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Abstract
In the present study, the focus is set on the development of a design methodology for nonlinear vibration
absorbers, termed nonlinear energy sink (NES), to optimizethe vibrating level reduction on a Duffing oscil-
lator. The idea lies in the assessment of a duality property between, on the one hand, the tuning procedure
of the tuned mass damper (TMD) coupled to a linear oscillatorand, on the other hand, the assumed design
scheme of NES coupled to a purely nonlinear Duffing oscillator. To this end, the basics on the TMD tuning
methodology are recalled and extended to the concept of frequency-energy plot (FEP) [1]. Then, based upon
this concept, the development of a NES design procedure is undertaken and the related dynamics analyzed.
Finally, it is shown how to design a vibration absorber to deal with a general Duffing oscillator.

1 Introduction

The tuned mass damper (TMD) is maybe the most popular device for passive vibration mitigation of a vi-
brating mechanical structure. Realizing that the TMD is only effective when it is precisely tuned to the
frequency of a vibration mode [2,3], a recent body of literature has addressed this limitation using a nonlin-
ear attachment characterized by an essential nonlinearity, termed a nonlinear energy sink (NES) [1, 4–14].
The concept of essential nonlinearity is central, because it means that an NES has no preferential resonant
frequency, which makes it a frequency-independent absorber. Another salient feature of an NES is its capa-
bility to realize targeted energy transfer (TET) during which energy initially induced in the primary system
gets passively and irreversibly transferred to the NES. Therefore, this nonlinear device seems to be very well
suited for vibration isolation of MDOF linear structures ornonlinear structures.

However, because of the strongly nonlinear character of theabsorber, the seek of an optimal design proce-
dure is a challenging problem. Only a couple of researches tried to face this issue mainly by considering
numerically performed parametric studies. Moreover, all of them considered different objective functions
among which one can mention the suppression of the sefl-sustained oscillations [15, 16], the amount of en-
ergy dissipated in the nonlinear absorber [17], the time required for a complete energy dissipation [18] and
finally, the occurrence of quasiperiodic motions on a given frequency bandwidth [19]. Even though these
parametric studies generally give good results, their related computational burden may be prohibitive and the
development of other better suited techniques are worthwhile.

Therefore, based on the fairly simple TMD tuning methodology, this paper investigates the possibility to
develop an NES design procedure. The idea lies in the assessment of a duality property between, on the one
hand, the tuning procedure of the TMD coupled to a linear oscillator and, on the other hand, the assumed
design scheme of NES coupled to a purely nonlinear Duffing oscillator. To this end, in section 1 the basics of
the TMD theory are recalled and the related results extendedto the concept of frequency-energy plot. Using
the previous results, section 2 describes the tuning procedure of the NES on a purely nonlinear Duffing
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Figure 1: Linear oscillator (LO) coupled to a tuned mass damper (TMD)

oscillator. Finally, an attempt is carried out to design thebest vibration absorber to couple to a general
Duffing oscillator.

2 Design Methodology of a TMD coupled to a Linear Oscillator

The origin of the TMD dates back to the developments carried out by Frahm [2] on the dynamical vibration
absorber coupled to a conservative linear oscillator (LO) (see figure (1) withc1 = c2 = 0 ). This device was
efficient in a narrow frequency range centered at the naturalfrequency of the absorber. Later, Den Hartog [3]
found that the TMD with energy dissipation mechanisms (c2 6= 0) are effective to an extended frequency
range. These works have highlighted the trade-off existingduring the design process between the need for
good performances (attenuation efficiency,H∞) and robustness (bandwidth,H2). It’s also worth being noted
that theH∞ andH2 optimizations of TMD coupled to a dissipative linear oscillator (c1 6= 0) [20–23] or a
MDOF linear system [24] is not straightforward and is still being investigated nowadays. Considering the
forced system depicted in Figure (1), composed of a linear oscillator (of natural frequencyω1 =

√

k1/m1)
coupled to a TMD, its equations of motion are :

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + k2(x1 − x2) = (F cos ωt),
m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0.

(1)

In this section the emphasis is set upon the basics of the TMD tuning procedure developed by Frahm [2]
(for c1 = c2 = 0) which relies on a solid mathematical framework. If the system steady-state responses are
supposed to be of the formxi = Xicos(ωt), than using relation (1) the displacement of the LO is expressed
by :

X1 =
(k2 − ω2m2)F

(k1 + k2 − ω2m1)(k2 − ω2m2) − k2
2

(2)

If an harmonic excitation of frequencyω = ω1 is applied to the LO, than the vibration isolation of the LO
(X1 = 0) can be performed by realizing the condition :

ω = ω1 =

√

k1

m1

=

√

k2

m2

= ωa (3)

Performance - Robustness Analysis

The performance of a TMD coupled to a LO (figure (1)) is now examined. To this end, the harmonic
excitation (Fcos(ωt)) is replaced by a direct impulsive excitation of the LOẋ1(0) 6= 0, x1(0) = x2(0) =
ẋ2(0) = 0. Moreover, condition (3) is supposed to be satisfied and someslight damping is introduced in
both oscillators to induce energy dissipation. The initialparameter values are given in Table (1). A numerical



Parameter Units Value
m1 [kg] 1
m2 [kg] 0.05
c1 [Ns/m] 0.002
c2 [Ns/m] 0.002
k1 [N/m] 0.5
k2 [N/m] 0.025

Table 1: System parameters used for the numerical integration of equations (5).
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Figure 2: TMD Performance when coupled to a LO. (a) Energy dissipated in the TMD against the linear
stiffness of the primary system and the impulse magnitude; (b) contour plot

integration of the equations of motion (5) is performed for varying linear stiffnessk1 and excitation amplitude
ẋ1(0). The amount of energy dissipated in the TMD is evaluated through relations (4) corresponding to the
ratio between the energy dissipated in the absorber and the energy injected in the system.

Ediss,absorber,%(t) = 100

c2

t
∫

0

(ẋ1(τ) − ẋ2(τ))2dτ

1

2
m1ẋ1(0)2

(4)

Figure (2) depicts this quantity against the impulse magnitudeẋ1(0) and the linear stiffnessk1 (see Figures
2(a,b) for three-dimensional plot and a contour plot). Clearly, for k1 = 0.5N/m and whatever the magnitude
of excitationẋ1(0), the TMD can dissipate a large fraction (95%) of the input energy initially imparted to
the LO. However, a slight mistuning in the host structure drastically reduces the TMD performances which
makes this device not frequency robust. This brief reminderon the basics of the TMD design procedure
gives the necessary basis to move forward to the design procedure of an NES coupled to a purely nonlinear
oscillator.
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Figure 3: FEP corresponding to the LO (a) and the TMD (b) for the condition expressed in relation (3).

3 Design Methodology of a NES coupled to a Purely Nonlinear Os -
cillator

3.1 Frequency-Energy Plot Concept

One typical dynamical feature of nonlinear systems is the frequency-energy dependence of their oscillations.
Moreover, for a given energy level injected in the system, several types of solutions may coexist. These
properties make nonlinear systems more complicated to characterize than linear ones and require the devel-
opment of adapted analysis tools such as the nonlinear normal modes (NNM) and the frequency-energy plot
(FEP) concepts. In this study only the basics are recalled and for a complete description of these concepts
the interested reader may refer to [1,12,25–27].

An NNM motion can be defined as a non-necessarily synchronousperiodic motion of an undamped nonlinear
mechanical system [25, 26]. However, as discussed in [1, 12,25, 27], the damped dynamics can often be
interpreted based on the topological structure of the NNMs of the underlying conservative system. Therefore
their computation, using continuation methods [26], is a key point for characterizing the dynamical behavior
of the nonlinear system under the scope.

Because of the frequency-energy dependence property of nonlinear systems, the modal curves and frequen-
cies of NNMs vary with the amount of energy in the system. Consequently, the representation of NNMs in
a frequency-energy plot (FEP) is particularly convenient [1, 12, 27]. An NNM is represented by a point in
the FEP, which is drawn at a frequency corresponding to the minimal period of the periodic motion and at an
energy corresponding to the conserved total energy during the motion. A branch, represented by a solid line,
is a family of NNM motions possessing the same qualitative features.

3.2 Linear - Nonlinear Tuning Analogy

For linear systems, the use of a FEP is not of interest as they do not exhibit any frequency-energy dependence.
However in the present study it is interesting to see how the tuning condition of a TMD on a LO (expressed
in relation (3)) can be extended to the FEP concept. Figures (3 a-b) depict both the FEP of the LO and the
TMD. Accordingly to linear theories, whatever the amount ofenergy injected in the system, both oscillators
keep being tuned on the same resonant frequencies.

Now, considering a purely nonlinear Duffing oscillator (figure (4) (a)) composed of a massm1 and a non-
linear stiffnessknl1 , its dynamical behavior is first characterized through the computation of the related FEP
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Figure 4: (a) Purely nonlinear Duffing oscillator (≡ NES); (b) related FEP form1 = 1[kg] andknl2 =
1[N/m3].

(figure (4) (b)). The frequency-energy dependence propertyis highlighted and the absence of linear stiff-
ness in the system explains the nearly zero resonant frequency at low energy levels. Regarding the vibration
mitigation of this oscillator, the objective lies in determining the best absorber to couple. Accordingly to
the TMD tuning procedure on a LO, the analogy for nonlinear systems should constrain both the nonlinear
oscillator and its absorber to exhibit the same frequency-energy dependence (FEP). This would impose both
oscillators to get the same resonant frequency for an identical energy amount. This feature can only be ful-
filled if the structural configuration of the absorber is similar to the one of the primary structure. Therefore,
the essentially nonlinear stiffness of the NES seems to makethis device the best suited.

3.3 NES Parameters Computation

The assessment of the massm2 and nonlinear stiffnessknl2 of the NES has to be carried out to perfectly
match the Duffing oscillator FEP (figure (4) (b)).

Numerical Computation

The problem consists in addressing the following system of equations :

{

m2ẍ2 + knl2x
3
2 = 0,

1

4
knl2x

4
2(Ti) − EDuff (ωi) = 0 i = 1, ..., n.

(5)

where the first relation is the equation of motion of a conservative purely nonlinear oscillator (Figure (4)
(a)), for instance, the NES and the second expresses the matching of both the Duffing oscillator and the NES
frequency-energy dependence behaviors. The system can be solved using the combination of a shooting and
an optimization procedure that allow the assessment of periodic solutions (x2(0) = x2(T )) and the NES
parameters (m2,knl2), respectively. This procedure gives accurate results butthe optimization efficiency is
very dependent on the initial guess allocated. Another drawback lies in the prohibitive computational cost
for a large number of matching points (n ⇈).

Analytical Computation

The analytical computation offers an interesting alternative to the numerical approach. Even though it is
well known that for nonlinear systems no closed form solutions can be worked out, it is shown that, for this
problem, the complexification averaging technique [28] or the simple harmonic balance method [29] can
give very good approximations, in a straightforward manner. Here the second method is considered.
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Figure 5: Purely nonlinear Duffing oscillator coupled to a nonlinear energy sink (NES).

The equation of motion of a grounded and conservative purelynonlinear Duffing oscillator is :

miẍi + knlix
3
i = 0 (6)

Considering the approximated motionxi(t) = Ai cos ωt and taking into account trigonometry transforma-
tions, the averaging over the fundamental frequency recasts equation (6) into:

Ai(
3

4
knliA

2
i − ω2mi) = 0 (7)

The related solutions (8) clearly show the frequency-amplitude dependence.

Ai1 = 0

Ai2,3
= ±

√

4ω2mi

3knli

(8)

At initial time t = 0, the motion isxi(0) = Ai and the total energy in the system consists in the potential
energy stored in the nonlinear stiffness :

Ei =
1

4
knliA

4
i (9)

According to previous discussions (section (3.2)), the tuning of the NES on the Duffing oscillator imposes
the energy of both DOFs to be equalE1(ω) = E2(ω). Introducing the frequency-amplitude relation (8) in
(9), and identifying the terms with respect to the frequency, one gets the following tuning relation :

m2
2

knl2

=
m2

1

knl1

⇒ knl2 =
m2

2knl1

m2
1

(10)

For this study or similar problems, the use of the numerical of analytical procedure gives identical results,
however the second approach should be considered for its reduced computational time. For more complex
systems, according to the accuracy required, the use of the numerical approach may be mandatory.

3.4 Performance - Robustness Analysis

In this section, the dynamics of the 2DOF system depicted in figure (5) and composed of a purely nonlinear
Duffing oscillator coupled to a tuned NES is investigated. The related equations of motion are expressed by
:

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + knl1x
3
1 + knl2(x1 − x2)

3 = 0,
m2ẍ2 + c2(ẋ2 − ẋ1) + knl2(x2 − x1)

3 = 0.
(11)
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Figure 6: NES Performance when coupled to a purely nonlinearDuffing oscillator. (a) Energy dissipated in
the NES against the nonlinear stiffness of the primary system and the impulse magnitude; (b) contour plot
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Figure 7: New NES configurationknl2 = 0.0075[N/m3 ]. (a) Energy dissipated in the NES against the
nonlinear stiffness of the primary system and the impulse magnitude; (b) contour plot

The structural configuration of the Duffing oscillator is given bym1 = 1[kg] andknl1 = 1[N/m3]. Due to
some practical reasons the NES mass is chosen to be small enough m2 = 0.05[kg] and considering relation
(10), the nonlinear stiffness of the NES is computedknl2 = 0.0025[N/m3 ]. Finally, some small damping
c1 = c2 = 0.002[Ns/m] is introduced in both oscillators to induce energy dissipation.

Similarly to the procedure followed in section (2), the performance of the tuned NES is now examined by
numerically integrating the equations of motion (11). A three-dimensional plot of energy dissipated in the
NES (relation (4)) against the nonlinear stiffness of the Duffing oscillator and the impulse magnitude is
numerically computed and illustrated in figure (6).

The analysis of these results highlights three important features :

1. Similarly to the system composed of a LO coupled to a TMD, the system investigated is amplitude
robust. Indeed, whatever the amplitude of excitation the level of energy dissipated in the NES keeps
around95% for a given nonlinear stiffness of the Duffing oscillatorknl1 .

2. The region of high energy dissipation is not localized to aparticular value ofknl1 but spread over the
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Figure 8: (a) Duffing oscillator composed of linear and nonlinear stiffness elements; (b) FEP related to this
nonlinear oscillator for a particular set of parameters :m1 = 1[kg], knl1 = 4[N/m3], k1 = 1[N/m].

rangeknl1 = [0.1−0.35][N/m3 ] which makes the NES mistuning robust (or in other words, frequency
robust).

3. Despite the tuning of the NES on the purely nonlinear Duffing oscillator, the nominal value of non-
linear stiffness of the primary structure,knl1 = 1[N/m3], is not included in the region of high energy
dissipation level.

The last feature may be due to the assumption of zero or weak coupling between both DOFs. Indeed,
the matching of both FEP does not take the coupling between the oscillators into account. Therefore, the
nonlinear stiffness of the absorber,knl2 , is adjusted around its initially computed value in order toshift the
high energy dissipation region around the nominal value ofknl1 = 1[N/m3]. The new nonlinear stiffness is
fixed atknl2 = 0.0075[N/m3 ] and the induced improvement is depicted in Figure (7).

These results are of high interest as they show the possibility to make the NES amplitude robust. This
property coupled to the frequency robustness character of the absorber makes it very efficient in mitigating
nonlinear vibrating structures. Overall the objective of determining a duality property between the develop-
ment of a linear absorber and a nonlinear one seems to be fulfilled.

4 Design Methodology of an Absorber Coupled to a General Nonl in-
ear Oscillator.

The development of a TMD to mitigate a vibrating linear SDOF primary system has been investigated in
section 1. Based on this methodology, the development of NEStuned on a purely nonlinear Duffing oscillator
has been carried out in section 2. So far, linear and nonlinear dynamics have been clearly separated. Here,
the focus is set on a the development of the best suited absorber to cope with the vibration mitigation of a
general Duffing oscillator composed of both linear and nonlinear stiffness elements (figure (8) (a)).

Because of its nonlinear character, this oscillator (depicted in figure (8) (a)) presents a frequency-energy
dependence illustrated by its related FEP in figure (8) (b). At low energy level, the dynamics is governed
by the underlying linear system and the oscillator exhibitsa constant resonant frequency atω = 1[rad/s].
For an increasing amount of energy injected in the system, the nonlinear character is predominant and the
fundamental resonant frequency varies.



The vibration isolation of such a structure cannot be realized only using a TMD or a NES. Indeed, the TMD
would be very well suited at low energy levels (ωres is constant) whereas the NES would be efficiently per-
forming only for higher amount of energy injected (ωres varies). Therefore, based upon the tuning principle
established in section (3.2), the better suited absorber should be the mirror of the primary structure in terms
of structural components to perfectly fit the frequency-energy dependence behavior depicted in figure (8) (b).

4.1 Absorber Parameters Computation.

Similarly to section (3.3) the computation of the absorber parameters can be numerically or analytically
performed.

Numerical Computation

The problem consists in addressing the system of equations (12) using the combination of a shooting and
an optimization procedure. These methods allow the assessment of periodic solutions (x2(0) = x2(T )) and
the absorber parameters (m2,knl2 ,k2), respectively. The advantages and drawbacks remain the same as those
presented in section (3.3).

{

m2ẍ2 + k2x2 + knl2x
3
2 = 0,

1

4
knl2x

4
2(Ti) + 1

2
k2x

2
2(Ti) − EDuff (ωi) = 0 i = 1, ..., n.

(12)

Analytical Computation

The equation of motion of the Duffing oscillator is :

miẍi + kixi + knlix
3
i = 0 (13)

Considering the approximated motionxi(t) = Ai cos ωt and taking into account trigonometry transforma-
tions, the averaging over the fundamental frequency yields:

Ai(
3

4
knliA

2
i − ω2mi + ki) = 0 (14)

The related solutions are given by :

Ai1 = 0

Ai2,3
= ±

√

4(ω2mi − ki)

3knli

(15)

At initial time t = 0, the motion is expressed byxi(0) = Ai and the total energy in the system consists in
the potential energy stored in the nonlinear stiffness. Moreover, taking into account relation (15), one gets :

Ei(ω) =
1

4
knliA

4
i +

1

2
knliA

2
i =

4

9knli

(

m2
i ω

4 −
1

2
ki(miω

2 + ki)

)

(16)

Because the tuning condition imposesE1(ω) = E2(ω), the terms identification with respect to the frequency
yields the following relations :

m2
1

knl1

=
m2

2

knl2

k1m1

knl1

=
k2m2

knl2

(17)

k2
1

knl1

=
k2
2

knl2



Parameter Units Value
m1 [kg] 1
knl1 [N/m3] 4
k1 [N/m] 1
m2 [kg] 0.05
knl2 [N/m3] 0.01
k2 [N/m] 0.05

Table 2: Parameter values of the conservative 2DOF system.
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Figure 9: Duffing oscillator coupled to an absorber ’mirror’.

4.2 Performance - Robustness Analysis

The 2DOF system composed of the Duffing oscillator and the absorber is depicted in figure (9) and the
related equations of motion are :

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + knl1x
3
1 + knl2(x1 − x2)

3 + k2(x1 − x2) = 0,
m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) + knl2(x2 − x1)

3 = 0.
(18)

For given values of the primary system (m1,k1,knl1) the absorber parameters (m2,k2,knl2) can be assessed.
For practical reasons, the absorber mass is imposed to be small m2 = 0.05[kg] and using relations (17),
the other parameters are computed. All the parameters values are gathered in Table (2). For the coming
analysis, some small damping (c1 = c2 = 0.002[Ns/m]) is introduced in both oscillators to induce energy
dissipation.

Similarly to section (3.4), a three-dimensional plot of energy dissipated in the absorber (equation (4)) against
the nonlinear stiffness of the Duffing oscillator and the impulse magnitude is numerically computed and
illustrated in figure (10).

For small excitation amplitudes (ẋ1(0) < 0.4[m/s]) the related amount of energy injected in the structure
is very small and the nonlinear elements have no influence on the dynamics. Therefore the 2DOF system
depicted in figure (9) reduces to the underlying 2DOF linear system composed of a LO coupled to a TMD
and the dynamical behavior is linear. This feature explainsthe presence of a high energy dissipation region
whatever the value of the nonlinear stiffness of the primarystructureknl1 .

For increasing excitation amplitudes (̇x1(0) > 0.4[m/s]), the influence of the nonlinear elements on the
overall dynamics cannot be neglected anymore. Progressively, the dynamical behavior is mainly governed by
the nonlinearities of both oscillators and the system tendstoward a purely nonlinear 2DOF system. Therefore,
the conclusions established in section (3.4) can be extended to this analysis :

1. Amplitude robustness : whatever the amplitude of excitation the level of energy dissipated in the
absorber keeps around95% for a given nonlinear stiffness of the Duffing oscillatorknl1 .
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Figure 10: Absorber Performance when coupled to a Duffing oscillator. (a) Energy dissipated in the absorber
against the nonlinear stiffness of the primary system and the impulse magnitude; (b) contour plot
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Figure 11: New absorber configurationknl2 = 0.025[N/m3]. (a) Energy dissipated in the absorber against
the nonlinear stiffness of the primary system and the impulse magnitude; (b) contour plot

2. Mistuning robustness (frequency robustness) : the region of high energy dissipation is not localized to
a particular value ofknl1 but spread over the rangeknl1 = [0.8 − 2][N/m3].

3. Despite the tuning of the NES on the Duffing oscillator, thenominal value of nonlinear stiffness of the
primary structure,knl1 = 4[N/m3], is not included in the region of high energy dissipation level.

For the same reason as the one mentioned in section (3.4) the absorber nonlinear stiffness is adjusted to
knl2 = 0.025[N/m3 ] and figure (11) shows improved results as the region of energydissipation includes the
nominal value ofknl1 = 4[N/m3].

Finally, compared to the study carried out in [17], the dynamics created by this new absorber revealed an
further improved amplitude robustness.



5 Conclusions and Future Work

In this paper, a design methodology of a nonlinear absorber was introduced. Based upon the design procedure
of a TMD on a LO, a valuable dual tuning procedure of an NES on a purely nonlinear Duffing oscillator
was achieved using the FEP concept. More generally, given a primary structure composed of both linear
and nonlinear stiffness elements, the best absorber possible was revealed to be the mirror of the primary
system from a structural viewpoint. As a final result, in addition to the frequency robustness, the new design
scheme drastically improved the amplitude robustness of the absorber which makes it very efficient for
passive vibration mitigation of nonlinear vibrating structures.

A complete study of this tuning procedure requires the development of complementary analyzes such as the
mechanisms of energy dissipation or the effects of viscous damping. This will be investigated in subsequent
works.

Moreover, among the next objectives, the design of a practical NES is of high interest for giving the possi-
bility of performing experimental validation. Some preliminary works investigate the possibility to realize it
electrically using piezoelectric patches and nonlinear shunts.
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