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Abstract

In the present study, the focus is set on the development ek methodology for nonlinear vibration
absorbers, termed nonlinear energy sink (NES), to optithieevibrating level reduction on a Duffing oscil-
lator. The idea lies in the assessment of a duality propextywéen, on the one hand, the tuning procedure
of the tuned mass damper (TMD) coupled to a linear oscillatat, on the other hand, the assumed design
scheme of NES coupled to a purely nonlinear Duffing oscillato this end, the basics on the TMD tuning
methodology are recalled and extended to the concept afdrexy-energy plot (FEP) [1]. Then, based upon
this concept, the development of a NES design proceduredisrtaken and the related dynamics analyzed.
Finally, it is shown how to design a vibration absorber tol @ath a general Duffing oscillator.

1 Introduction

The tuned mass damper (TMD) is maybe the most popular dewicgassive vibration mitigation of a vi-
brating mechanical structure. Realizing that the TMD isyceffective when it is precisely tuned to the
frequency of a vibration mode [2, 3], a recent body of litaerathas addressed this limitation using a nonlin-
ear attachment characterized by an essential nonlineteityed a nonlinear energy sink (NES) [1, 4-14].
The concept of essential nonlinearity is central, becauswans that an NES has no preferential resonant
frequency, which makes it a frequency-independent absofmmther salient feature of an NES is its capa-
bility to realize targeted energy transfer (TET) during g¥henergy initially induced in the primary system
gets passively and irreversibly transferred to the NESréfoee, this nonlinear device seems to be very well
suited for vibration isolation of MDOF linear structuresramlinear structures.

However, because of the strongly nonlinear character oliserber, the seek of an optimal design proce-
dure is a challenging problem. Only a couple of researchied to face this issue mainly by considering
numerically performed parametric studies. Moreover, fithem considered different objective functions
among which one can mention the suppression of the seflisedtascillations [15, 16], the amount of en-
ergy dissipated in the nonlinear absorber [17], the timaired for a complete energy dissipation [18] and
finally, the occurrence of quasiperiodic motions on a givemdency bandwidth [19]. Even though these
parametric studies generally give good results, theitedlaomputational burden may be prohibitive and the
development of other better suited techniques are wortewhi

Therefore, based on the fairly simple TMD tuning methodglabis paper investigates the possibility to
develop an NES design procedure. The idea lies in the aseassifra duality property between, on the one
hand, the tuning procedure of the TMD coupled to a linearllesoi and, on the other hand, the assumed
design scheme of NES coupled to a purely nonlinear Duffinglatar. To this end, in section 1 the basics of
the TMD theory are recalled and the related results extetalfte concept of frequency-energy plot. Using
the previous results, section 2 describes the tuning pureedf the NES on a purely nonlinear Duffing
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Figure 1: Linear oscillator (LO) coupled to a tuned mass damnpMD)

oscillator. Finally, an attempt is carried out to design Hest vibration absorber to couple to a general
Duffing oscillator.

2 Design Methodology of a TMD coupled to a Linear Oscillator

The origin of the TMD dates back to the developments carrigcbyg Frahm [2] on the dynamical vibration
absorber coupled to a conservative linear oscillator (L8 (figure (1) witle; = ¢ = 0). This device was
efficient in a narrow frequency range centered at the nafrgqliency of the absorber. Later, Den Hartog [3]
found that the TMD with energy dissipation mechanisms £ 0) are effective to an extended frequency
range. These works have highlighted the trade-off exigiimgng the design process between the need for
good performances (attenuation efficienfly,) and robustness (bandwidtHy). It's also worth being noted
that theH,, and H, optimizations of TMD coupled to a dissipative linear ostir (; # 0) [20-23] or a
MDOF linear system [24] is not straightforward and is stilitg investigated nowadays. Considering the
forced system depicted in Figure (1), composed of a lineaifla®r (of natural frequency;, = /k1/m1)
coupled to a TMD, its equations of motion are :

miIy + 121 + Cg(il — 562) + k1x1 + k?z(xl — 562) = (F CcOS wt), (1)
moXg + CQ(.%"Q — i‘l) + kg(wg — .%'1) = 0.

In this section the emphasis is set upon the basics of the TiMidg procedure developed by Frahm [2]
(for c; = ¢ = 0) which relies on a solid mathematical framework. If the eysisteady-state responses are
supposed to be of the form} = X;cos(wt), than using relation (1) the displacement of the LO is exgeds
by :

(]CQ — meg)F
(k‘l ~+ ko — mel)(kQ - w2m2) - k%

)

X =

If an harmonic excitation of frequeney = w; is applied to the LO, than the vibration isolation of the LO
(X1 =0) can be performed by realizing the condition :

w:w1:1/ﬂ:Q/ﬁ:wa (3)
mq meo

Performance - Robustness Analysis

The performance of a TMD coupled to a LO (figure (1)) is now eixedt. To this end, the harmonic
excitation ('cos(wt)) is replaced by a direct impulsive excitation of the LQ(0) # 0,z1(0) = z2(0) =
#2(0) = 0. Moreover, condition (3) is supposed to be satisfied and ssliglet damping is introduced in
both oscillators to induce energy dissipation. The inpi@lameter values are given in Table (1). A numerical



Parameterl Units  Value
my [k’g] 1
ma [kg] 0.05

¢ [Ns/m] 0.002
2 [Ns/m] 0.002
k1 [N/m] 0.5

ko [N/m] 0.025

Table 1: System parameters used for the numerical integrafiequations (5).
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Figure 2: TMD Performance when coupled to a LO. (a) Energgipiéged in the TMD against the linear
stiffness of the primary system and the impulse magnituglecgntour plot

integration of the equations of motion (5) is performed farying linear stiffnesg; and excitation amplitude
#1(0). The amount of energy dissipated in the TMD is evaluatedutiinaelations (4) corresponding to the
ratio between the energy dissipated in the absorber anddrgyeinjected in the system.

Co j(:cl(T) — io(7))2dr

0
Ediss,absorber,%(t) = 100 %mlil(O)Q (4)

Figure (2) depicts this quantity against the impulse magieit:; (0) and the linear stiffnesk; (see Figures
2(a,b) for three-dimensional plot and a contour plot). @e#or k£, = 0.5N/m and whatever the magnitude
of excitation;(0), the TMD can dissipate a large fractiodb(o) of the input energy initially imparted to
the LO. However, a slight mistuning in the host structurestically reduces the TMD performances which
makes this device not frequency robust. This brief remiratethe basics of the TMD design procedure
gives the necessary basis to move forward to the designguoe®f an NES coupled to a purely nonlinear

oscillator.
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Figure 3: FEP corresponding to the LO (a) and the TMD (b) ferdbndition expressed in relation (3).

3 Design Methodology of a NES coupled to a Purely Nonlinear Os -
cillator

3.1 Frequency-Energy Plot Concept

One typical dynamical feature of nonlinear systems is tegency-energy dependence of their oscillations.
Moreover, for a given energy level injected in the systemesa types of solutions may coexist. These

properties make nonlinear systems more complicated t@acteize than linear ones and require the devel-
opment of adapted analysis tools such as the nonlinear hamodes (NNM) and the frequency-energy plot

(FEP) concepts. In this study only the basics are recalledf@na complete description of these concepts
the interested reader may refer to [1, 12, 25-27].

An NNM motion can be defined as a non-necessarily synchropeuadic motion of an undamped nonlinear
mechanical system [25, 26]. However, as discussed in [R3,27], the damped dynamics can often be
interpreted based on the topological structure of the NNMBeaunderlying conservative system. Therefore
their computation, using continuation methods [26], iswap@int for characterizing the dynamical behavior
of the nonlinear system under the scope.

Because of the frequency-energy dependence property theansystems, the modal curves and frequen-
cies of NNMs vary with the amount of energy in the system. @quagntly, the representation of NNMs in
a frequency-energy plot (FEP) is particularly convenidntlp, 27]. An NNM is represented by a point in
the FEP, which is drawn at a frequency corresponding to timénmail period of the periodic motion and at an
energy corresponding to the conserved total energy dunmgiotion. A branch, represented by a solid line,
is a family of NNM motions possessing the same qualitatiatufies.

3.2 Linear - Nonlinear Tuning Analogy

For linear systems, the use of a FEP is not of interest as thagitkexhibit any frequency-energy dependence.
However in the present study it is interesting to see howuhay condition of a TMD on a LO (expressed
in relation (3)) can be extended to the FEP concept. Figiesk) depict both the FEP of the LO and the
TMD. Accordingly to linear theories, whatever the amounepérgy injected in the system, both oscillators
keep being tuned on the same resonant frequencies.

Now, considering a purely nonlinear Duffing oscillator (figy4) (a)) composed of a mass, and a non-
linear stiffnesst,,;, , its dynamical behavior is first characterized through t@jgutation of the related FEP
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Figure 4: (a) Purely nonlinear Duffing oscillato= (NES); (b) related FEP fom; = 1[kg] andk,;, =
1[N/m3].

(figure (4) (b)). The frequency-energy dependence propsryghlighted and the absence of linear stiff-

ness in the system explains the nearly zero resonant fregagtow energy levels. Regarding the vibration

mitigation of this oscillator, the objective lies in deténimg the best absorber to couple. Accordingly to

the TMD tuning procedure on a LO, the analogy for nonlineatesys should constrain both the nonlinear
oscillator and its absorber to exhibit the same frequemergy dependence (FEP). This would impose both
oscillators to get the same resonant frequency for an icldrgnergy amount. This feature can only be ful-
filled if the structural configuration of the absorber is danto the one of the primary structure. Therefore,
the essentially nonlinear stiffness of the NES seems to ria&elevice the best suited.

3.3 NES Parameters Computation

The assessment of the mass and nonlinear stiffness,,;, of the NES has to be carried out to perfectly
match the Duffing oscillator FEP (figure (4) (b)).

Numerical Computation
The problem consists in addressing the following systengofgons :

%knbw%(TZ) — EDuff(wi) =0 =1,...,n.

where the first relation is the equation of motion of a coretrg purely nonlinear oscillator (Figure (4)
(a)), for instance, the NES and the second expresses thainmatf both the Duffing oscillator and the NES
frequency-energy dependence behaviors. The system caivie sising the combination of a shooting and
an optimization procedure that allow the assessment obgiersolutions £2(0) = x2(7')) and the NES
parametersia,k,,), respectively. This procedure gives accurate resultsHaubptimization efficiency is
very dependent on the initial guess allocated. Another baak lies in the prohibitive computational cost
for a large number of matching points (7).

Analytical Computation

The analytical computation offers an interesting altéveato the numerical approach. Even though it is
well known that for nonlinear systems no closed form sohgioan be worked out, it is shown that, for this
problem, the complexification averaging technique [28]har simple harmonic balance method [29] can
give very good approximations, in a straightforward manhiere the second method is considered.
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Figure 5: Purely nonlinear Duffing oscillator coupled to aliveear energy sink (NES).
The equation of motion of a grounded and conservative punahjinear Duffing oscillator is :

m;T; + knufﬂf =0 (6)

Considering the approximated motief(t) = A; coswt and taking into account trigopnometry transforma-
tions, the averaging over the fundamental frequency reeagtation (6) into:

3
4
The related solutions (8) clearly show the frequency-atugdi dependence.

Az( knllA? - meZ-) =0 (7)

A, = 0

L 4w?m;

AiQ’S - 3k 1
nl;

(8)

At initial time ¢ = 0, the motion isz;(0) = A; and the total energy in the system consists in the potential
energy stored in the nonlinear stiffness :

1

According to previous discussions (section (3.2)), théngiof the NES on the Duffing oscillator imposes
the energy of both DOFs to be equg{ (w) = E»(w). Introducing the frequency-amplitude relation (8) in
(9), and identifying the terms with respect to the frequenog gets the following tuning relation :

2 2 2
= = kni, = 5 (10)
knlg knh ml

For this study or similar problems, the use of the numeri¢analytical procedure gives identical results,
however the second approach should be considered for ilseddcomputational time. For more complex
systems, according to the accuracy required, the use oltierical approach may be mandatory.

3.4 Performance - Robustness Analysis

In this section, the dynamics of the 2DOF system depictedyiurdi (5) and composed of a purely nonlinear
Duffing oscillator coupled to a tuned NES is investigatede Télated equations of motion are expressed by

mid, + c1xq + 02(1'1 — i‘g) + knllx? + kn12 (Z’l — 1‘2)3 = 0,

. . . 11
moXo + 62(562 — .Tl) + knlg (562 — $1)3 = 0. (11)
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Figure 6: NES Performance when coupled to a purely nonliDedfing oscillator. (a) Energy dissipated in
the NES against the nonlinear stiffness of the primary systad the impulse magnitude; (b) contour plot
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Figure 7: New NES configuratiok,;, = 0.0075[N/m?]. (a) Energy dissipated in the NES against the
nonlinear stiffness of the primary system and the impulsgnitade; (b) contour plot

The structural configuration of the Duffing oscillator is@ivbym; = 1[kg] andk,,;, = 1[N/m?]. Due to
some practical reasons the NES mass is chosen to be smajfemou= 0.05[kg| and considering relation
(10), the nonlinear stiffness of the NES is compukgd = 0.0025[N/m3]. Finally, some small damping
c1 = ¢ = 0.002[N's/m] is introduced in both oscillators to induce energy dissipat

Similarly to the procedure followed in section (2), the peniance of the tuned NES is now examined by
numerically integrating the equations of motion (11). Aetwdimensional plot of energy dissipated in the
NES (relation (4)) against the nonlinear stiffness of thdfiDg oscillator and the impulse magnitude is
numerically computed and illustrated in figure (6).

The analysis of these results highlights three importaatufes :

1. Similarly to the system composed of a LO coupled to a TMB, dhistem investigated is amplitude
robust. Indeed, whatever the amplitude of excitation thellef energy dissipated in the NES keeps
around95% for a given nonlinear stiffness of the Duffing oscillatgy;, .

2. The region of high energy dissipation is not localized tmeticular value of,,;, but spread over the
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Figure 8: (a) Duffing oscillator composed of linear and noedir stiffness elements; (b) FEP related to this
nonlinear oscillator for a particular set of parametens;:= 1[kg|, kn;, = 4[N/m3], k1 = 1[N/m).

rangek,,;, = [0.1—0.35][N/m?] which makes the NES mistuning robust (or in other wordsfeegy
robust).

3. Despite the tuning of the NES on the purely nonlinear Dgffiscillator, the nominal value of non-
linear stiffness of the primary structure,;, = 1[IN/m3], is not included in the region of high energy
dissipation level.

The last feature may be due to the assumption of zero or weailing between both DOFs. Indeed,
the matching of both FEP does not take the coupling betwesimghillators into account. Therefore, the
nonlinear stiffness of the absorbé,,, is adjusted around its initially computed value in ordeshift the
high energy dissipation region around the nominal value,gf = 1[N/m?]. The new nonlinear stiffness is
fixed atk,;, = 0.0075[N/m3] and the induced improvement is depicted in Figure (7).

These results are of high interest as they show the posggibilimake the NES amplitude robust. This
property coupled to the frequency robustness charactdreadtbsorber makes it very efficient in mitigating
nonlinear vibrating structures. Overall the objective efatmining a duality property between the develop-
ment of a linear absorber and a nonlinear one seems to béeflilfil

4 Design Methodology of an Absorber Coupled to a General Nonl in-
ear Oscillator.

The development of a TMD to mitigate a vibrating linear SDOknary system has been investigated in
section 1. Based on this methodology, the development oftN&&1 on a purely nonlinear Duffing oscillator
has been carried out in section 2. So far, linear and nonlidg@amics have been clearly separated. Here,
the focus is set on a the development of the best suited arstarizope with the vibration mitigation of a
general Duffing oscillator composed of both linear and madr stiffness elements (figure (8) (a)).

Because of its nonlinear character, this oscillator (degidn figure (8) (a)) presents a frequency-energy
dependence illustrated by its related FEP in figure (8) (i)lo® energy level, the dynamics is governed
by the underlying linear system and the oscillator exhiaitonstant resonant frequency.at= 1[rad/s].

For an increasing amount of energy injected in the systeenptimlinear character is predominant and the
fundamental resonant frequency varies.



The vibration isolation of such a structure cannot be redlianly using a TMD or a NES. Indeed, the TMD
would be very well suited at low energy levels,{, is constant) whereas the NES would be efficiently per-
forming only for higher amount of energy injected,(; varies). Therefore, based upon the tuning principle
established in section (3.2), the better suited absortmrdhe the mirror of the primary structure in terms
of structural components to perfectly fit the frequencyrgpelependence behavior depicted in figure (8) (b).

4.1 Absorber Parameters Computation.

Similarly to section (3.3) the computation of the absorbarameters can be numerically or analytically
performed.

Numerical Computation

The problem consists in addressing the system of equati®)su§ing the combination of a shooting and
an optimization procedure. These methods allow the assegsyhperiodic solutionsa(;(0) = z2(7')) and
the absorber parametersd,k,,, ,k2), respectively. The advantages and drawbacks remain tihe as those
presented in section (3.3).

maiy + kot + ki, =0, (12)
2kn,23(T;) + 1koad(T}) — Epuss(wi) =0 i=1,..,n.
Analytical Computation
The equation of motion of the Duffing oscillator is :
m;Z; + kix; + knliwi's =0 (13)

Considering the approximated motief(t) = A; coswt and taking into account trigonometry transforma-
tions, the averaging over the fundamental frequency yields

Ai(anliAﬁ —wmi+ k) =0 (14)
The related solutions are given by :
A, = 0
4(w2mi — k‘z)
A; = 4+ ——= 15
2,3 3]{”[1 ( )

At initial time ¢ = 0, the motion is expressed hy(0) = A; and the total energy in the system consists in
the potential energy stored in the nonlinear stiffness. édwer, taking into account relation (15), one gets :

1 1 4 1
Ei(w) = “kni, A} + Sk A2 = —— [ m2w® — —ki(miw® + k; 16
(w) 4 nl; A; + 2 nl; 41§ 9knl7 (mzw 2 (mw + ) ( )
Because the tuning condition imposeg(w) = E»(w), the terms identification with respect to the frequency
yields the following relations :

mio_om
knh knlg
kl mi k‘gmg
= 17
knll knlg ( )
k? k3

knll knlg



Parameterl Units  Value
my [kg] 1
ki, [N/m3] 4

k1 [N/m] 1
ma [kg] 0.05
i, [N/m3] 0.01

ko [N/m]  0.05

Table 2: Parameter values of the conservative 2DOF system.
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Figure 9: Duffing oscillator coupled to an absorber 'mirror’

4.2 Performance - Robustness Analysis

The 2DOF system composed of the Duffing oscillator and theraes is depicted in figure (9) and the
related equations of motion are :

miiy + c1dy + ey — @2) + k121 + kpy 23 + kpiy (11 — 22)2 + ka(z1 —22) = 0,

. . . 18
moxo + CQ(Z’Q — 1‘1) + kg(xg — xl) + knb(xg — 1‘1)3 = 0. ( )

For given values of the primary systemu{,k1,k,;1) the absorber parametenad,ko,k,;2) can be assessed.
For practical reasons, the absorber mass is imposed to Hesma= 0.05[kg] and using relations (17),
the other parameters are computed. All the parameterssvalgegathered in Table (2). For the coming
analysis, some small damping, (= ¢ = 0.002[Ns/m]) is introduced in both oscillators to induce energy
dissipation.

Similarly to section (3.4), a three-dimensional plot of gyadissipated in the absorber (equation (4)) against
the nonlinear stiffness of the Duffing oscillator and the utsp magnitude is numerically computed and
illustrated in figure (10).

For small excitation amplitudes (1 (0) < 0.4[m/s]) the related amount of energy injected in the structure
is very small and the nonlinear elements have no influencén@mynamics. Therefore the 2DOF system
depicted in figure (9) reduces to the underlying 2DOF lingatesn composed of a LO coupled to a TMD
and the dynamical behavior is linear. This feature expltiespresence of a high energy dissipation region
whatever the value of the nonlinear stiffness of the prinsanycturek,,;, .

For increasing excitation amplitudes ¢1(0) > 0.4[m/s]), the influence of the nonlinear elements on the
overall dynamics cannot be neglected anymore. Progrégdive dynamical behavior is mainly governed by
the nonlinearities of both oscillators and the system témdard a purely nonlinear 2DOF system. Therefore,
the conclusions established in section (3.4) can be extetodinis analysis :

1. Amplitude robustness : whatever the amplitude of exoitathe level of energy dissipated in the
absorber keeps arou8d% for a given nonlinear stiffness of the Duffing oscillatoy;, .
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Figure 10: Absorber Performance when coupled to a Duffindlatar. (a) Energy dissipated in the absorber
against the nonlinear stiffness of the primary system aadntipulse magnitude; (b) contour plot
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Figure 11: New absorber configuratiép,, = 0.025[N/m?]. (a) Energy dissipated in the absorber against
the nonlinear stiffness of the primary system and the inguoiagnitude; (b) contour plot

2. Mistuning robustness (frequency robustness) : the megfibigh energy dissipation is not localized to
a particular value of,,;, but spread over the rangg;, = [0.8 — 2][N/m3].

3. Despite the tuning of the NES on the Duffing oscillator, ibeninal value of nonlinear stiffness of the
primary structurek,,;, = 4[N/m3], is not included in the region of high energy dissipatiorelev

For the same reason as the one mentioned in section (3.4p#oebar nonlinear stiffness is adjusted to
k1, = 0.025[N/m3] and figure (11) shows improved results as the region of ergiggjpation includes the
nominal value ofc,,;, = 4[N/m3].

Finally, compared to the study carried out in [17], the dyi@ntreated by this new absorber revealed an
further improved amplitude robustness.



5 Conclusions and Future Work

In this paper, a design methodology of a nonlinear absorbsiimtroduced. Based upon the design procedure
of a TMD on a LO, a valuable dual tuning procedure of an NES omralp nonlinear Duffing oscillator
was achieved using the FEP concept. More generally, giverinaagy structure composed of both linear
and nonlinear stiffness elements, the best absorber ®ss#s revealed to be the mirror of the primary
system from a structural viewpoint. As a final result, in &iddito the frequency robustness, the new design
scheme drastically improved the amplitude robustness efathsorber which makes it very efficient for
passive vibration mitigation of nonlinear vibrating stiwres.

A complete study of this tuning procedure requires the agraknt of complementary analyzes such as the
mechanisms of energy dissipation or the effects of viscausping. This will be investigated in subsequent
works.

Moreover, among the next objectives, the design of a p@dNES is of high interest for giving the possi-
bility of performing experimental validation. Some prelivary works investigate the possibility to realize it
electrically using piezoelectric patches and nonlineangh
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