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Introduction

World population is increasing, leading to new issues:

 Energy demands

 Land reclamation

 Municipal waste management
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EU regulation

 EU regulation (Council Directive 1999/31/EC of 26 April 
1999 on the landfill of waste)

 The European Union has laid down strict requirements 
for landfills to prevent and reduce as far as possible the 
negative effects on the environment, specifically on 
surface water, groundwater, soil, air and human health.

 The landfill is considered as the ultimate solution
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EU regulation

The Directive defines the different categories of waste

 Municipal waste

 Hazardous waste

 Non-hazardous waste

 Inert waste

Landfills are divided into three classes:

 Landfill for hazardous waste

 Landfill for non-hazardous waste : municipal waste; non-
hazardous waste of any other origin

 Landfill for inert waste
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General requirements for landfills

Appropriate measures shall be taken in order to:

 control water from precipitations entering into the landfill 
body,

 prevent surface water and/or groundwater from entering 
into the land-filled waste,

 collect contaminated water and leachate. 

 treat contaminated water and leachate collected from the 
landfill to the appropriate standard required for their 
discharge.
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General requirements for landfills

Protection of soil, groundwater and surface water is to be 
achieved by:

 during the operational/active phase, the combination of a 
geological barrier and a bottom liner

 during the passive phase/post closure, the combination 
of a geological barrier and a top liner.
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General requirements for landfills

The landfill base and sides shall consist of a mineral layer which 
satisfies permeability and thickness requirements :

 landfill for hazardous waste: K ≤ 10-9 m/s; thickness ≥ 5m,

 landfill for non-hazardous waste: K ≤ 10-9 m/s; thickness ≥ 1m,

 landfill for inert waste: K ≤ 10-7 m/s; thickness ≥ 1m.
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A landfill as a bioreactor

Design of the engineered barrier in a waste disposal
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A landfill as a bioreactor

Multiphysical phenomena control the evolution of the landfill
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Bio-chemo reaction Heat transferWater and gas 
flows

Mechanics



Objectives and outcomes

Objectives

 Describe each individual physical phenomenon

 Evidence the coupling effects
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Outcomes

 Provide a mathematical formulation for the BCTHM 
problem

 Develop a numerical model for the long term behaviour
of the municipal waste disposal
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Statement of the simplified problem
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Definition of the problem

 By essence the wastes are heterogeneous 
and multiphasic

 Each physical phenomenon will be studied 
through analytical solution

 Numerical modelling will evidence the 
coupling effects

 A step by step procedure will be followed



Statement of the simplified problem
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 Definition of the geometry (from 3D to 1D problem)

Definition of the problem



Statement of the simplified problem
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Definition of the problem

Parameters

HMSW = 30 [m] HD = 1 [m]

� = 1000 [kg/m³]

 Incoming water due to precipitations

 Initial stresses within the column

 Geometry limited to the waste and the drain

 Slope stability problem not addressed
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Waste as an unsaturated porous medium
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Hydraulic model

Unsaturated porous medium



Mass balance equation

Hypotheses

 Liquid water and water vapour

 Constant gas pressure

�

��
�� � ��� + div �� +

�

��
�� � ��� + div �� − �� = 0

 Liquid water, ��� water saturation degree

 Water vapour, ��� = 1 − ��� gas saturation degree

 Source term
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Hydraulic model



Liquid water mass flow

�� = �� ��

Advection flow of the liquid phase

�� = −
����

��� ��� ���

��
 grad �� + � �� grad �

where

 ����
��� [m²] is the intrinsic permeability

 ��� ��� [-] is the water relative permeability

 �� [Pa.s] is the water dynamic viscosity

 �� [Pa] is the pore water pressure

 �� [kg/m³] is the liquid water density
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Hydraulic model



Water vapour mass flow

�� = ��  �� + ��

Advection flow of the gas phase

�� = −
����

��� ��� ���

��
 grad �� + � �� grad �

Diffusion within the gaseous phase

�� = −� ��� � ��/��� grad ��/��

 ��/� [m²/s] is the diffusion coefficient of water vapour

in dry air

 � [-] is the tortuosity
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Retention properties

Diversity of the retention curves:
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Hydraulic model



Analytical solution

In order to explain the pore pressure evolution, an 
analytical approach is proposed for a simplified problem.

Hypotheses

 Constant gas pressure ��

 Liquid properties = liquid water properties

 Water is incompressible

 Stationary problem

 No water vapour

The water mass balance equation becomes:

�

��
�� � ��� + div �� +

�

��
�� � ��� + div �� − �� = 0

12/10/2015 ALERT doctoral school 2015 21

Hydraulic model



Analytical solution

In order to explain the pore pressure evolution, an 
analytical approach is proposed for a simplified problem.

Hypotheses

 Constant gas pressure ��

 Liquid properties = liquid water properties

 Water is incompressible

 Stationary problem

 No water vapour

The water mass balance equation becomes:

div �� = 0
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Hydraulic model



Analytical solution

Mass balance equation for 1D problem:

�

��
��� �� = 0 ⇒ ��� �� = ��� (1)

Liquid advection flow

��� = −
����

��� ���

��
 (

���

��
+ � ��) (2)
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Hydraulic model



Analytical solution

Retention curve

��� = exp −
��

��
≤ 1 (3)

• �� = �� − �� [Pa] capillary pressure

• A [Pa-1] material parameter

Relative permeability curve

��� = ���
� (4)
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Hydraulic model



Analytical solution

Retention curve

Relative permeability curve
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Hydraulic model



Analytical solution

Introducing Eqs. (2)(3)(4) into (1)

���
�

��
+

��� ��

�� ����
��� exp −

��
�

�
= −�� �

and ��
� = −�� is the relative water pressure (unknown).
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Hydraulic model



Analytical solution

First change of variable � = exp −
��

�

�

��

��
= ��� + ��

where

 � =
�����

������
����

 � =
���

�

⇒ Classical Verhulst equation
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Hydraulic model



Analytical solution

Second change of variable � = 1/�

��

��
= −� − ��

⇒ � = C� exp(−��) −
�

�

⇒ ��
� � = � ln �� exp −�� −

�

�

Relative water pressure ���
� imposed in � = 0

�� =
�

�
+ exp

���
�

�
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Hydraulic model



Statement of the simplified problem
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Parameters

n = 0.5 [-] ���� = 10-12 [m²]

A = 5 [kPa] � = 0.1 [-]

 Imposed water flux at the top

 Imposed pressure under the drain (85 kPa)

Hydraulic model

Initial values

��� = 0.6 [-] �� = 90,1 [kPa]



Analytical solution
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Hydraulic model

Variations of incoming flux |���|



Numerical solution
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Hydraulic model

 The mass balance equation is solved numerically

�

��
�� � ��� + div �� +

�

��
�� � ��� + div �� − �� = 0

 The Finite element code Lagamine is used:

 300 elements (8-noded isoparametric elements)

 Modeling time: 15 years

 Constant injection flow



Numerical solution
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Hydraulic model

Transient solutions ��� = 2.5 ⋅ 10����/��/�
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Evolution of the landfill
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Bio-Chemical model

Landfills are bio-reactors where organic matter is degraded 
by microorganisms

 Temperature: Psychrophile Bacteria (T°<20°C)

Mesophile Bacteria (20°C<T°<44°C)

Thermophile Bacteria (T°>44°C)

 pH : almost neutral, when acidity increase -> biological 
activity decrease

 Water content: Mandatory for bacteria activity

Minimal water content : 25 - 35%



Evolution of the landfill
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Bio-Chemical model

Landfills are bio-reactors where organic matter is degraded 
by microorganisms

Anaerobic phase

(after Farquhar and Rovers, 1973)



Evolution of the landfill
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Bio-Chemical model

Landfills are bio-reactors where organic matter is degraded 
by microorganisms

 
 .   COMPLEX ORGANIC 

MATTER 
  

  

SOLUBLE ORGANIC COMPOUNDS   

VOLATILE FATTY ACIDS   
ALCOHOLS   

Hydrolysis   

Acidogenesis   sugars, fatty acids, amino acids   

Acetogenesis   

Acetic acid   
CH 4     
CO 2   

CO 2 , H 2   

Methanogenesis   



Evolution of the landfill
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Bio-Chemical model

Landfills are bio-reactors where organic matter is degraded 
by microorganisms

Anaerobic phase

(after Farquhar and Rovers, 1973)



Two-stage model
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Bio-Chemical model

Two-stage bio-chemical model (McDougal, 2007)

 Aerobic stage neglected

 Three internal variables

 All the reaction rates are defined per water volume

Organic
Matter

Org [g/m³]

VFA
c [g/m³]

Methanogen
Biomass
m [g/m³]

Hydrolisis & Acidogenesis Acetogenesis & 
Methanogenesis

Inhibition of 
Hydrolisis

 Degradation of org
 Generation of c

 Degradation of c
 Generation of m

Transformation of m



 b [kg/m³w/s], maximum VFA growth rate

 � [-], water content (in volume)

• ���� [-] residual water content 

• ���� [-] saturated water content
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Bio-Chemical model

�� = �
� − ����

���� − ����
 (1 − Ω�) exp (−���� �)

Organic
Matter

Org [g/m³]

VFA
c [g/m³]  Degradation of org

 Generation rate of c : rg [kg/m³w/s]

Hydrolisis & Acidogenesis



 Ω [-], organic matter ratio

Ω = 1 −
���

����
= �

0 � = 0
 1 � = ∞

 ��� [g/m³], organic content

 � [-], parameter
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Bio-Chemical model

�� = �
� − ����

���� − ����
 1 − Ω�  exp (−���� �)

Organic
Matter

Org [g/m³]

VFA
c [g/m³]  Degradation of org

 Generation rate of c : rg [kg/m³w/s]

Hydrolisis & Acidogenesis



 k��� [-], parameter

 � [g/m³], the VFA concentration in water
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Bio-Chemical model

�� = �
� − ����

���� − ����
 1 − Ω�  exp (−���� �)

Organic
Matter

Org [g/m³]

VFA
c [g/m³]  Degradation of org

 Generation rate of c : rg [kg/m³w/s]

Hydrolisis & Acidogenesis
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Bio-Chemical model

Z r�

Organic
Matter

Org [g/m³]

VFA
c [g/m³]  Degradation of org

 Generation rate of c : rg [kg/m³w/s]

Hydrolisis & Acidogenesis

 � [-], substrate yield coefficient



 � [-], water content

 � [g/m³], methanogen biomass in water

 �� [s-1], the specific growth rate

 ��� [g/m³], the half saturation constant
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Bio-Chemical model

�� =
��

��� ��/� + �
 �

VFA
c [g/m³]

Methanogen
Biomass
m [g/m³]  Generation rate of m rj [kg/m³/s]

 Degradation of c

Acetogenesis & Methanogenesis



 � [g/m³], the VFA concentration in water
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Bio-Chemical model

�� =
��

��� ��/� + �
 �

VFA
c [g/m³]

Methanogen
Biomass
m [g/m³]  Generation rate of m rj [kg/m³/s]

 Degradation of c

Acetogenesis & Methanogenesis
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Bio-Chemical model

VFA
c [g/m³]

Methanogen
Biomass
m [g/m³]  Generation of m 

 Degradation rate of c rh [kg/m³/s]

Acetogenesis & Methanogenesis

 � [-], substrate yield coefficient

�� =
��

�



 �� [s-1], methanogen death coefficient
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Bio-Chemical model

�� = ��  
�

�

Methanogen
Biomass
m [g/m³]

 Degradation rate of m rk [kg/m³/s]

Transformation of m



Balance equations

VFA concentration

 Advective flux, where

• �� [m/s], water Darcy velocity

• ��� [-] water saturation degree

• �� [-], effective porosity

 Diffusion flux (mechanical dispersion and molecular
diffusion)

• �� [m²/s], apparent diffusion coefficient

 Reaction term
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Bio-Chemical model

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

� = ��/(��� ��)



Balance equations

Methanogen concentration

 Advective flux, where

• �� [m/s], water Darcy velocity

• ��� [-] water saturation degree

• �� [-], effective porosity

 Diffusion flux (mechanical dispersion and molecular
diffusion)

• �� [m²/s], apparent diffusion coefficient

 Reaction term
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Bio-Chemical model

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

� = ��/(��� ��)



Balance equations

Organic content

 Z [-] substrate yield coefficient

 �� [kg/m³/s] generation rate of c

 � [-] water content
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Bio-Chemical model

−Z r� � =
����

��



Statement of the simplified problem
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 Imposed VFA concentration at the bottom of 
the drain (c = 0)

Bio-chemical model

Initial values

��� = 300 [kg/m³] � = 0.3 [kg/m³]

� = 0.0025 [kg/m³]

Parameters

b = 2.9 10-5 [kg/m³/s] � = 0.36 [-]

k0 = 5.7 10-6 [s-1] kVFA = 0.2 [m³/kg]

kMC = 4.2 [kg/m³] Y = 0.08 [-]

k2 = 2.3 10-7 [s-1] Z = 2.7 [-]



Internal variable couplings
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Bio-Chemical model

 Single point bioreactor

 Constant saturation

 No advection

 No diffusion



Analytical solution

Degradation of organic matter

����

��
+ � �� � � exp −���� � 1 − 1 −

org

org�

�

= 0

Change of variable Ω = 1 − ���/����
�Ω

��
= �� 1 − Ω�

Where �� = � �� � � exp(−���� �)/���� , solved by Mathematica

� =
Ω

��
 �

1 �  
1
� �

1 +
1
�

�

�

���

 
Ω��

�!
 

where � � = � � + 1 � + 2 … (� + � − 1)
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Bio-Chemical model



Analytical solution
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Bio-chemical model

Influence of the time constant �� = � �� � � exp(−���� �)/����



Numerical solution
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Bio-chemical model

Non linear system of equations to be solved:

�

��
�� � ��� + div �� +

�

��
�� � ��� + div �� − �� = 0

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

−Z r� � =
����

��
2  nodal unknowns (pw and c) and two internal variables (m 
and org)



Numerical solution
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Bio-chemical model

 Sub-stepping procedure for the time integration of the 
reaction rate.

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

As proposed by Wessling et al., 2008, the calculation of VFA 
accumulation can be split into a transport-only part (V) and a 
production-only part (Q).



Numerical solution
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Bio-chemical model

 Sub-stepping procedure for the time integration of the 
reaction rate.

The reaction rate is highly non linear:

Δ��� = 0.1 
1

��� ���������� ����



Numerical solution
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Bio-chemical model

Evolution of Ω almost uniform over the waste column



Numerical solution
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Bio-chemical model

Results for the analytical solution 

Sr = 0.7071 [-] c = 0.055 [kg/m³]
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Energy balance equation

���

��
+ div �� − �� = 0
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Thermal model

 Heat storage

 Heat flux

 Heat production



Heat storage

���

��
+ div �� − �� = 0
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Thermal model

 ��� [J/kg/K] specific heat of the component

• Liquid water: w

• Water vapour: v

• Dry air: a

• Solid waste: s

 �� [kg/m³] density

 � [J/kg] latent heat of water vaporisation

 T & T� [°K] Temperature and initial temperature

�� = � ��� �� ��� T − T� + � ��� �� ��� T − T�

+ 1 − �  �� ��� T − T� + � ��� �� ��� T − T�

+ � ��� �� �



Heat flux

���

��
+ div �� − �� = 0
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Thermal model

 Conduction

• Γ [W/m/K] thermal conductivity of waste (including 
contributions from different phases)

 Advection

�� = −Γ �T + ��� �� �� T − T� + ��� �� �� + �� T − T�

+ �� �� + �� � + ��� �� �� + �� T − T�



Heat source

���

��
+ div �� − �� = 0
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Thermal model

 Energy release from exothermal biochemical reactions

 ��[J/kg] heat produced by the degradation of 1kg of 
waste

�� =
�org �

��
��



Analytical solution

1D heat balance equation (no advection/water vapour)

′ρ��′
�� �, �

��
− Γ 

���(�, �)

���
− ��(�) = 0

Dividing by ′ρ��
�

��(�, �)

��
− � 

���(�, �)

���
− �∗(�) = 0

Where � =
�

���
and �∗ � =

��(�)

���
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Thermal model



Analytical solution

Assuming the following evolution of the organic content: 

Ω � = 1 − exp(−� �)

where � = 2.8 10-8 [s-1] is fitted from previous results

Heat source expression is given by:

�∗ � =
�� 

� ��

�org �

��

�∗ � = −
�� �

� ��
���� exp(−� �)
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Thermal model



Classical solution of non homogeneous heat equation

� �, � = � �, 0 + � sin(
��

�
 �) � �� � exp −��� � − � d�

�

�

�

���

Initial and boundary conditions
� �, � = 0 = 20°   &  � � = 0, � = � � = 30�, � = 20°

where �� =
��

�

�

�� � =
2

�
 � �∗(�) sin

��

�
 � d�

�

�

= �

���

��� 
����

4

��
exp −��     � ���

  0                                    � ����

Analytical solution
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Thermal model



Analytical solution

Classical resolution of non homogeneous heat equation
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Thermal model

� �, � = � �, 0 +

�
4

n�

���

���
����

1

−� + ���
sin

��

�
 � exp −�� − exp −����

�

���,�



Statement of the simplified problem
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 Imposed temperature at the top

 Imposed temperature at the bottom

Thermal model

Initial values

�� = 20 [°]

Parameters

�� = 1939 [J/kg/K] �� = 1000 [kg/m³]

�� = 4185 [J/kg/K] �� = 1000 [kg/m³]

�� = 1004 [J/kg/K] �� = 1.2 [kg/m³]

Γ� = 0.35 [W/m/K] Γ� = 0.6 [W/m/K]

Γ� = 0.025 [W/m/K] �� = 632 [kJ/kg]



Numerical solution
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Thermal model

Case 1: no convection



Numerical solution
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Bio-chemo-hydro-thermal model

Non linear system of equations to be solved:

�

��
�� � ��� + div �� +

�

��
�� � ��� + div �� − �� = 0

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

���

��
+ div �� − �� = 0

�� − ��  � =
��

��
and −Z r� � =

����

��

3  nodal unknowns (pw , T and c) and two internal variables 
(m and org)



Numerical solution
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Thermal model

Case 1: no convection

Case 2: convection (|qin|) Case 3: convection (|qin|/100)
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Chemo-mechanical behaviour: experiments

The wastes are highly heterogeneous media

 Large experimental set-up (around 1 m³) (Olivier 2003, 
Gandolla et al 1992, Jessberger 1993, …)

 The settlement evolves for several tenth of years

 The biodegradation of the waste concerns mainly the 
organic component of the wastes (paper, wood …)

Bio-chemo-mechanical behaviour:

 Reactive process (Hueckel, 2009) 

 Time-dependent phenomena

 Complex processes
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Mechanical model



Chemo-mechanical behaviour: experiments

Experimental set-up

 Choice of the material:

Material with a high organic content: wood

Good biodegradability: leafy tree (sawdust)

 Choice of a tree species: beech 

(rs = 742 kg/m³, n= 0.77)
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Mechanical model



Chemo-mechanical behaviour: experiments

Experimental set-up

 Parameters

Bacteria activity

Water content

Temperature

 Oedometer cell at controlled temperature

12/10/2015 ALERT doctoral school 2015 75

Mechanical model



Chemo-mechanical behaviour: experiments

 First series (without leachates)

 Sterilization in the autoclave

 Water content between 100% and 400%

 Precompaction at 20 kPa (or 40 kPa)

 Temperature at 36°C
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Chemo-mechanical behaviour: experiments

 First series (without leachates)
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Chemo-mechanical behaviour: experiments

 First series (without leachates)

Observations

 No influence of the water content

 Clear influence of the preconsolidation pressure

 Compaction higher than the one observed in the landfill.

Cc = 1.0 – 1.1

Cs = 0.2 (0.13 for p0=40 kPa)
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Chemo-mechanical behaviour: experiments

 Second series (with leachates)

 Sterilisation in the autoclave

 Leachate content at 100% and 300% (under Natrium flux)

 Precompaction at 20 kPa (under Natrium flux)

 Temperature at 36°C
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Chemo-mechanical behaviour: experiments

 Second series (with leachates)
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Chemo-mechanical behaviour: experiments

 Second series (with leachates)

Observations

 Influence of the biodegradation: additional compaction

 No influence of the water content

 Initial biodegradation seems to have an influence

 Improve the reproducibility
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Chemo-mechanical behaviour: constitutive model

 Features of the material

When loaded, a additional compaction is observed for 
degraded material

This behaviour is similar to unsaturated soil under wetting 
path (pore collapse)

The framework proposed by Hueckel is adopted in the 
following.
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Deformation rate decomposition

��̇� = ��̇�
� + ��̇�

�
= ��̇�

�� + ��̇�
�� + ��̇�

��

Elastic components

��̇�
�� mechanical, classical Hooke’s law 

��̇�
�� chemical

���
�� = −

1

3
�Ω̇���

� = ���� exp �� 1 − Ω + ln Ω
1

Ω
− 1

where �� [-] and �� [-] are material parameters

Plastic component

 ��̇�
��

mechanical
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Yield surface

Bishop’s stress definition

���
� = ��� − ����� + ��� �� − �� ���
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�� ≡ �� + �� � + �� � − �� = 0 � ≥
�� − ��

2
�� ≡ � − � � − �� = 0 �� < � ≤

�� − ��

2
�� ≡ � + �� = 0

Three plastic mechanisms

 Pore collapse (f1)

 Frictional-cohesive (f2)

 Tensile (f3)



Chemical hardening/softening

Evolution of plastic internal variables with mechanical loading
and biodegradation Ω ∈ [0,1] for oedometric stress path

 Classical hardening of ��
∗ for the CamClay model

d��
∗ =

1 + ��

� − �
 ��

∗ d��
�

 Effect of biodegradation on pore collapse mechanism
�� Ω = ��

∗ exp −�Ω

• ��
∗ [Pa] preconsolidation pressure for initial organic content

• � [-] material parameter
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Analytical solution

Hypotheses

 Constant stress state �̇��
� = 0

 Biodegradation of plastic deformation only

 Pore collapse mechanism (f1) only

Consistency condition

��

��
 d� +

��

���
∗  d��

∗ = 0

⇒ d��
∗ = dΩ 

���
�Ω
���

���
∗

= −��
∗ �dΩ
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��

�Ω
=

��

���

���

�Ω

���

�Ω
= −��

∗ � exp(−�Ω)
��

�p�
∗ =

��

���

���

�p�
∗

���

���
∗ = exp(−�Ω)



Analytical solution

d��
∗ = −��

∗ �dΩ

Classical hardening of ��
∗ for the CamClay model

d��
∗ =

1 + ��

� − �
 ��

∗ d��
�

 �� [-] initial void ratio

 � [-] material parameter

 � [-] material parameter

Relation between biodegradation and plastic deformation

d��
�

= −
� − �

1 + ��
� dΩ
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Numerical solution
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Bio-chemo-hydro-thermal model

Non linear system of equations to be solved:

�

��
�� � ��� + div �� +

�

��
�� � ��� + div �� − �� = 0

div � � − ��� �� ⋅ �� + �� − ��  � =
��

��

���

��
+ div �� − �� = 0

div � − �� = 0

�� − ��  � =
��

��
and −Z r� � =

����

��

4  nodal unknowns (z, pw , T and c) and two internal variables 
(m and org)



Statement of the simplified problem
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 Fixed displacements at the base

 No lateral displacements on the sides

Bio-chemical model

Initial values

��� = 1.01 [-] �� = 1.0 [-]

Parameters

� = 0.0648 [-] � = 0.00792 [-]

� = 3.45 [-]

c = 20 [kPa] � = 35 [°]

k2 = 2.3 10-7 [s-1]



Numerical solution
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Numerical solution
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Bio-chemical model

 Problems related to the waste settlement

 Differential settlement of the capping system

 Increase the shear stress on the confining system along 
the slope

 Additional friction stress on the well tubing (leachate and 
biogas collection)

 Advantages

 Optimization of the final waste height (maximization of 
the landfill capacity)
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Finite element formulation
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Bio-chemical-Thermo-Hydro-mechanical model

 8-noded isoparametric finite element

 6 d.o.f : x, y, pw, pg, T, c (4 nodes)



Finite element formulation
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Bio-chemical-Thermo-Hydro-mechanical model

 8-noded isoparametric finite element



Finite element formulation
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Bio-chemical-Thermo-Hydro-mechanical model

 8-noded isoparametric finite element



Conclusions
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Bio-chemical-Thermo-Hydro-mechanical model

 Each individual phenomenon has been studied

 Concerning the coupling:

 Biodegradation controlled by the water saturation

 Temperature increase induced by the biodegradation

 Mechanical compaction related to biodegradation

 But some additional coupling are not taken into account

 The permeability is reduced by the compaction

 The biodegradation depends on the temperature


