂B

Hi0Γ +biHi1Γ

H0ΓΓ

∣∣∣∣
Γ=Γ̂B

)
= 0.

(17)

Decomposing Eqn. (17) with respect to αi, i = 2, ...,n, and solv-
ing with respect to b, we have

bi =
(Hi0− (H0ΓHi0Γ/H0ΓΓ))

∣∣
Γ=Γ̂A

− (Hi0− (H0ΓHi0Γ/H0ΓΓ))
∣∣
Γ=Γ̂B

−(Hi1− (Hi1Γ/H0ΓΓ))
∣∣
Γ=Γ̂A

+(Hi1− (Hi1Γ/H0ΓΓ))
∣∣
Γ=Γ̂B

.

(18)

The coefficients bi, as expressed in Eqn. (18), depend only
on the order of nonlinearity under consideration i and on the lin-
ear terms. Since the coefficients of the linear terms are fully iden-
tified by ε , bi are function of ε only. They can be defined from
the knowledge of the frequency response and its derivatives in Γ̂A
and Γ̂B, without requiring any further information about the sys-
tem. If H(Γ) is kept in its analytical form, applying Eqn. (18),
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through computer algebra, the coefficients b can be defined ana-
lytically. However, even considering a system with a single cubic
nonlinearity and limiting the analysis to a single harmonic, the fi-
nal formula expressing b3 is extremely long and not practically
useful.

Another remarkable result of the outlined procedure is that
nonlinear terms of different order do not interact with each other,
in first approximation. This greatly simplify the design of the
NLTVA. As it will be shown in the following sections, this cir-
cumstance is verified also numerically.

TUNING RULE
The optimal values of bi, for i = 3, 5 and 7, obtained applying
Eqn. (18), are depicted in Fig. 2. The values of bi can be directly
used to correctly tune the nonlinear spring of the NLTVA. It turns
out that the regression

bi,opt =
(2ε)

i−1
2

1+3.5×1.5
i−3

2 ε

, , i = 3,5,7, ... (19)

provides an excellent approximation of the analytical results for
b3 and b5, and a slight overestimate of b7 (see dashed lines in
Fig. 2). Eqn. (19), thanks to its simplicity, allows to immedi-
ately identify the optimal values of bi, which is very practical for
engineering application and for a rapid design of an operational
NLTVA. Considering the dimensional parameters, Eqn. (19) be-
comes

k2i =
(2ε)

i−1
2 ε

1+3.5×1.5
i−3

2 ε

k1i, i = 3,5,7, ... (20)

Eqns. (3) and (19) (or Eqn. (20)) completely define the design of
the NLTVA.

Although not shown in this work, the adopted procedure can
be directly implemented for even order nonlinearities.

Numerical validation
In order to verify the analytical results, three cases, for which the
LTVA is unable to mitigate the resonant vibrations, are consid-
ered, namely a primary system with third, fifth or seventh order
nonlinearity. The resulting frequency response curves are shown
in Fig. 3. These curves were computed using a path-following al-
gorithm combining shooting and pseudo-arclength continuation.
The algorithm is similar to that used in [21]. The red dashed
curves, referring to the nonlinear primary system with an at-
tached LTVA (b = 0), clearly illustrate that the linear absorber
is almost completely ineffective in all the three cases. On the
other hand, the addition of a nonlinear spring of the appropriate

order (black solid lines) is able to guarantee the correct opera-
tion of the absorber. Remarkably, the frequency response of the
primary system with an attached NLTVA has a shape and an am-
plitude which remind those of the underlying linear system. In
some sense, the addition of a proper nonlinear component allows
to retrieve a linear behavior in a sort of compensation of the non-
linearities. The black lines of Fig. 3 are obtained tuning b3, b5
and b7 according to Eqn. (19). Acknowledging that the resonant
peaks have almost the same high, the analytical procedure can be
considered verified.

Of course the range of safe operation of the NLTVA is
limited and, if the forcing amplitude is further incremented,
detrimental dynamics (quasiperiodic motions, detached resonant
curves, etc.) arise, causing for certain values the failure of the
NLTVA. Another aspect which should be taken into account is
the stability of the solutions, which is completely overlooked in
this work. For a thorough study on these matters, on the limita-
tion of the NLTVA and the effects of detuning of the parameters,
in the case of a third order nonlinearity, we address the inter-
est readers to [15]. A comparison between the NLTVA and the
LTVA can be found in [13].

CASE STUDY
We now consider a primary system having a restoring force com-
prising a third, a fifth and a seventh order nonlinear term. Fig. 4
(a) depicts the frequency response of the host system coupled to
an LTVA. The parameter values used during the computation are
ε = 0.05, α3 = 0.01, α5 = 0.00012, α7 = 1.37× 10−6. α3, α5
and α7 are chosen such that their relative terms have comparable
numerical values around the resonant peaks of the underlying lin-
ear system. Also in this case, the LTVA is clearly incapable of
mitigating the resonant vibrations.

In order to improve the performance of the absorber, nonlin-
ear terms are added to the absorber. According to the procedure
depicted in the previous section, the different order terms can be
treated separately. Thus, the coefficients b3, b5 and b7 can be
tuned according to Eqn. (19).

Figure 4 (b) depicts the effect of adopting an incomplete
NLTVA, i.e. either considering a third and fifth order spring (ma-
genta dash-dotted line), a third and seventh order spring (green
dashed line) or a fifth and seventh order spring (blue solid line).
In all the considered cases, the incomplete NLTVA has an effect
analogous to that of the LTVA, that is the maximal peak of the
frequency response function is almost unchanged by the addition
of nonlinear components. Instead, the three curves overlap each
other for large amplitudes.

Figure 4 (c) illustrate the effectiveness of the NLTVA when
the ‘principle of similarity’ is fully addressed. Adopting an
NLTVA with a third, fifth and seventh order nonlinear spring, like
in the primary system, the amplitude of the frequency response
is dramatically decreased, resembling, once again, the frequency

5 Copyright c© 2015 by ASME



0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

ε

b
3

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

b
5

ε

(b)

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

x 10
−3

b
7

ε

(c)

FIGURE 2. VARIATION OF THE PARAMETER b3 (a), b5 (b) AND b7 (c) AS A FUNCTION OF ε . SOLID LINES: ANALYTICAL RESULTS,
DASHED LINES: APPROXIMATION THROUGH THE FORMULA IN EQN. (19).

1 1.5 2
0

5

10

15

20

γ

q
1

(a)

1 1.5 2 2.5 3 3.5
0

5

10

15

20

γ

q
1

(b)

1 2 3 4
0

5

10

15

γ

q
1

(c)

FIGURE 3. FREQUENCY RESPONSE OF A PRIMARY SYSTEM WITH A CUBIC (a), A QUINTIC (b) OR A SEVENTH ORDER (c) NON-
LINEARITY AND AN LTVA OR NLTVA ATTACHED. RED DASHED LINES: LTVA, BLACK SOLID LINES: NLTVA. DURING THE COM-
PUTATION ε = 0.05, α3 = 0.01 (a), α5 = 0.00012 (b), α7 = 1.37× 10−6 (c), WHILE b3, b5 AND b7 ARE CHOSEN ACCORDING TO EQN.
(19).

response of the underlying linear system.
The successful application of the NLTVA to a system with

several nonlinear terms, suggests that it can be applied to a larger
assortment of nonlinear oscillators, i.e. to systems whose restor-
ing force can be approximated by a polynomial function in the
range of interest. However, the application of the NLTVA to
a real structure having a complicated non polynomial restoring
force is out of the scope of this paper.

CONCLUSIONS
The objective of this study was to demonstrate how the princi-
ple of similarity can be exploited to design a nonlinear vibra-
tion absorber, able to extend the Den Hartog equal-peak rule to
nonlinear regimes. The procedure addressing the optimization
of the nonlinear parameter, carried out completely analytically,

resulted in an explicit formula (Eqn. (18)), which treats individ-
ually the different nonlinearities of the host structure, allowing
a much simpler design of the absorber. Although during the an-
alytical development the nonlinear terms are considered small,
the numerical results illustrate how the NLTVA is effective also
in strong nonlinear regimes. It turns out that the numerical re-
gression in Eqn. (19) well approximates the analytical results for
the cases of symmetric odd nonlinearities. This formula can be
applied for immediate definition of the optimal nonlinear coeffi-
cients of the absorber.
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