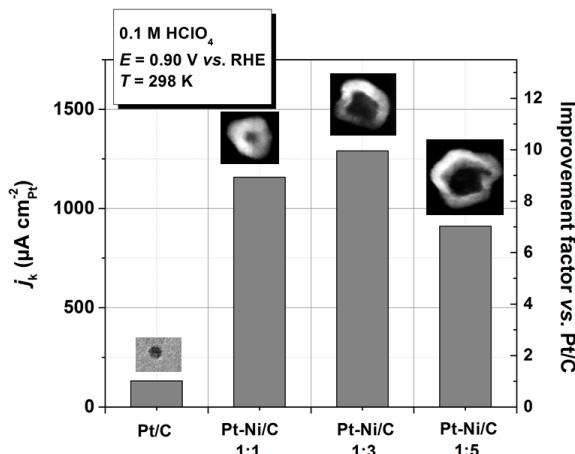


Pt-Ni Porous Hollow Nanoparticles for Oxygen Reduction Reaction: Controlling the Nanoparticles Size and Dispersion.

T. Asset,^{a,b,c,*} R. Chattot,^{b,c} A. Zubiaur,^a L. Dubau,^{b,c} N. Job^a and F. Maillard^{b,c}

^aUniv. Liège, Chemical Engineering, B6a, 4000 Liège, Belgique.


^bUniv. Grenoble Alpes, LEPMI, 38000 Grenoble, France

^cCNRS, LEPMI, 38000 Grenoble, France

*Corresponding author email address: Tristan.Asset@lepmi.grenoble-inp.fr

To be suitable for commercial applications, proton exchange membrane fuel cells - PEMFC - have to overcome several challenges, such as the cathodic limitations induced by the oxygen reduction reaction - ORR. Due to their high ORR mass activity, Pt-M (M = Ni, Co) nanostructured materials are interesting materials to electrocatalyze this reaction. Further enhancement in catalytic activity may be obtained by using carbon-supported porous and hollow nanoparticles^{[1]-[3]}.

In this study, we describe our most recent findings on the synthesis and the catalytic properties of carbon-supported hollow porous Pt-Ni nanoparticles. Different parameters such as (i) the Pt:Ni stoichiometry, (ii) the chemical nature of the reducing agent (NaBH₄ or citrate), and (iii) the chemical and physical properties of the carbon support were used to control their morphological (Pt-rich shell thickness, size of the central cavity), structural (degree of contraction of the Pt lattice) and chemical properties^[4]. The changes in ORR activity will be discussed in the light of these changes.

Changes of the ORR specific activity on porous hollow Pt-Ni/C nanoparticles with different structural and chemical properties. A 10-fold improvement is obtained over standard Pt/C nanocrystallites.

References

- [1] J. Snyder, I. McCue, K. Livi, and J. Erlebacher, *J. Am. Chem. Soc.*, 134, 20, 8633–45, 2012.
- [2] J. Snyder, K. Livi, and J. Erlebacher, *Adv. Funct. Mater.*, 23, no. 44, 5494–5501, 2013.
- [3] L. Dubau, M. Lopez-Haro, J. Durst, L. Guétaz, P. Bayle-Guillemaud, M. Chatenet, and F. Maillard, *J. Mater. Chem. A*, 2, 43, 18497–18507, 2014.
- [4] L. Dubau, T. Asset, R. Chattot, C. Bonnaud, V. Vanpeene, and F. Maillard, *Submitted*, 2015.