How Many Hippos (*HOMHIP*): Algorithm for automatic counts of animals with infrared thermal imagery from UAV

Gembloux Agro-Bio Tech Université de Liège

SIMON LHOEST, JULIE LINCHANT, SAMUEL QUEVAUVILLERS, CÉDRIC VERMEULEN, PHILIPPE LEJEUNE Forest Resources Management Axis, Biosystems engineering (BIOSE) University of Liège – Gembloux Agro-Bio Tech

Communication presented at GeoUAV Worshop in the frame of the ISPRS Geospatial Week 2015

La Grande Motte, 2nd October 2015

Ir Simon Lhoest

- Vulnerable species
- Groups : 10 to 200 individuals
- In water during the day
- Drawbacks in classic monitoring methods

Objective

Construction of an algorithm for the automatic count of hippos groups from thermal infrared images acquired by UAV

→ Integration in the open source QGIS software

Introduction

Discussion & Perspectives

Conclusion

Why doing monitoring?

Quantify the impact of poaching

- → Natural growth = 6%/year
- Reinforcement/moving of monitoring troops

Complete demographic analyses

➔ More precise previsions of probable populations evolution

Evaluate the impact of hippos on their environment

- → Erosion?
- ➔ Soils compaction?
- ➔ Food disponibility?
- ➔ Competition between herbivorous species?

© Chabot, 2009

Criteria:

- Aggregation of individuals (but too close together)
- High contrast (animal background)
- ✓ Sufficient image quality

Methodology Introduction

Results

Discussion & Perspectives

Conclusion

- Reference data = visual and manual digitization of hippos
 - → 3 categories of hippos :
 - Completely emerged animals (CEA)
 - Pairs of Polygons of Single Animals (PPSA)
 - Nearly Immerged Animals (NIA)
- 37 extracted images
- 2126 digitized polygons = 1856 hippos

6

Introduction Methodology Resu	Its Discussion & Conclust Perspectives Conclust	ion
• <i>Python</i> script for all the geoprocessing	HOMHIP ? Raster layer 40_1_mask	
QGIS application	1. Height of flight [m] 39 2. Local Maxima (LM) 11	
Graphical User Interface	Threshold value 100 Min distance between LM 5	
BOMHIP	3. Contours to polygons Interval between lines 3 4. Polygons aggregation	
Count hippos from raster Auteur: Gembloux Agro-Bio Tech	Max angle (deg) 30 Max angle between centroids (deg) 30 Results	
Version installée : 0.1 (dans C:\Users\gef\.qgis2\python\plugins\HOMHIP)	Completely Emerged Animals (CEA)0Pairs of Polygons for Single Animals (PPSA)0Nearly Immerged Animals (NIA)0	ſ
	OK Close	

- ➔ orientation characteristics
- 2 angles computed : |Δϑ| & |α-ϑ₀|
 → maxima values

	Introduction	Methodology	\geq	Results		Discussion & Perspectives	\geq	Conclusion	
~	30% of image	es (rainy sea	ason)		r N	Minimal total o Maximal total o	error error	-4.9% +12.9%	
			Mean to Mean N Mean PP Mean C	otal error IIA error PSA error EA error	+3.9 +28.5 -55.4 +20.2	<mark>%</mark> 5% 2%			
		NIA (Nearly Immerged Anima	P Ils) corre	PPSA (Pairs of sponding to Si	Polygons ngle Animals)	CEA (Comple Emerged Anim	tely als)	Total	
	Automatic – manual correlation	0.47 (p = 0.14	.9)	0.14 (p = 0	.674)	0.42 (p = 0.1	.97)	<u>0.98</u> (p < 0.001)	

Introduction	Methodolog	y Results	Pers	bectives	Conclusion	
 Image pro → Influence → Difficult → Hippos c → Automat 	cessing e of input paran to deal with hip ategories tend ion of the mask	neters! opos very close toge to compensate in co king process & selec	ether ounts, but neo ction of images?	cessary imp	rovement!	
Dry season	 Practical re → Rainy sease → Not in the → Avoid fog 	commendations son (April to Novem e end of the afterno	s of flight uber) on			
	2	Exploitation of	f results			
S. Content of Content		Some hippos	(under water) a	re not detec	cted	
Rainy	season	Necessity of a	correction fact	or:		
1.25, according to Delvingt (1978) & Lhoest (2015)						
Sensors and UAV improvement						
Combination of several sensors?						
			Use of high r	resolution in	frared photos?	

→ Multicopter platform?

Introduction

+

Results

Discussion & Perspectives

Conclusion

Such algorithms are really important to deal with the huge amount of UAV data:

- Great perspectives
- Save time
- Easy to use (open source software)
- Standardized & reproducible procedure -> avoid operator effect in counts!
- Adaptable parameters
- Improvement still necessary:
 - Automation of pre-process
 - Determination of optimal input parameters values

Thanks for your sustained attention!

Simon Lhoest simlho@hotmail.com

Gembloux Agro-Bio Tech Université de Liège

© Photos : Simon Lhoest, except other mentions