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Generalized transverse-momentum dependent parton distributions (GTMDs) encode the most general
parton structure of hadrons. Here we focus on two twist-2 GTMDs which are denoted by F1;4 and G1;1 in
parts of the literature. As already shown previously, both GTMDs have a close relation to orbital angular
momentum of partons inside a hadron. However, recently even the mere existence of F1;4 andG1;1 has been
doubted. We explain why this claim does not hold. We support our model-independent considerations by
calculating the two GTMDs in the scalar diquark model and in the quark-target model, where we also
explicitly check the relation to orbital angular momentum. In addition, we compute F1;4 and G1;1 at large
transverse momentum in perturbative quantum chromodynamics and show that they are nonzero.
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I. INTRODUCTION

During the past two decades, a lot of attention has been
paid to generalized parton distributions (GPDs) [1–7] and
to transverse-momentum dependent parton distributions
(TMDs) [8–12]. Those objects are of particular interest
because they describe the three-dimensional parton struc-
ture of hadrons—the distribution of the parton’s longi-
tudinal momentum and transverse position in the case of
GPDs, and the distribution of the parton’s longitudinal
momentum and transverse momentum in the case of
TMDs. Even though GPDs and TMDs already are quite
general entities, the maximum possible information about
the (two-)parton structure of strongly interacting systems is
encoded in generalized transverse-momentum dependent
parton distributions (GTMDs) [13–15]. GTMDs can reduce
to GPDs and to TMDs in certain kinematical limits, and
therefore they are often denoted as mother distributions.
The Fourier transform of GTMDs can be considered as
Wigner distributions [16–18], the quantum-mechanical
analogue of classical phase-space distributions.
A classification of GTMDs for quarks (through twist-4)

for a spin-0 target was given in Ref. [13], followed by a
corresponding work for a spin-1

2
target [14]. In Ref. [15], the

counting of quark GTMDs was independently confirmed,
and a complete classification of gluon GTMDs was
provided as well. GTMDs were computed in spectator
models [13,14], and in two different light-front quark
models [18,19]. Gluon GTMDs quite naturally appear
when describing high-energy diffractive processes like
vector meson production or Higgs production in so-called

kT factorization in quantum chromodynamics (QCD)
[20–22]. It is important to note that, in general, there exists
no argument according to which, as a matter of principle,
GTMDs cannot be measured, even though for quark
GTMDs a proper high-energy process has yet to be
identified.
Recent developments revealed an intimate connection

between two specific GTMDs—denoted by F1;4 and G1;1
in Ref. [14]—and the spin/orbital structure of the nucleon.
(See Refs. [23,24] for recent reviews on the decomposition
of the nucleon spin.) In particular, the relation between F1;4
and the orbital angular momentum (OAM) of partons inside
a longitudinally polarized nucleon [18,25–28] has already
attracted considerable attention. As shown in [18], this
relation gets its most intuitive meaning when expressed in
terms of the Wigner function F 1;4, i.e., the Fourier trans-
form of F1;4. It is also quite interesting that, depending on
how one chooses the path of the gauge link that makes the
GTMD correlator gauge invariant [27,28], F1;4 provides
either the (canonical) OAM of Jaffe-Manohar [29] or the
OAM in the definition of Ji [2]. (We also refer to [30] for a
closely related discussion.) The connection between OAM
and F1;4 could make the canonical OAM accessible to
lattice QCD as first pointed out in [25]. The GTMD G1;1
can be considered as a “partner” of F1;4 as it describes
longitudinally polarized partons in an unpolarized nucleon
[18,31]. The very close analogy between those two
functions becomes most transparent if one speaks in terms
of spin-orbit correlations [31]. While F1;4 quantifies the
correlation between the nucleon spin and the OAM of
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partons, G1;1 quantifies the correlation between the parton
spin and the OAM of partons [31].
Despite all those developments, recently it has been

argued that OAM of partons cannot be explored through
leading-twist GTMDs [32,33]. In fact, the mere existence
of F1;4 and G1;1 has been doubted. Here we refute this
criticism and explain why the arguments given in [32,33]
do not hold. A key problem of the work in [32,33] is the
application of a two-body scattering picture for the clas-
sification of GTMDs, which turns out to be too restrictive.
In order to make as clear as possible that in general neither
F1;4 nor G1;1 vanish, we also compute them in the scalar
diquark model of the nucleon, in the quark-target model,
and in perturbative QCD for large transverse parton
momenta. In addition, for the two models, we show
explicitly the connection between the two GTMDs and
the OAM of partons. The model calculations are carried out
in standard perturbation theory for correlation functions,
and also by using the overlap representation in terms of
light-front wave functions (LFWFs) where some of the
results become rather intuitive.
The paper is organized as follows: In Sec. II we specify

our conventions and repeat some key ingredients for the
counting of GTMDs, while Sec. III essentially deals with
our reply to the arguments given in [32,33]. The calcu-
lations of F1;4 and G1;1 in the scalar diquark model and in
the quark-target model are discussed in Sec. IV, along with
their relation to OAM of partons. In Sec. V we repeat the
studies of Sec. IV by making use of LFWFs. The
computation of the two GTMDs at large transverse
momentum is presented in Sec. VI. We summarize the
paper in Sec. VII.

II. DEFINITION OF GTMDS

In this section we review the definition of the GTMDs
for quarks, which have been classified in Refs. [13,14]
and further discussed also for the gluon sector in Ref. [15].
We begin by introducing two light-like four-vectors n�
satisfying n2� ¼ 0 and nþ · n− ¼ 1. They allow one to
decompose a generic four-vector aμ as

a ¼ aþnþ þ a−n− þ a⊥; ð1Þ

where the transverse light-front four-vector is defined as
aμ⊥ ¼ gμν⊥ aν, with gμν⊥ ¼ gμν − nμþnν− − nμ−nνþ. We consider
the following fully unintegrated quark-quark correlator:

W½Γ�
Λ0ΛðP;k̄;Δ;n−;ηÞ

¼ 1

2

Z
d4z
ð2πÞ4 e

ik̄·z

×

�
p0;Λ0

����T
�
ψ̄

�
−
z
2

�
ΓWn−ψ

�
z
2

������p;Λ
�
; ð2Þ

which depends on the initial (final) hadron light-front
helicity Λ (Λ0), and the following independent four-vectors:

(i) the average nucleon four-momentum P ¼
1
2
ðp0 þ pÞ;

(ii) the average quark four-momentum k̄ ¼ 1
2
ðk0 þ kÞ;

(iii) the four-momentum transfer Δ ¼ p0 − p ¼ k0 − k;
(iv) the lightlike four-vector n−.

The object Γ in Eq. (2) stands for any element of the basis
f1; γ5; γμ; γμγ5; iσμνγ5g in Dirac space. The Wilson contour
Wn− ≡Wð− z

2
; z
2
jηn−Þ ensures the color gauge invariance

of the correlators, connecting the points − z
2
and z

2
via the

intermediate points − z
2
þ η∞n− and z

2
þ η∞n−. The

parameter η ¼ � indicates whether the Wilson contour
is future pointing or past pointing. The four-vector n−
defines the light-front direction which allows one to
organize the structure of the correlator as an expansion
in ðMPþÞt−2, where t defines the operational twist [34].
Without loss of generality, we choose the z axis along
the ~nþ ¼ −~n− direction, i.e., n− ¼ 1ffiffi

2
p ð1; 0; 0;−1Þ and

nþ ¼ 1ffiffi
2

p ð1; 0; 0; 1Þ. Therefore, the light-front coordinates

of a generic four-vector a ¼ ½aþ; a−; a⊥� are given by
aþ ¼ 1ffiffi

2
p ða0 þ a3Þ, a− ¼ 1ffiffi

2
p ða0 − a3Þ, and a⊥ ¼ ða1; a2Þ.

Since the light-front quark energy is hard to measure, one
can focus on the k̄−-integrated version of Eq. (2),

W½Γ�
Λ0ΛðP; x; k̄⊥;Δ; n−; ηÞ

¼ 1

2

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·z

×

�
p0;Λ0

����ψ̄
�
−
z
2

�
ΓWn−ψ

�
z
2

�����p;Λ
�
; ð3Þ

where time ordering is not needed anymore and
k̄ ¼ ½xPþ; k̄−; k̄⊥�. The functions that parametrize this
correlator are called GTMDs and can be seen as the mother
distributions of GPDs and TMDs [13–15].

A. Helicity amplitudes and GTMD counting

In the following, we will restrict our discussion to
leading twist t ¼ 2, and we refer to [14,15] for a full
analysis up to twist-4. In the region x > ξ, with ξ ¼ − Δþ

2Pþ,
where the correlator (3) describes the emission of a quark
with momentum k and helicity λ from the nucleon and its
reabsorption with momentum k0 and helicity λ0, it is
convenient to introduce light-front helicity amplitudes
[35] according to

HΛ0λ0;ΛλðP; x; k̄⊥;Δ; n−; ηÞ
¼ hp0;Λ0jOλ0λðx; k̄⊥; n−; ηÞjp;Λi; ð4Þ

where in the chiral-even sector
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O��ðx; k̄⊥; n−; ηÞ ¼
1

2

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·zψ̄

�
−
z
2

�

× γþð1� γ5ÞWn−ψ

�
z
2

�
; ð5Þ

and in the chiral-odd sector

O�∓ðx; k̄⊥; n−; ηÞ ¼
1

2

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·zψ̄

�
−
z
2

�

× iσRðLÞþγ5Wn−ψ

�
z
2

�
; ð6Þ

with aRðLÞ ¼ a1 � ia2.
The light-front discrete symmetry1 and Hermiticity

constraints imply relations among these light-front helicity
amplitudes [15]:

Hermiticity HΛ0λ0;ΛλðP; x; k̄⊥;Δ; n−; ηÞ
¼ H�

Λλ;Λ0λ0 ðP; x; k̄⊥;−Δ; n−; ηÞ; ð7Þ

LF parity HΛ0λ0;ΛλðP; x; k̄⊥;Δ; n−; ηÞ
¼ H−Λ0−λ0;−Λ−λðPP; x; k̄⊥P;ΔP; n−; ηÞ; ð8Þ

LF time reversal HΛ0λ0;ΛλðP; x; k̄⊥;Δ; n−; ηÞ
¼ ð−1ÞΔlzH�

Λ0λ0;ΛλðPP; x; k̄⊥P;ΔP; n−;−ηÞ; ð9Þ

where aP ¼ ½aþ; a−; a⊥P� with a⊥P ¼ ð−a1; a2Þ, and
Δlz ¼ ðΛ − λÞ − ðΛ0 − λ0Þ.
There are 16 helicity configurations, but light-front

parity reduces the number of the independent ones to 8.
As discussed hereafter, each of these amplitudes can be
parametrized in terms of two independent Lorentz
structures multiplied by scalar functions X, leading to a
total of 16 independent functions, known as GTMDs. This
counting agrees with the conclusion drawn in Ref. [14]
based on a different but equivalent manifestly covariant
approach.
Let us now explain why there are two GTMDs associated

with each of the eight independent helicity amplitudes. The
GTMDs can only depend on variables that are invariant
under the transformations which preserve the light-front
vector n− up to a scaling factor, namely the kinematic
Lorentz transformations (the three light-front boosts and
the rotations about the z axis) and the light-front parity

transformation.2 From the independent four-vectors at our
disposal, these variables are3 ðx; ξ; κ2⊥; κ⊥ · D⊥;D2⊥Þ, where
κ⊥ ¼ k̄⊥ − xP⊥ andD⊥ ¼ Δ⊥ þ 2ξP⊥. By conservation of
the total angular momentum along the z direction, each
light-front helicity amplitude is associated with a definite
OAM transfer Δlz. Since there are only two frame-
independent (or intrinsic) transverse vectors available,
the general structure of a light-front helicity amplitude is
given in terms of explicit global powers of κ⊥ and D⊥,
accounting for the OAM transfer, multiplied by a scalar
function Xðx; ξ; κ2⊥; κ⊥ · D⊥;D2⊥; ηÞ. As explicitly dis-
cussed in Ref. [15], from two independent transverse
vectors, one can form only two independent Lorentz
structures associated with a given Δlz, or, equivalently,
light-front helicity amplitude.

B. GTMD parametrization

Since the GTMD counting is frame independent, we are
free to work in any frame. For convenience, we choose the
symmetric frame where the momenta are given by

P ¼ ½Pþ; P−; 0⊥�; k̄ ¼ ½xPþ; k̄−; k̄⊥�;
Δ ¼ ½−2ξPþ; 2ξP−;Δ⊥� ð10Þ

with P− ¼ M2þΔ2⊥=4
2ð1−ξ2ÞPþ, and the intrinsic transverse vectors

simply reduce to κ⊥ ¼ k̄⊥ and D⊥ ¼ Δ⊥. Restricting
ourselves to the chiral-even sector and using the para-
metrization in Ref. [14], the light-front helicity amplitudes
for ξ ¼ 0, Λ0 ¼ Λ ¼ � and λ0 ¼ λ ¼ � read

HΛλ;Λλ¼
1

2

	
F1;1þΛλG1;4þ

iðk̄⊥×Δ⊥Þz
M2

ðΛF1;4−λG1;1Þ


:

ð11Þ
Inverting this expression, we obtain for F1;4 and G1;1

iðk̄⊥ × Δ⊥Þz
M2

F1;4

¼ 1

2
½Hþþ;þþ þHþ−;þ− −H−þ;−þ −H−−;−−�; ð12Þ

−
iðk̄⊥ × Δ⊥Þz

M2
G1;1

¼ 1

2
½Hþþ;þþ −Hþ−;þ− þH−þ;−þ −H−−;−−�: ð13Þ

1The light-front parity and time-reversal transformations con-
sist of the ordinary parity and time-reversal transformations
followed by a π rotation about the y axis [36–38]. Contrary to
the ordinary discrete transformations, the light-front ones pre-
serve the light-front vector n−.

2For convenience, we do not include light-front time reversal at
this stage. The counting then leads to 16 complex-valued GTMDs
with no definite transformation properties under light-front time
reversal. Including light-front time reversal gives at the end 32
real-valued functions with definite transformation properties.
The parametrizations in Refs. [14,15] have been chosen such that
the real part of the GTMDs is (naive) T even and the imaginary
part is (naive) T odd.

3In general the GTMDs depend also on η.
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The function F1;4 describes how the longitudinal polari-
zation of the target distorts the unpolarized distribution of
quarks, whereas G1;1 describes how the longitudinal
polarization of quarks distorts their distribution inside an
unpolarized target [18].

III. THE TWO-BODY SCATTERING PICTURE

We are now in a position to address the criticism put
forward in Refs. [32,33]. In these papers it has been argued
that, based on parity arguments in a two-body scattering
picture, the functions F1;4 and G1;1 should not be included
in a twist-2 parametrization. This contradicts the findings of
Refs. [13–15,25] and the results obtained in explicit model
calculations [13,14,18,26]. In the following, we will go
along the arguments developed in Refs. [32,33] and explain
why they actually do not hold. We note essentially three
claims in Refs. [32,33]:
(1) The Lorentz structure associated with the function

F1;4 and appearing in the parametrization of the

correlator W½γþ�
Λ0Λ in Ref. [14],

ūðp0;Λ0Þ iσ
jkk̄j⊥Δk⊥
M2

uðp;ΛÞ ∝ h~SL · ð~̄k⊥ × ~Δ⊥Þi;
ð14Þ

is parity odd. In the center-of-mass (c.m.) frame, or
equivalently in the “lab” frame, with the p direction
chosen as the z direction, the net longitudinal polari-
zation defined in Eq. (14) is clearly a parity violating
term (pseudoscalar) under space inversion. This im-
plies that a measurement of single longitudinal polari-
zation asymmetries would violate parity conservation
in an ordinary two-body scattering process corre-
sponding to tree-level, twist-2 amplitudes.

(2) As one can see from Eqs. (12) and (13), the
functions F1;4 and G1;1 can be nonzero only when
the corresponding helicity amplitude combinations
are imaginary. Hence, these functions cannot have a
straightforward partonic interpretation. Moreover,
integrating e.g. Eq. (12) over k̄⊥ gives zero, meaning
that this term decouples from partonic angular
momentum sum rules.

(3) In the c.m. frame, where the hadron and quark
momenta are coplanar, there must be another inde-
pendent direction for the helicity amplitude combi-
nations associated with F1;4 and G1;1 to be nonzero.
That is provided by twist-3 amplitudes and corre-
sponding GTMDs.

Let us first discuss the parity property of the Lorentz
structure in Eq. (14). Parity is a frame-independent sym-
metry, and so does not depend on any particular frame.
Under an ordinary parity transformation, see for instance
Chapter 3.6 of Ref. [39], the structure in Eq. (14) becomes

ūðp0
P;Λ0

PÞ
iσjkk̄j⊥Δk⊥

M2
uðpP;ΛPÞ; ð15Þ

where ΛP and pP ¼ ðp0;−~pÞ are the parity-transformed
helicity and momentum. Clearly, the structure (14) does
not change sign under a parity transformation, and so is
parity even.4 This is consistent with the light-front helicity
amplitudes given in Eq. (11), where the structure (14)

contributes in the form Λ iðk̄⊥×Δ⊥Þz
M2 which is invariant under

light-front parity transformation. While it is true that the net

longitudinal polarization SL ¼ ~S · ~P=j~Pj is parity odd and
therefore cannot generate by itself a parity-conserving
single-spin asymmetry, it is actually multiplied in Eq. (14)

by ðk̄⊥ × Δ⊥Þz ¼ ð~̄k × ~ΔÞ · ~P=j~Pj, another parity-odd
quantity which is related to the quark OAM. Therefore,
the parity argument cannot be used to exclude the possible
connection between a single-spin asymmetry and the
function F1;4. The same is true for G1;1 using a similar
argument where the nucleon polarization is basically
replaced by the quark polarization. We agree that longi-
tudinal single-spin effects for elastic two-body scattering
are necessarily parity violating, but the two-body picture in
general cannot be used for the counting of GTMDs as we
explain in more detail below.
Now we move to the second claim. Contrary to TMDs

and GPDs, the GTMDs are complex-valued functions. The
two-body scattering picture does not incorporate any initial
or final-state interactions which, in particular, generate
(naive) T-odd effects described by the imaginary parts of
the GTMDs. This already shows that two-body scattering
could at best be applied to the real part of the GTMDs
which is (naive) T even. The fact that the real parts of F1;4
and G1;1 are related to imaginary helicity amplitude
combinations does not necessarily mean that these
GTMDs cannot have a straightforward partonic interpre-
tation. The same occurs in the GPD case, for instance,
where complex-valued helicity amplitudes do not spoil a
partonic interpretation of GPDs (see e.g. Ref. [5]). This can
also be understood from the partonic interpretation of the
distributions in impact-parameter space. As shown in
Ref. [18], which generalizes the work of Burkardt
[40,41] to phase space, the GTMDs in impact-parameter
space are obtained from the momentum-transfer space
through the following two-dimensional Fourier transform:

Xðx; k̄⊥; b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥Xðx; ξ ¼ 0; k̄⊥;Δ⊥Þ:

ð16Þ

4Note also that the structure (15) has no uncontracted index,
implying that its parity coincides with its intrinsic parity.
Since none of the only objects with odd intrinsic parity (i.e.
ϵμνρσ and γ5) is involved, the structure (15) is automatically parity
even.
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The Hermiticity property of the GTMD correlator guaran-
tees that the two-dimensional Fourier transform is real [26].
In particular, the impact-parameter space versions of F1;4
and G1;1 follow from the two-dimensional Fourier trans-
form of Eqs. (12) and (13),

−
ðk̄⊥ × ∂b⊥Þz

M2
F 1;4

¼ 1

2
½Hþþ;þþ þHþ−;þ− −H−þ;−þ −H−−;−−�; ð17Þ

ðk̄⊥ × ∂b⊥Þz
M2

G1;1

¼ 1

2
½Hþþ;þþ −Hþ−;þ− þH−þ;−þ −H−−;−−�: ð18Þ

In impact-parameter space, the helicity amplitude combi-
nations associated with F 1;4 and G1;1 are real, and so are
suitable for a partonic interpretation. Also, since the
GTMDs are functions of the transverse momenta via the
scalar combinations k̄2⊥, k̄⊥ · Δ⊥ andΔ2⊥, Eqs. (12) and (13)
give automatically zero in the limit jΔ⊥j ¼ 0 or by
integration over k̄⊥, implying that F1;4 and G1;1 do not
reduce to any GPD or TMD. However, this does not mean
that F1;4 decouples from partonic angular momentum sum
rules, since it has been shown independently in Refs. [18]
and [25] that the (gauge-invariant) quark canonical OAM of
Jaffe-Manohar [29] is actually given by the expression

lq
z ¼

Z
dxd2k̄⊥d2b⊥ðb⊥ × k̄⊥Þz

	
−
ðk̄⊥ × ∂b⊥Þz

M2
F 1;4




¼
Z

dxd2k̄⊥ðk̄⊥ × i∂Δ⊥Þz
	
iðk̄⊥ × Δ⊥Þz

M2
F1;4



jΔ⊥j¼0

¼ −
Z

dxd2k̄⊥
k̄2⊥
M2

F1;4ðx; 0; k̄2⊥; 0; 0; ηÞ; ð19Þ

which a priori has no reason to vanish. Similarly, the
amplitude associated with the GPD E vanishes in the limit
jΔ⊥j ¼ 0, but this does not mean that E should disappear
from the Ji relation for angular momentum [2].
Finally, we address the third claim. The helicity

amplitudes have been used several times in the literature
for the counting of independent functions associated with

a particular parton-parton correlator, see for instance
Refs. [15,34,35,42]. It is often considered convenient to
think of the correlator in Eq. (3) as representing a two-body
elastic scattering amplitude, see Fig. 1. The gauge link is
excluded from this picture, and so are initial and final-state
interactions, which eliminates also the η dependence. The
light-front parity constraint (8) can then be rewritten in the
form

H−Λ0−λ0;−Λ−λðP; x; k̄⊥;Δ; n−Þ
¼ ð−1ÞΔlzH�

Λ0λ0;ΛλðP; x; k̄⊥;Δ; n−Þ: ð20Þ

So, from the 16 possible helicity amplitudes only eight are
independent, in agreement with our general discussion in
Sec. II A. Although the counting is frame independent, the
authors of Refs. [32,33] chose to work for convenience in
the c.m. frame, or equivalently the lab frame, where all
momenta are coplanar. If one chooses the z axis to lie in the
scattering plane like in Refs. [32,33], one would then
conclude that there is only one frame-independent or
intrinsic transverse vector, and so the cross product ðk̄⊥ ×
Δ⊥Þz would simply give zero. For chiral-even, nonflip
amplitudes, instead of the four functions F1;1, F1;4, G1;1

and G1;4 introduced in Ref. [14], only F1;1 and G1;4 would
survive. However, as stressed by Diehl in Ref. [35], the
two-body scattering formulation is somewhat imprecise.
The HΛ0λ0;Λλ are not helicity amplitudes in the strict sense.
They contain, in particular, an explicit dependence on the
light-front vector ~n− which already defines the z direction.5

One cannot perform an arbitrary Lorentz transformation
that modifies this direction without changing at the same
time the definition of the GTMDs, and hence the canonical
twist expansion. In the most general configuration, ~n− does
not belong to the c.m. scattering plane (see Fig. 2).
Therefore, there are two independent intrinsic transverse
vectors at leading twist, namely κ⊥ andD⊥, allowing one to

(a) (b)

FIG. 1 (color online). (a) Representation of a GTMD in the region ξ < x < 1. (b) Quark-proton scattering amplitude.

5For a given scattering process, the four-vector n− can be
defined in terms of the physically relevant four-vectors. This
vector is independent of the three four-vectors one has in the
quark-nucleon scattering picture. In the case of deep-inelastic
scattering, for instance, it is the four-momentum of the exchanged
virtual gauge boson which provides another independent four-
vector. After factorization, even ordinary forward parton distri-
butions still know about n−.
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form the cross product ðκ⊥ × D⊥Þz which reduces to
ðk̄⊥ × Δ⊥Þz in the symmetric frame (10) used for the
parametrization of Ref. [14]. One does not need to invoke
higher twist to provide the missing direction. It is essential
to keep the explicit n− dependence, since otherwise one
would miss half of the allowed GTMDs, just like one would
obtain two chiral-odd GPDs [42] instead of four [35]. Note
also that applying the two-body scattering picture without
n− dependence to the TMD correlator, one would find
only three independent (naive) T-even functions f1ðx; k̄2⊥Þ,
g1Lðx; k̄2⊥Þ and h1ðx; k̄2⊥Þ instead of six, since k̄⊥ ¼ −Δ⊥ ¼
0⊥ in the c.m. frame with P⊥ ¼ 0⊥.

IV. PERTURBATIVE MODEL RESULTS

After the model-independent considerations in the pre-
vious two sections we now proceed to discuss the calcu-
lation of F1;4 and G1;1 in two spectator models—the scalar
diquark model and the quark-target model. In fact, in the
(parity-conserving) scalar diquark model nonzero results
for those two GTMDs were already presented in Ref. [14]
using a diagrammatic approach, but in view of the doubts
raised in [32,33] we reconsider the calculation here also in
the context of light-front quantization. Moreover, a set of
GTMDs including F1;4 and G1;1 was calculated in two
different relativistic light-front quark models in
Refs. [18,19], where it also turned out that both F1;4 and
G1;1 are nonvanishing. In Ref. [32] it is argued that “these
nonzero results are coming about from the kinematics or
from effective higher-twist components arising from
quarks’ confinement.” We disagree with this statement.
First, kinematics cannot be invoked to explain nonzero
results of existing calculations [18,19], since they were
performed using the representation of the GTMDs in terms
of LFWFs which are by definition/construction frame
independent. Moreover, using light-front quantization,
the quark correlation functions (4) entering the calculation
of F1;4 and G1;1 have a decomposition which involve
only the “good” light-front components of the fields, and
therefore correspond to pure twist-two contributions
(see, for example, Ref. [34]). In this context note also that

in spectator models the active partons are (spacelike) off
shell. However, this feature, which is not specific to the
calculation of GTMDs but rather holds even for ordinary
forward parton distributions, does not increase the counting
of independent twist-2 functions. Second, as we discuss in
this section, not only the scalar diquark model but also the
quark-target model predicts nonzero results for F1;4 and
G1;1. Both models being purely perturbative, this means
that “effective higher twist components arising from
quarks’ confinement” cannot be invoked to explain these
results.
That F1;4 and G1;1 are nonzero is a generic feature. They

are directly related to the amount of OAM and spin-orbit
correlations inside the target [18,25–28,31]. Vanishing F1;4
and G1;1 would therefore imply vanishing (canonical)
OAM and spin-orbit correlations. In order to further
solidify the relation between F1;4 and G1;1 and the spin/
orbital structure of the nucleon, we compute the canonical
OAM and spin-orbit correlations from the operator definition
in both the scalar diquark model and the quark-target model.
They are nonzero and satisfy the model-independent rela-
tions of Refs. [18,25,26,31]
For convenience, we will restrict the discussions in the

following to the case ξ ¼ 0.

A. Scalar diquark model

We calculate the matrix element in Eq. (3) in the scalar
diquark model, i.e., a Yukawa theory defined by the
Lagrangian (see also Appendix A in Ref. [43])

L ¼ Ψ̄Nði∂ −MÞΨN þ ψ̄ði∂ −mqÞψ
þ ð∂μϕ∂μϕ� −m2

s jϕj2Þ þ gsðψ̄ΨNϕ
� þ Ψ̄NψϕÞ; ð21Þ

where ΨN denotes the fermionic target field with mass M,
ψ the quark field with mass mq, and ϕ the scalar diquark
field with mass ms. To leading order in the coupling gs of
the Yukawa interaction, the time-ordered quark correlator
reads

�
p0;Λ0

����T
�
ψ̄α

�
−
z
2

�
ψβ

�
z
2

������p;Λ
�

¼ ig2s

Z
d4q
ð2πÞ4

½ū0ðq−mq−MÞ�α½ðq−mq−MÞu�β
Dq

e−iðP−qÞ·z

þOðg4sÞ; ð22Þ

where the denominator is Dq¼½q2−m2
sþ iϵ�½ðp0−qÞ2−

m2
qþ iϵ�½ðp−qÞ2−m2

qþ iϵ�, ū0 ¼ ūðp0;Λ0Þ and u¼uðp;ΛÞ.
This expression can be depicted by the diagram on the left
panel of Fig. 3. The diagram on the right panel of Fig. 3
represents the scalar diquark contribution corresponding to
the nonlocal correlator,

FIG. 2 (color online). Two-body elastic scattering picture in the
center-of-mass frame. In general, the vector ~n− does not belong to
the scattering plane.
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�
p0;Λ0

����T
�
ϕ�

�
−
z
2

�
ϕ

�
z
2

������p;Λ
�

¼ −ig2s
Z

d4q
ð2πÞ4

ū0ðqþmqÞu
Ds

e−iðP−qÞ·z þOðg4sÞ; ð23Þ

where the denominator is Ds ¼ ½q2 −m2
q þ iϵ�½ðp0 − qÞ2−

m2
s þ iϵ�½ðp − qÞ2 −m2

s þ iϵ�.
Let us start with the quark contribution to F1;4 which can

be extracted from the correlator

1

2

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·z

�
p0;Λ0

����ψ̄
�
−
z
2

�
γþψ

�
z
2

�����p;Λ
�
:

ð24Þ

Contracting Eq. (22) with γþ, performing the Fourier
transform from z space to k̄ space, and integrating over
k̄−, we find by comparison with the GTMD parametrization
of Ref. [14]:

Fq
1;4 ¼ −

g2s
2ð2πÞ3

ð1 − xÞ2M2

½k02⊥ þM2ðxÞ�½k2⊥ þM2ðxÞ� þOðg4sÞ;

ð25Þ
where

k0⊥ ¼ k̄⊥ þ ð1 − xÞΔ⊥
2

; ð26Þ

k⊥ ¼ k̄⊥ − ð1 − xÞΔ⊥
2

; ð27Þ

M2ðxÞ ¼ ð1 − xÞm2
q þ xm2

s − xð1 − xÞM2: ð28Þ

A similar calculation from the contraction of the correlator
(22) with γþγ5 leads to

Gq
1;1 ¼ −

g2s
2ð2πÞ3

ð1 − xÞ2M2

½k02⊥ þM2ðxÞ�½k2⊥ þM2ðxÞ� þOðg4sÞ:

ð29Þ

So, to leading order in the scalar diquark model one finds
Fq
1;4 ¼ Gq

1;1. The expressions in Eqs. (25) and (29) are in
full agreement with the (nonzero) results presented in
Ref. [14].
One may also study GTMDs with the scalar diquark

acting as parton, which was not yet done in [14]. Clearly,
the scalar diquark cannot contribute to G1;1 since this
GTMD requires the active parton to be polarized. The
scalar diquark contribution to F1;4 can be extracted from
the correlator

1

2

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·z

�
p0;Λ0

����ϕ�
�
−
z
2

�
i∂þ↔ ϕ

�
z
2

�����p;Λ
�
;

ð30Þ

where ϕ�ð− z
2
Þi∂þ↔ ϕðz

2
Þ ¼ ϕ�ð− z

2
Þ½i∂þϕðz

2
Þ� − ½i∂þϕð− z

2
Þ�

ϕðz
2
Þ ¼ 2i∂þ

z ½ϕ�ð− z
2
Þϕðz

2
Þ�. As a result, we obtain

Fs
1;4 ¼ −

g2s
2ð2πÞ3

xð1 − xÞM2

½k02⊥ þM2ð1 − xÞ�½k2⊥ þM2ð1 − xÞ�
þOðg4sÞ; ð31Þ

Gs
1;1 ¼ 0: ð32Þ

B. Quark-target model

We continue with the same strategy as above and
calculate the GTMDs in QCD for a quark target
jp;Λ; aii, where aiðfÞ is the color of the initial (final)
quark. Then, a first nontrivial perturbative expression for
the GTMDs can be extracted from the diagrams in Fig. 4.
We point out that, to the order in perturbation theory
considered here, virtual radiative corrections do not con-
tribute to F1;4 and G1;1. For the quark contribution,
we evaluate the following matrix element in perturba-
tive QCD,

FIG. 3 (color online). Leading-order diagrams in the scalar diquark model for the matrix element in Eq. (22) (left panel) and in Eq. (23)
(right panel).
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�
p0;Λ0; af

����T
�
ψ̄α

�
−
z
2

�
Wn−ψβ

�
z
2

������p;Λ; ai
�

¼ −4πiCFαSδaiaf

Z
d4q
ð2πÞ4

dμνðq; n−Þ½ū0γμðp0 − qþmqÞ�α½ðp − qþmqÞγνu�β
Dq

e−iðP−qÞ·z

þ t channelþOðα2SÞ; ð33Þ

where the denominator is Dq ¼ ½q2 þ iϵ�½ðp0 − qÞ2 −m2
q þ iϵ�½ðp − qÞ2 −m2

q þ iϵ�, and CF ¼ ðN2
c − 1Þ=2Nc ¼ 4=3.

We work in the light-front gauge Aþ ¼ 0, and so the numerator of the gluon propagator reads

dμνðq; n−Þ ¼ gμν −
qμnν− þ qνnμ−

q · n−
: ð34Þ

For the gluon contribution, the correlator in perturbative QCD takes the form

�
p0;Λ0; af

����T
�
A⊥ρ

�
−
z
2

�
Wn−A⊥σ

�
z
2

�
Wn−

�����p;Λ; ai
�

¼ 4πiCFαSδaiaf

Z
d4q
ð2πÞ4

dμρðp0 − q; n−Þdνσðp − q; n−Þ½ū0γμðqþmqÞγνu�
Dg

e−iðP−qÞ·z

þ t channelþOðα2SÞ; ð35Þ

where the denominator is Dg¼½q2−m2
qþiϵ�½ðp0−qÞ2þiϵ�

½ðp−qÞ2þiϵ�.
When computing GTMDs only the u-channel graphs on

the left in Fig. 4 survive. The t-channel graphs vanish at this
step for actually two reasons: first due to kinematics, and
second after proper color averaging needed for the calcu-
lation of GTMDs. Once again, we start with the quark
contribution to F1;4 which can be extracted from the
correlator

1

2

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·z

×

�
p0;Λ0; af

����ψ̄
�
−
z
2

�
γþWn−ψ

�
z
2

�����p;Λ; ai
�
: ð36Þ

By comparison with the GTMD parametrization of
Ref. [14] we find

Fq
1;4 ¼

CFαS
2π2

ð1 − x2Þm2
q

½k02⊥ þ ð1 − xÞ2m2
q�½k2⊥ þ ð1 − xÞ2m2

q�
þOðα2SÞ: ð37Þ

Similarly, replacing γþ in Eq. (36) by γþγ5, we find for the
quark contribution to G1;1:

Gq
1;1 ¼ −

CFαS
2π2

ð1 − x2Þm2
q

½k02⊥ þ ð1 − xÞ2m2
q�½k2⊥ þ ð1 − xÞ2m2

q�
þOðα2SÞ: ð38Þ

Therefore, to leading order in the quark-target model one
finds Fq

1;4 ¼ −Gq
1;1.

6 The fact that one gets the opposite
relation between Fq

1;4 and Gq
1;1 in the quark-target model

compared to the scalar diquark model is easy to understand
from a mathematical point of view. In the quark-target
model there is an extra Dirac matrix to anticommute with γ5

FIG. 4 (color online). Leading-order diagrams in the quark-
target model (in light-front gauge) for the matrix element in
Eq. (33) (upper row) and in Eq. (35) (lower row). Note that for the
amplitude in (35) we only consider diagrams which eventually
could contribute to gluon GTMDs for x ∈ ½0; 1�.

6The results in Eqs. (37) and (38) have been confirmed also in
Ref. [44].
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compared to the scalar diquark model, leading to an extra
minus sign in the relation between Fq

1;4 and Gq
1;1.

Now, the gluon contribution to F1;4 can be extracted
from the correlator

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·z

�
p0;Λ0; af

���� − 2gρσ⊥ Tr
	
A⊥ρ

�
−
z
2

�

×Wn−A⊥σ

�
z
2

�
Wn−


����p;Λ; ai
�
: ð39Þ

As a result, we obtain for x ∈ ½0; 1�

Fg
1;4 ¼

CFαS
2π2

ð1 − xÞð2 − xÞm2
q

½k02⊥ þ x2m2
q�½k2⊥ þ x2m2

q�
þOðα2SÞ: ð40Þ

Similarly, the gluon contribution to G1;1 can be extracted
from the correlator

Z
dk̄−

Z
d4z
ð2πÞ4 e

ik̄·z

�
p0;Λ0; af

���� − 2iϵρσ⊥ Tr

	
A⊥ρ

�
−
z
2

�

×Wn−A⊥σ

�
z
2

�
Wn−


����p;Λ; ai
�
; ð41Þ

where ϵρσ⊥ ¼ ϵρσnþn− with ϵ0123 ¼ þ1. This leads us to

Gg
1;1 ¼ −

CFαS
2π2

1 − x
x

½ð1 − xÞ2 þ 1�m2
q

½k02⊥ þ x2m2
q�½k2⊥ þ x2m2

q�
þOðα2SÞ:

ð42Þ

Obviously, in the quark-target model F1;4 and G1;1 are
nonzero for both quarks and gluons. We performed the
calculation of those objects also in Feynman gauge and
found the same results. Note that in Feynman gauge, in the
case of quark GTMDs, one also needs to take into account
contributions due to the gauge link of the GTMD correlator
(see also Ref. [43]). While in general those terms matter for
GTMDs, the explicit calculation shows that they do not
contribute to F1;4 and G1;1 through OðαSÞ, if one works
with either future-pointing or past-pointing Wilson lines as
we do. This also demonstrates, in the context of a model
calculation, that the real part of those two GTMDs does not
depend on the direction of the gauge contour.

C. Canonical orbital angular momentum
and spin-orbit correlation

Following the same diagrammatic approach, we now
calculate the canonical OAM. The corresponding operators
for quarks, scalar diquarks and gluons with momentum
fraction x ∈ ½0; 1� are given in the light-front gauge by

Ôq
lz
ðx; r−; r⊥Þ

≡ 1

2

Z
dz−

2π
eixP

þz−
	
ψ̄

�
r− −

z−

2
; r⊥

�

× γþðr⊥ × i∂⊥Þzψ
�
r− þ z−

2
; r⊥

�

þ H:c:; ð43Þ

Ôs
lzðx; r−; r⊥Þ

≡
Z

dz−

2π
eixP

þz−
	
∂þϕ�

�
r− −

z−

2
; r⊥

�
ðr⊥ × ∂⊥Þzϕ

×

�
r− þ z−

2
; r⊥

�

þ H:c:; ð44Þ

Ôg
lz
ðx; r−; r⊥Þ

≡ −
Z

dz−

2π
eixP

þz−2gρσ⊥ Tr

	
∂þA⊥ρ

�
r− −

z−

2
; r⊥

�

× ðr⊥ × ∂⊥ÞzA⊥σ

�
r− þ z−

2
; r⊥

�

þ H:c: ð45Þ

We calculate also the canonical spin-orbit correlation
[18,31], where the corresponding operators for quarks
and gluons are given by7

Ôq
Cz
ðx; r−; r⊥Þ

≡ 1

2

Z
dz−

2π
eixP

þz−
	
ψ̄

�
r− −

z−

2
; r⊥

�

× γþγ5ðr⊥ × i∂⊥Þzψ
�
r− þ z−

2
; r⊥

�

þ H:c:; ð46Þ

Ôg
Cz
ðx; r−; r⊥Þ

≡ −
Z

dz−

2π
eixP

þz−2iϵρσ⊥ Tr

	
∂þA⊥ρ

�
r− −

z−

2
; r⊥

�

× ðr⊥ × ∂⊥ÞzA⊥σ

�
r− þ z−

2
; r⊥

�

þ H:c: ð47Þ

Because of the explicit factor r⊥, one has to be careful when
considering the expectation value of these operators
[23,45,46]:

lq;s;g
z ðxÞ≡ lim

Δ→0

Pþ R dr− R d2r⊥hp0;ΛjÔq;s;g
lz

ðx;r−;r⊥Þjp;Λi
hp0;Λjp;Λi ;

ð48Þ

7As already mentioned in Sec. IVA, scalar diquarks obviously
cannot have a spin-orbit correlation.
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Cq;g
z ðxÞ≡ lim

Δ→0

Pþ R
dr−

R
d2r⊥hp0;ΛjÔq;g

Cz
ðx; r−; r⊥Þjp;Λi

hp0;Λjp;Λi :

ð49Þ

Using the leading-order expressions (22) and (23) for the
correlators in the scalar diquark model we obtain

lq
z ðxÞ ¼ g2s

2ð2πÞ3
Z

d2k̄⊥
ð1 − xÞ2k̄2⊥

½k̄2⊥ þM2ðxÞ�2 þOðg4sÞ; ð50Þ

ls
zðxÞ ¼

g2s
2ð2πÞ3

Z
d2k̄⊥

xð1 − xÞk̄2⊥
½k̄2⊥ þM2ð1 − xÞ�2 þOðg4sÞ; ð51Þ

Cq
z ðxÞ ¼ −

g2s
2ð2πÞ3

Z
d2k̄⊥

ð1 − xÞ2k̄2⊥
½k̄2⊥ þM2ðxÞ�2 þOðg4sÞ: ð52Þ

We note that the result for lq
z in Eq. (50) can already be

found in Ref. [47]. Comparing the expressions in (50)–(52)
with Eqs. (25), (29), and (31) we see that

lq;s
z ðxÞ ¼ −

Z
d2k̄⊥

k̄2⊥
M2

Fq;s
1;4ðx; 0; k̄2⊥; 0; 0Þ; ð53Þ

Cq
z ðxÞ ¼

Z
d2k̄⊥

k̄2⊥
M2

Gq
1;1ðx; 0; k̄2⊥; 0; 0Þ; ð54Þ

which is an explicit check of the model-independent
relations8 of Refs. [18,25,26,31]. Since in the scalar diquark
model Fq

1;4 ¼ Gq
1;1, we have the result lq

z ¼ −Cq
z . If we

now denote the quark momentum fraction by x, the total
OAM simply reads

lzðxÞ ¼ lq
z ðxÞ þ ls

zð1 − xÞ

¼ g2s
2ð2πÞ3

Z
d2k̄⊥

ð1 − xÞk̄2⊥
½k̄2⊥ þM2ðxÞ�2 þOðg4sÞ; ð55Þ

and we have

lq
z ðxÞ ¼ ð1 − xÞlzðxÞ; ð56Þ

ls
zð1 − xÞ ¼ xlzðxÞ; ð57Þ

in agreement with the discussion in Refs. [47,48].
Of course such simple relations between partial and total
OAM hold only for a two-body system.
Similarly, using the leading-order expressions (33) and

(35) for the correlators in the quark-target model, we obtain

lq
z ðxÞ ¼ −

CFαS
2π2

Z
d2k̄⊥

ð1 − x2Þk̄2⊥
½k̄2⊥ þ ð1 − xÞ2m2

q�2
þOðα2SÞ;

ð58Þ

lg
zðxÞ ¼ −

CFαS
2π2

Z
d2k̄⊥

ð1 − xÞð2 − xÞk̄2⊥
½k̄2⊥ þ x2m2

q�2
þOðα2SÞ; ð59Þ

Cq
z ðxÞ ¼ −

CFαS
2π2

Z
d2k̄⊥

ð1 − x2Þk̄2⊥
½k̄2⊥ þ ð1 − xÞ2m2

q�2
þOðα2SÞ;

ð60Þ

Cg
zðxÞ ¼ −

CFαS
2π2

Z
d2k̄⊥

1 − x
x

½ð1 − xÞ2 þ 1�k̄2⊥
½k̄2⊥ þ x2m2

q�2
þOðα2SÞ:

ð61Þ

In the quark-target model, the canonical OAM in Eqs. (58)
and (59) for quarks and gluons was studied for the first
time in Ref. [48] with a focus on the ultraviolet-divergent
part (see also Ref. [47]). Comparing the expressions in
(58)–(61) with Eqs. (37), (38), (40), and (42), we see that

lq;g
z ðxÞ ¼ −

Z
d2k̄⊥

k̄2⊥
m2

q
Fq;g
1;4ðx; 0; k̄2⊥; 0; 0Þ; ð62Þ

Cq;g
z ðxÞ ¼

Z
d2k̄⊥

k̄2⊥
m2

q
Gq;g

1;1ðx; 0; k̄2⊥; 0; 0Þ; ð63Þ

which is another explicit check of the model-independent
relations of Refs. [18,25,26,31]. Since in the quark-target
model Fq

1;4 ¼ −Gq
1;1, we find now lq

z ¼ Cq
z. If we again

denote the quark momentum fraction by x, the total OAM
reads

lzðxÞ ¼ lq
z ðxÞ þ lg

zð1 − xÞ

¼ −
CFαS
2π2

Z
d2k̄⊥

ð1þ xÞk̄2⊥
½k̄2⊥ þ ð1 − xÞ2m2

q�2
þOðα2SÞ;

ð64Þ

and we have

lq
z ðxÞ ¼ ð1 − xÞlzðxÞ; ð65Þ

lg
zð1 − xÞ ¼ xlzðxÞ: ð66Þ

We note in passing that the quark OAM defined through
F1;4 is the same for a future-pointing and for a past-pointing
gauge contour of the GTMDs [see the paragraph after
Eq. (42)]. This result was already put forward in Ref. [25],
and, to the best of our knowledge, we have now verified it
for the first time explicitly in a model calculation.

8Note that in Refs. [18,25,26,31] the relation between the
canonical OAM and the GTMD F1;4 is integrated over x for
convenience. Since this integration does not affect the derivation,
the relation remains valid at the x-density level.
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V. OVERLAP REPRESENTATION

The results obtained in Sec. IV using a diagrammatic
approach within the scalar diquark model and the quark-
target model can also be derived in a straightforward
way by using the overlap representation in terms of
LFWFs. As the LFWFs are eigenstates of the canonical
OAM operator, in this approach the results for the OAM
and the spin-orbit correlations have a transparent and
intuitive interpretation.

A. Scalar diquark model

In the scalar diquark model, to lowest nontrivial order in
perturbation theory, the quark LFWFs ψΛ

λ read

ψ↑
↑ðx; k⊥Þ ¼

mq þ xM

x
ϕðx; k2⊥Þ; ð67Þ

ψ↑
↓ðx; k⊥Þ ¼ −

kR

x
ϕðx; k2⊥Þ; ð68Þ

with f↑;↓g ¼ fþ 1
2
;− 1

2
g, and

ϕðx; k2⊥Þ ¼
gsffiffiffiffiffiffiffiffiffiffiffi
1 − x

p 1

M2 − k2⊥þm2
q

x − k2⊥þm2
s

1−x

¼ −
gsffiffiffiffiffiffiffiffiffiffiffi
1 − x

p xð1 − xÞ
k2⊥ þM2ðxÞ : ð69Þ

The LFWFs with opposite nucleon helicity follow directly
from light-front parity and time-reversal symmetries
according to

ψΛ
λ ðx; k⊥Þ ¼ ψ−Λ

−λ ðx; k⊥PÞ ¼ ð−1Þlzψ−Λ�
−λ ðx; k⊥Þ; ð70Þ

with lz ¼ Λ − λ the total OAM associated with the LFWF
ψΛ
λ . The corresponding scalar diquark LFWFs are simply

obtained by replacing the argument ðx; k⊥Þ of the quark
LFWFs by ðx̂; k̂⊥Þ ¼ ð1 − x;−k⊥Þ, owing to momentum
conservation.
The LFWF overlap representation of the quark contri-

bution to F1;4 and G1;1 at ξ ¼ 0 is then given by

iðk̄⊥ × Δ⊥Þz
M2

Fq
1;4 ¼

1

2ð2πÞ3
1

2

X
Λ;λ

signðΛÞ

× ½ψΛ�
λ ðx; k0⊥ÞψΛ

λ ðx; k⊥Þ�

¼ i
2ð2πÞ3 Im½ψ↑�

↓ ðx; k0⊥Þψ↑
↓ðx; k⊥Þ�; ð71Þ

−
iðk̄⊥ × Δ⊥Þz

M2
Gq

1;1 ¼
1

2ð2πÞ3
1

2

X
Λ;λ

signðλÞ

× ½ψΛ�
λ ðx; k0⊥ÞψΛ

λ ðx; k⊥Þ�

¼ −
i

2ð2πÞ3 Im½ψ↑�
↓ ðx; k0⊥Þψ↑

↓ðx; k⊥Þ�:

ð72Þ

From Eqs. (71) and (72), we immediately see that Fq
1;4 ¼

Gq
1;1 as already observed in Sec. IVA. For the scalar

diquark contributions, we obviously have

iðk̄⊥ × Δ⊥Þz
M2

Fs
1;4 ¼

1

2ð2πÞ3
1

2

X
Λ;λ

signðΛÞ

× ½ψΛ�
λ ðx̂; k̂0⊥ÞψΛ

λ ðx̂; k̂⊥Þ�

¼ i
2ð2πÞ3 Im½ψ↑�

↓ ðx̂; k̂0⊥Þψ↑
↓ðx̂; k̂⊥Þ�;

ð73Þ

−
iðk̄⊥ × Δ⊥Þz

M2
Gs

1;1 ¼ 0: ð74Þ

Using the explicit expressions (67) and (68) for the quark
LFWFs in the scalar diquark model, we reproduce the
results of Sec. IVA.
Since the “parton” OAM is simply given by ð1 − xÞ

times the total OAM in a two-body system [47,48], we can
easily write down the overlap representation of the canoni-
cal OAM and spin-orbit correlation for the quark,

lq
z ðxÞ ¼ ð1 − xÞ

Z
d2k̄⊥
2ð2πÞ3

1

2

X
Λ;λ

signðΛÞlzjψΛ
λ ðx; k̄⊥Þj2

¼ ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3 jψ

↑
↓ðx; k̄⊥Þj2; ð75Þ

Cq
z ðxÞ ¼ ð1 − xÞ

Z
d2k̄⊥
2ð2πÞ3

1

2

X
Λ;λ

signðλÞlzjψΛ
λ ðx; k̄⊥Þj2

¼ −ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3 jψ

↑
↓ðx; k̄⊥Þj2; ð76Þ

and the scalar diquark,

ls
zðxÞ ¼ ð1 − xÞ

Z
d2 ˆ̄k⊥
2ð2πÞ3

1

2

X
Λ;λ

signðΛÞlzjψΛ
λ ðx̂; ˆ̄k⊥Þj2

¼ ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3 jψ

↑
↓ð1 − x; k̄⊥Þj2; ð77Þ

Cs
zðxÞ ¼ 0: ð78Þ

The relation lq
z ¼ −Cq

z can now be readily understood in
physical terms. In the scalar diquark model, the total OAM
associated with a LFWF lz ¼ Λ − λ is necessarily corre-
lated with the nucleon helicity Λ and anticorrelated with
the quark helicity λ by angular momentum conservation.
The parton OAM being simply ð1 − xÞ times the total
OAM, we have automatically lq

z ¼ −Cq
z > 0 and ls

z > 0.
Finally, we have
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Im½ψ↑�
↓ ðx; k0⊥Þψ↑

↓ðx; k⊥Þ� ¼ −ð1 − xÞ ðk̄⊥ × Δ⊥Þz
k̄2⊥

× jψ↑
↓ðx; k̄⊥Þj2 þOðΔ2⊥Þ; ð79Þ

from which follow Eqs. (53) and (54).

B. Quark-target model

In the quark-target model, the quark LFWF is given by
[48–51]

ψΛ
λ;μðx; k⊥Þ ¼ Φðx; k2⊥Þχ†λ

×

	
−2

k⊥
1 − x

−
~σ⊥ · k⊥

x
~σ⊥ þ imq ~σ⊥

1 − x
x




· ϵ�⊥ðμÞχΛ; ð80Þ

where ~σ1 ¼ σ2 and ~σ2 ¼ −σ1, the polarization vectors are
defined as ϵ⊥ðμ ¼ þ1Þ ¼ − 1ffiffi

2
p ð1; iÞ and ϵ⊥ðμ ¼ −1Þ ¼ 1ffiffi

2
p

ð1;−iÞ, and

Φðx; k2⊥Þ ¼
gTffiffiffiffiffiffiffiffiffiffiffi
1 − x

p xð1 − xÞ
k2⊥ þ ð1 − xÞ2m2

q
; ð81Þ

with T a color-SUð3Þ generator. Specifying the helicity
state in Eq. (80), one obtains

ψ↑
↑;⇑ðx; k⊥Þ ¼

ffiffiffi
2

p
kL

xð1 − xÞΦðx; k
2⊥Þ; ð82Þ

ψ↑
↓;⇑ðx; k⊥Þ ¼

ffiffiffi
2

p
mqð1 − xÞ

x
Φðx; k2⊥Þ; ð83Þ

ψ↑
↑;⇓ðx; k⊥Þ ¼ −

ffiffiffi
2

p
kR

1 − x
Φðx; k2⊥Þ; ð84Þ

ψ↑
↓;⇓ðx; k⊥Þ ¼ 0; ð85Þ

with f⇑;⇓g ¼ fþ1;−1g. Once again, the LFWFs with
opposite nucleon helicity follow directly from light-front
parity and time-reversal9 symmetries, namely,

ψΛ
λ;μðx; k⊥Þ ¼ ψ−Λ

−λ;−μðx; k⊥PÞ ¼ ð−1Þlzψ−Λ�
−λ;−μðx; k⊥Þ;

ð86Þ
with lz ¼ Λ − λ − μ the total OAM associated with the
LFWF ψΛ

λ;μ. The corresponding gluon LFWFs are simply
obtained by replacing the argument ðx; k⊥Þ of the quark
LFWFs by ðx̂; k̂⊥Þ ¼ ð1 − x;−k⊥Þ, owing to momentum
conservation.

The LFWF overlap representation of the quark contri-
bution to F1;4 and G1;1 is

iðk̄⊥ × Δ⊥Þz
m2

q
Fq
1;4 ¼

1

2ð2πÞ3
1

2

X
Λ;λ;μ

signðΛÞ

× ½ψΛ�
λ;μðx; k0⊥ÞψΛ

λ;μðx; k⊥Þ�

¼ i
2ð2πÞ3

X
μ

Im½ψ↑�
↑;μðx; k0⊥Þψ↑

↑;μðx; k⊥Þ�;

ð87Þ
−
iðk̄⊥ × Δ⊥Þz

m2
q

Gq
1;1 ¼

1

2ð2πÞ3
1

2

X
Λ;λ;μ

signðλÞ

× ½ψΛ�
λ;μðx; k0⊥ÞψΛ

λ;μðx; k⊥Þ�

¼ i
2ð2πÞ3

X
μ

Im½ψ↑�
↑;μðx; k0⊥Þψ↑

↑;μðx; k⊥Þ�:

ð88Þ

From Eqs. (87) and (88), we immediately see that Fq
1;4 ¼

−Gq
1;1 in agreement with the observation in Sec. IV B.

Likewise, for the gluon contribution we have

iðk̄⊥ × Δ⊥Þz
m2

q
Fg
1;4 ¼

1

2ð2πÞ3
1

2

X
Λ;λ;μ

signðΛÞ

× ½ψΛ�
λ;μðx̂; k̂0⊥ÞψΛ

λ;μðx̂; k̂⊥Þ�

¼ i
2ð2πÞ3

X
μ

Im½ψ↑�
↑;μðx̂; k̂0⊥Þψ↑

↑;μðx̂; k̂⊥Þ�;

ð89Þ
−
iðk̄⊥ × Δ⊥Þz

m2
q

Gg
1;1 ¼

1

2ð2πÞ3
1

2

X
Λ;λ;μ

signðμÞ

× ½ψΛ�
λ;μðx̂; k̂0⊥ÞψΛ

λ;μðx̂; k̂⊥Þ�

¼ i
2ð2πÞ3

X
μ

signðμÞ

× Im½ψ↑�
↑;μðx̂; k̂0⊥Þψ↑

↑;μðx̂; k̂⊥Þ�: ð90Þ

Using the explicit expressions (82)–(85) for the quark
LFWFs in the quark-target model, we reproduce the results
of Sec. IV B.
We can also easily write down the overlap representation

of the canonical OAM and spin-orbit correlation for the
quark,

lq
z ðxÞ ¼ ð1 − xÞ

Z
d2k̄⊥
2ð2πÞ3

1

2

X
Λ;λ;μ

signðΛÞlzjψΛ
λ;μðx; k̄⊥Þj2

¼ −ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3

X
μ

signðμÞjψ↑
↑;μðx; k̄⊥Þj2;

ð91Þ

9Note that the LFWFs here, in principle, could also depend on
η due to initial/final-state interactions. However, as already
discussed in Sec. IV B, such potential effects are not relevant
for the present study.
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Cq
z ðxÞ ¼ ð1 − xÞ

Z
d2k̄⊥
2ð2πÞ3

1

2

X
Λ;λ;μ

signðλÞlzjψΛ
λ;μðx; k̄⊥Þj2

¼ −ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3

X
μ

signðμÞjψ↑
↑;μðx; k̄⊥Þj2;

ð92Þ

and the gluon

lg
zðxÞ ¼ ð1 − xÞ

Z
d2 ˆ̄k⊥
2ð2πÞ3

1

2

X
Λ;λ;μ

signðΛÞlzjψΛ
λ;μðx̂; ˆ̄k⊥Þj2

¼ −ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3

X
μ

signðμÞjψ↑
↑;μð1 − x; k̄⊥Þj2;

ð93Þ

Cg
zðxÞ ¼ ð1 − xÞ

Z
d2 ˆ̄k⊥
2ð2πÞ3

1

2

X
Λ;λ;μ

signðμÞlzjψΛ
λ;μðx̂; ˆ̄k⊥Þj2

¼ −ð1 − xÞ
Z

d2k̄⊥
2ð2πÞ3

X
μ

jψ↑
↑;μð1 − x; k̄⊥Þj2: ð94Þ

The overlap representation provides an intuitive under-
standing of the relation lq

z ¼ Cq
z . In the quark-target model,

it turns out that only the LFWFs with correlated target and
quark helicities contribute to the total OAM. The quark
OAM being simply ð1 − xÞ times the total OAM, we have
automatically lq

z ¼ Cq
z. Moreover, for correlated target and

quark helicities we have lz ¼ −μ which implies Cg
z < 0.

Finally, we have

Im½ψ↑�
↑;μðx; k0⊥Þψ↑

↑;μðx; k⊥Þ�

¼ ð1 − xÞ ðk̄⊥ × Δ⊥Þz
k̄2⊥

× signðμÞjψ↑
↑;μðx; k̄⊥Þj2 þOðΔ2⊥Þ; ð95Þ

from which follow Eqs. (62) and (63).

VI. PERTURBATIVE TAIL OF THE GTMDS

In this section we present results forF1;4 andG1;1 at large
transverse parton momenta, where they can be computed in

perturbative QCD. For simplicity we restrict the analysis to
the real part of the GTMDs. Details of a corresponding
calculation of the large-k̄⊥ behavior of TMDs can be found
in Ref. [52]. Here we generalize these calculations to
nonzero momentum transfer to the nucleon. Like in
Sec. IV B, we have used both the light-front gauge Aþ ¼
0 and the Feynman gauge and have obtained the same
results.
While for the quark we consider the correlator in Eq. (2),

for the gluon we have

Wμν;ρσ
Λ0Λ ðP; k̄;Δ; n−Þ ¼

1

k̄þ

Z
d4z
ð2πÞ4 e

ik̄·z

×

�
p0;Λ0

����T
�
2Tr

	
Gμν

�
−
z
2

�

×Wn−G
ρσ

�
z
2

�
Wn−


�����p;Λ
�
: ð96Þ

For the calculation of F1;4 and G1;1 through OðαSÞ the
lightlike Wilson lines in those correlators do not give rise to
the infamous light-cone singularities. In fact, we have also
performed a study with Wilson lines that are slightly off the
light cone, and in the end one can take the lightlike limit
without encountering a divergence. This no longer neces-
sarily holds for other GTMDs at large transverse momenta.
In the light-front gauge, the large-k̄⊥ behavior of the

quark GTMDs is described perturbatively by the two
diagrams on the right of Fig. 5. Expressing them by means
of Feynman rules leads to the following formula:

W½Γ�
Λ0ΛðP; x; k̄⊥;Δ; n−Þ

¼jk̄⊥j≫ΛQCD − i4παS

Z
d4l
ð2πÞ4

Z
dk̄−

×
CFI

½Γ�
q þ TRI

½Γ�
g

½ðl̄ − k̄Þ2 þ iϵ�½k02 þ iϵ�½k2 þ iϵ� þOðα2sÞ; ð97Þ

where

I½Γ�q ¼ 1

4

X
j

dμνðl̄ − k̄; n−ÞTr½γνk0ΓkγμΓj�W½Γj�
Λ0ΛðP; l̄;Δ; n−Þ;

ð98Þ
I½Γ�g ¼ 1

2
Tr½kγσðk̄ − lÞγνk0Γ�

1

l0þlþ
Wþν;þσ

Λ0Λ ðP; l̄;Δ; n−Þ;
ð99Þ

FIG. 5 (color online). Diagrams determining the leading order of quark GTMDs at large transverse momenta.
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with l0 ¼ l̄þ Δ
2
(k0 ¼ k̄þ Δ

2
), l ¼ l̄ − Δ

2
(k ¼ k̄ − Δ

2
), and the polarization sum dμν from Eq. (34). We then apply the collinear

approximation for the momentum l̄ ≈ ½xz Pþ; 0; 0⊥� in the hard scattering part, which can be done if we assume that
the average proton momentum P has a large plus component Pþ. Accordingly, we take into account only the leading chiral-
even traces with Γj ¼ fγþ; γþγ5g and Γj ¼ fγ−;−γ−γ5g in the Fierz transformation. We skip the details of the calculation,
which are similar to the ones in Ref. [52], and directly give the results for the large-k̄⊥ behavior of Fq

1;4 and Gq
1;1

at ξ ¼ 0:

Fq
1;4 ¼

αS
2π2

Z
1

x

dz
z

M2½CF
~Hqðxz ; 0;−Δ2⊥Þ − TRð1 − zÞ2 ~Hgðxz ; 0;−Δ2⊥Þ�
½k02⊥ þ zð1 − zÞ Δ2⊥

4
�½k2⊥ þ zð1 − zÞ Δ2⊥

4
�

; ð100Þ

Gq
1;1 ¼ −

αS
2π2

�Z
1

x

dz
z

M2½CFHqðxz ; 0;−Δ2⊥Þ þ TRð1 − zÞ2Hgðxz ; 0;−Δ2⊥Þ�
½k02⊥ þ zð1 − zÞ Δ2⊥

4
�½k2⊥ þ zð1 − zÞ Δ2⊥

4
�

−
Z

1

x

dz
z

Δ2⊥
4
TRzð1 − zÞð2 ~Hg

T þ Eg
TÞðxz ; 0;−Δ2⊥Þ

½k02⊥ þ zð1 − zÞ Δ2⊥
4
�½k2⊥ þ zð1 − zÞ Δ2⊥

4
�

�
; ð101Þ

with TR ¼ 1
2
. Here we follow the GPD conventions of Ref. [5].

Similarly, the large-k̄⊥ behavior of the gluon GTMDs is described perturbatively by the two diagrams on the right of
Fig. 6. Expressing them by means of Feynman rules leads to the following formula:

1

l0þlþ
Wþν;þσ

Λ0Λ ðP; x; k̄⊥;Δ; n−Þ ¼jk̄⊥j≫ΛQCD − i4παS

Z
d4l
ð2πÞ4

Z
dk̄−

CFIνσq þ CAIνσg
½ðl̄ − k̄Þ2 þ iϵ�½k02 þ iϵ�½k2 þ iϵ� þOðα2sÞ; ð102Þ

where

Iνσq ¼ 1

2

X
j

dνν
0 ðk0; n−Þdσσ0 ðk; n−ÞTr½γν0 ðk̄ − l̄Þγσ0Γj�W½Γj�

Λ0ΛðP; l̄;Δ; n−Þ; ð103Þ

Iνσg ¼ dνν
0 ðk0; n−Þdσ0σðk; n−Þdττ0 ðl − k; n−ÞV1;σ0τβV2;ν0τ0α

1

l0þlþ
Wþα;þβ

Λ0Λ ðP; l̄;Δ; n−Þ; ð104Þ

with

V1;σ0τβ ¼ gσ0τðl − 2kÞβ þ gτβðk − 2lÞσ0 þ gβσ0 ðlþ kÞτ; ð105Þ

V2;ν0τ0α ¼ gτ0ν0 ðl0 − 2k0Þα þ gατ0 ðk0 − 2l0Þν0 þ gν0αðl0 þ k0Þτ0 : ð106Þ

We then find for the large-k̄⊥ behavior of Fg
1;4 and Gg

1;1 at ξ ¼ 0 and for x ≥ 0:

Fg
1;4 ¼

αS
2π2

Z
1

x

dz
z

M2½CFð1 − zÞ ~Hqðxz ; 0;−Δ2⊥Þ þ CAðz2 − 4zþ 7
2
Þ ~Hgðxz ; 0;−Δ2⊥Þ�

½k02⊥ þ zð1 − zÞ Δ2⊥
4
�½k2⊥ þ zð1 − zÞ Δ2⊥

4
�

; ð107Þ

FIG. 6 (color online). Diagrams determining the leading order of gluon GTMDs at large transverse momenta.
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Gg
1;1 ¼

αS
2π2

�Z
1

x

dz
z

M2½CF
ð1−zÞðz−2Þ

z Hqðxz ; 0;−Δ2⊥Þ þ CAð2z2 − 4zþ 7
2
− 2

zÞHgðxz ; 0;−Δ2⊥Þ�
½k02⊥ þ zð1 − zÞ Δ2⊥

4
�½k2⊥ þ zð1 − zÞ Δ2⊥

4
�

þ
Z

1

x

dz
z

Δ2⊥
4

CA
2
ð1 − 2zÞ2ð2 ~Hg

T þ Eg
TÞðxz ; 0;−Δ2⊥Þ

½k02⊥ þ zð1 − zÞ Δ2⊥
4
�½k2⊥ þ zð1 − zÞ Δ2⊥

4
�

�
; ð108Þ

with CA ¼ Nc ¼ 3. The perturbative QCD results in (100)
and (101) for quarks and in (107) and (108) for gluons
clearly show that at large k̄⊥ both F1;4 and G1;1 in general
are nonzero. This reconfirms in a model-independent way
that these functions have to be included in the leading-twist
parametrization of GTMDs.

VII. SUMMARY

In hadronic physics, GTMDs have already attracted
considerable attention. Often they are denoted as mother
functions because many GTMDs reduce to GPDs or TMDs
in certain kinematical limits. In this paper we have focussed
on two particular twist-2 GTMDs—denoted by F1;4 and
G1;1 in Ref. [14]—which neither survive the GPD limit nor
the TMD limit since in the decomposition of the GTMD
correlator they are accompanied by a factor that is linear in
both the transverse parton momentum and the transverse-
momentum transfer to the nucleon. In some sense this
makes these two functions actually unique. The particular
role played by F1;4 and G1;1 is nicely reflected by their
intimate connection to the orbital angular momentum of
partons in a longitudinally polarized nucleon and in an
unpolarized nucleon, respectively [18,25–28,31]. Those
relations open up new opportunities to study the spin/
orbital structure of the nucleon. For instance, new insights
in this area could now be obtained through lattice QCD,
given the related pioneering and encouraging studies of
TMDs and other parton correlation functions in
Refs. [53–56].

Our main intention in this paper has been to address
recent criticism according to which even the mere existence
of F1;4 and G1;1 is questionable [32,33]. To this end we
have shown in a model-independent way why the criticism
of [32,33] does not hold. We have also computed F1;4 and
G1;1 in the scalar diquark model of the nucleon, in the
quark-target model, and in perturbative QCD for large
transverse parton momenta, and we generally have found
nonzero results in lowest nontrivial order in perturbation
theory. Moreover, in the two spectator models we have
verified explicitly the relation between the two GTMDs and
the OAM of partons. In summary, we hope that our paper
helps to resolve any potential doubt/confusion with regard
to the status of the GTMDs F1;4 and G1;1 and their relation
to the spin/orbital structure of the nucleon.
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