Towards DisNETPerf: a Distributed Internet Paths Performance Analyzer

S. Wassermann†‡, P. Casas†, B. Donnet†‡
† FTW Vienna, ‡ Université de Liège
sarah.wassermann@student.ulg.ac.be; casas@ftw.at; benoit.donnet@ulg.ac.be

ABSTRACT
For more than 25 years now, traceroute has demonstrated its supremacy for network-path measurement, becoming the most widely used Internet path diagnosis tool today. A major limitation of traceroute when the destination is not controllable by the user is its inability to measure reverse paths, i.e., the path from a destination back to the source. Proposed techniques to address this issue rely on IP address spoofing, which might lead to security concerns. In this paper we introduce and evaluate DisNETPerf, a new tool for locating probes that are the closest to a distant server. Those probes are then used to collect data from the server point-of-view to the service user for path performance monitoring and troubleshooting purposes. We propose two techniques for probe location, and demonstrate that the reverse path can be measured with very high accuracy in certain scenarios.

1. WHY DISNETPERF?
Internet-scale services such as YouTube and Facebook are provisioned from geo-distributed servers, using large Content Delivery Networks (CDNs). While user-requests are normally redirected to the closest servers (in terms of latency), internal CDN load-balancing policies may select servers which lie at hundreds of milliseconds from customers, potentially impacting their Quality of Experience (QoE). For instance, previous work [1] reports a real case study in which a Google load balancing policy results in a drop in the throughput of YouTube flows, impacting the QoE of a large number of customers watching videos at peak-load times in an operational ISP. In this event, the minimum RTT to YouTube servers increases by more than 300%, corresponding to a different load balancing policy selecting servers at much farther locations [2]. The anomaly could be due to either wrongly dimensioned/faulty YouTube servers, or to the presence of heavy network congestion at peak time in the servers-to-customers paths.

Having a tool that can measure the performance of these paths becomes paramount for the ISP to diagnose and troubleshoot the detected performance degradation [3]. Performing traceroute measurements from the servers towards the monitoring vantage point cannot be done in practice, as YouTube servers are not under the control of the ISP. A solution to this problem has been proposed in the past, known as reverse traceroute [4]; however, the proposed approach heavily relies on IP spoofing and IP Record Route Option, both being not necessarily allowed everywhere [5, 6] and causing potential security concerns.

In this paper we introduce DisNETPerf, a Distributed Internet Paths Performance Analyzer, that can monitor any Internet path using the RIPE Atlas framework [7] and standard traceroute measurements.

2. DISNETPERF
Given a certain content server with IP address \(IP_s \), and a destination customer with IP address \(IP_d \), DisNETPerf locates the closest RIPE Atlas probe \(IP_p \) to \(IP_s \), namely \(IP_c \), and periodically runs traceroute measurements from \(IP_p \) to \(IP_d \), collecting different path performance metrics such as RTT per hop, end-to-end RTT, etc. This data might then be used to troubleshoot paths from the content server (mimicked by \(IP_p \)) to the target customer. Fig. 1 depicts the overall idea. It uses a combined topology- and delay-based distance, as probes are located first by AS (BGP routing proximity allowing to select probes in the same AS as \(IP_s \)) and then by propagation delay (for selecting the closest probe to \(IP_d \)). Note that DisNETPerf is not strictly tied to RIPE Atlas, but can be used with any other distributed measurement framework such as CAIDA’s Ark [8] or PlanetLab [9].

We evaluate two probe selection approaches for DisNETPerf, partially proposed in the literature [10, 11, ...]
the smallest latency (SL) approach and the landmark (LM) approach. In both cases, we start by determining whether RIPE Atlas probes are located and available in the same AS as the content server IP_c. If this is not the case, we look for probes in the neighbor ASes of IP_c. Neighborhood information is obtained through AS relationships [13]. Once RIPE Atlas probes have been identified, the selection of IP_c can start.

In the SL-approach, we run 10 standard ping measurements from the probes towards IP_c. The probe with the smallest minimum RTT to IP_c is then elected as the representative probe of the content server, i.e., IP_c. In the LM-approach, we first start by grouping the identified RIPE Atlas probes in two groups: the landmarks and the probes that can be elected as IP_c. Landmarks represent a base location reference for all the probes, as inter-probe distances are measured using them as origin. Landmarks are chosen randomly among all the candidate-probes. We then run 10 ping measurements from those landmarks towards IP_c and all the other identified probes belonging to the other group. For each pinged IP address, we build a feature vector d containing the minimum RTT from each landmark to this IP address. We select IP_c as the probe which feature vector is the most similar to the one of IP_c, according to the normalized distance $D_{ij} = \frac{1}{K} \sum_{l=1}^{K} |d_{il} - d_{jl}|$, where K is the number of landmarks providing a RTT for both IP_c and IP_j, and d_{il} is the minimum RTT between IP_c and landmark l. When D_{ij} is small, we assume that IP_i and IP_j are close to each other. In the evaluations next, we select 20 landmarks for each IP_c.

We say that IP_c is a good probe w.r.t. IP_s and IP_d if the path from IP_c to IP_d is highly similar to the path from IP_s to IP_d. Similarly to Hu and Steenkiste [14], we define path similarity as the fraction of common links among both paths, using the Route Similarity index (RSIM), a value in the interval $[0, 1]$, defined as $RSIM(IP_c, IP_s, IP_d) = \frac{2 \times C_{\text{links}}(IP_c, IP_s, IP_d)}{T_{\text{links}}(IP_c, IP_s) + T_{\text{links}}(IP_c, IP_d)}$, where C_{links} refers to the number of links shared in common by both paths, and T_{links} to the total number of links. A high RSIM indicates a high similarity between the considered paths. We consider links at the AS level (IP2AS mapping based on Maxmind [15]), PoP level (IP2PoP mapping based on iPlane [16]), and IP level.

Fig. 2 reports evaluation results in terms of path similarity. We use RIPE Atlas probes as source and destination (i.e., IP_s and IP_d) so as to compute the real path (i.e., the ground-truth) between servers and customers. We randomly select 300 RIPE Atlas source probes IP_{s_i}, and consider a single fixed destination probe IP_d. For each source IP_{s_i}, we run DisNETPerf to locate the closest probe IP_{c_i}, obtain both the ground truth path $IP_{c_i} \rightarrow IP_d$ and the DisNETPerf path $IP_{s_i} \rightarrow IP_d$, and compute the RSIM index $RSIM(IP_{c_i}, IP_{s_i}, IP_d)$.

We compute RSIM at the AS level, PoP level, and IP level, and plot the resulting CDFs. Results are reported for the two approaches and for two different groups, the first one in which IP_{c_i} and IP_{s_i} are located in the same AS, and the second one in which IP_{c_i} is located in a neighbor AS. At the AS-level, the case of same AS colocation results in near optimal results. Nevertheless, we observe that about 40% of the tests carried out for the SL-approach and 45% of the tests performed for the LM-approach in the non-collocated scenario yield a RSIM index ≥ 0.5. Note that the most relevant segment of the path to monitor for troubleshooting purposes is the one closer to the customer (where problems generally occur), thus a RSIM of 0.5 is actually very good.

At the PoP-level, the RSIM index computed using both approaches is ≥ 0.5 for about 50% of the tests when IP_{c_i} and IP_{s_i} are in different ASes, and for more than 80% of the tests when they are in the same AS. At the IP-level, only about 20% of the tests yield an RSIM index ≥ 0.5 when IP_{c_i} and IP_{s_i} are not collocated in the same AS. However, IP-level paths are generally less relevant, and we plan to evolve to router-based paths [17]. In general, we note that the results for both SL- and LM-approaches are comparable and highly similar. Finally, we observed that probes selected by DisNETPerf using the SL-approach generally correspond to paths with the highest similarity to the ground-truth ones: in more than 80% of the performed tests, $RSIM(IP_{c_i}, IP_{s_i}, IP_d)$ results in the highest RSIM index among all the selected candidates when considering the AS-level, which is the most relevant level for our purposes. Indeed, we want to detect which AS on the Internet path from servers to customers might be responsible for the performance degradation, and thus do not take into account the intra-AS routing.
3. REFERENCES

[9] PlanetLab, “PlanetLab, an open platform for developing, deploying, and accessing planetary-scale services,” August 2015, see https://www.planet-lab.org/.

