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Abstract
Structural optimization techniques rely on mathematical foundations in order to reach
an optimized design in a rational manner. Nowadays, these techniques are commonly
used for industrial applications with impressive results but are mostly limited to (quasi-)
static or frequency domain loadings. The objective of this thesis is to extend structural
optimization techniques to account for dynamic load cases encountered in multibody
applications.

The thesis relies on a nonlinear finite element formalism for the multibody system sim-
ulation, which needs to be coupled with structural optimization techniques to perform
the optimization of flexible components in an integrated way. To tackle this challenging
optimization problem, two methods, namely the fully and the weakly coupled methods,
are investigated.

The fully coupled method incorporates the time response coming directly from the MBS
in the optimization. The formulation of the time-dependent constraints are carefully
investigated as it turns out that it drastically affects the convergence of the optimization
process. Also, since gradient-based algorithms are employed, a semi-analytical method
for sensitivity analysis is proposed.

The weakly coupled method mimics the dynamic loading by a series of equivalent static
loads (ESL) whereupon all the standard techniques of static response optimization
can be employed. The ESL evaluation strongly depends on the formalism adopted to
describe the MBS dynamics. In this thesis, the ESL evaluation is proposed for two
nonlinear finite element formalisms: a classical formalism and a Lie group formalism.

An original combination of a level set description of the component geometry with
a particular mapping is adopted to parameterize the optimization problem. The ap-
proach combines the advantages of both shape and topology optimizations, leading to
a generalized shape optimization problem.

The adopted system-based optimization framework supersedes the classical component-
based approach as the interactions between the component and the system can be
consistently accounted for.
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Chapter 1

Introduction

Contents
1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 From mechanism synthesis to structural optimization . . . . 3
1.2.2 System-based approach for the structural optimization of MBS 4

1.3 Motivations, assumptions and objectives of the thesis . . . 6
1.4 Layout of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Context of the thesis
In the industry, engineers continuously face the challenge of providing high quality so-
lutions that satisfy numerous requirements, often antagonistic. For instance, in many
applications, the goal is to design the lightest component with the strongest mechanical
resistance while achieving the lowest production cost. In the past, trial-and-error ap-
proach was commonly used to design a satisfactory solution. However, these methods
are expensive, time consuming and there is no guarantee to reach an optimized design.
Concurrently to the development of numerical tools, analysis capabilities have been im-
proved whereupon automatic design methods were developed to obtain the best solution
in a rational way and to remove the arbitrary component of trial-and-error methods
from the design process. Nowadays, in high technology industries such as aerospace
and automotive sectors, structural optimization techniques are commonly employed
to design the best solution resulting from a trade-off between various design criteria.

Traditionally, the structural optimization of mechanical system components is per-
formed using a component-based approach, i.e. the interactions between the opti-
mized component and its environment (system) are often disregarded. For instance, to
minimize the mass of a suspension upper-arm, the arm is first isolated from the vehi-
cle and then a set of representative static loads with appropriate boundary conditions
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2 Chapter 1. Introduction

are applied to the component, so that they mimic the complex loading to which it is
subjected. Generally, these loads derive from the designer’s experience, from experi-
ments or from standards. Dynamic amplification factors or safety factors are generally
introduced to account for unmodeled phenomena. The resulting heuristic design cri-
teria can be justified in incremental design procedures, wherein the experience from
the past is relevant for the new design. However, it becomes clearly questionable when
addressing innovative designs and breakthroughs. Also, albeit the component-based
approach stands when the overall system can be considered as stiff, the approach is
arguable when flexibility effects become larger. Indeed, with the design of lighter and
more flexible components, the interactions between the system components play a more
important role on the system dynamics and they can no longer be neglected. Therein,
the component-based approach should be extended to account for the dynamic behavior
of the entire system.

The analysis of mechanical systems accounts for the large relative displacement of their
interconnected components. The earliest formulations were based on the assumptions
that all the system components behave as rigid bodies. However, under high static
forces and/or high speed motion, this assumption leads to discrepancies in the re-
sponses. Therein, the need of introducing flexibility within the analysis was rapidly
motivated (Erdman et al., 1972). Later on, multibody system dynamic formula-
tions have been developed to capture the compliant effects of the flexible bodies on
the gross motion of the system in an integrated approach (Géradin and Cardona, 2001;
Bauchau, 2011; Shabana, 2013).

This thesis is concerned with a system-based approach replacing and superseding
the traditional component-based approach. This more advanced approach takes ad-
vantage of the evolution of virtual prototyping. It combines the capabilities of modern
multibody system (MBS) simulation tools with structural optimization techniques to
perform an integrated optimization of flexible components. Figure 1.1 illustrates the
system-based approach.

The present work has been mainly realized in the framework of a research project,
namely the LightCar project, that was launched in 2011 and sponsored by the pole
of competitiveness “Mecatech” and the Walloon Region of Belgium. The aim of the
project was to developed a virtual prototyping platform for the integrated analysis and
optimization of vehicles. Industrial partners were interested to collaborate as well as
to validate the contribution of the thesis. Industrial collaborations with Toyota Motor
Corporation and Jtekt Torsen companies were specifically developed to optimize power-
train components.
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Structural optimization Flexible MBS simulation

Integrated optimization of flexible components

Figure 1.1: System-based approach for the structural optimization of MBS components.

1.2 Literature review

1.2.1 From mechanism synthesis to structural optimization

The design of a mechanism able to perform a desired task can be performed by mech-
anism synthesis techniques which define the mechanism at a system level in the
conceptual design phase, i.e. the design variables are “global” such as the dimensions
of the system, the number and the nature of kinematics joints, etc. The precise design
of each component is addressed in a next step. The mechanism synthesis is generally
performed using the static or kinematic response of the system considering rigid or
flexible components. (see for instance, Erdman et al., 1972; Imam and Sandor, 1975;
Cleghorn et al., 1981; Sohoni and Haug, 1982; Haug and Sohoni, 1984; Erdman and
Sandor, 1991; Hansen, 1992; Hansen and Tortorelli, 1996; Sigmund, 1997; Hansen and
Hansen, 1998; Minnaar et al., 2001; Hansen, 2002; Kawamoto, 2005; Sedlaczek et al.,
2005; Jensen and Hansen, 2006; Pucheta and Cardona, 2007; Cugnon et al., 2009; Col-
lard et al., 2010; McCarthy and Soh, 2011). Some of these studies also incorporated
structural parameters such as the areas of cross section in the optimization process to
achieve mechanical requirements.

Once the mechanism is defined at a system level, two other more detailed design prob-
lems can be addressed. The first design problem concerns the optimal control of
mechanisms, which aims at establishing the motor control laws, i.e. the actuator forces
as a function of time, such that a certain optimality criterion is achieved (see for in-
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stance, Okubo and Tortorelli, 2004; Albers et al., 2007; Held and Seifried, 2010; Seifried,
2012; Bastos Jr. et al., 2013). The second design problem is the structural opti-
mization of components that modifies some structural parameters to satisfy design
requirements. For instance, a typical problem is to minimize the mass of a component
by varying several structural parameters subject to a limit on the maximum value of
the stresses. This latter tool is the main concern of the thesis and is hereafter reviewed.

1.2.2 System-based approach for the structural optimization of MBS

Taking advantage of the evolution of MBS simulation tools, Bruns and Tortorelli (1995)
initiated an approach combining rigid MBS analysis and optimization techniques to per-
form the structural optimization of components with load cases evaluated during the
MBS analysis. The method was illustrated on the design of a slider-crank mechanism
loaded with the maximum tensile force calculated during the simulation. Almost at the
same period, Oral and Kemal Ider (1997) investigated the optimization problem that
incorporates the dynamic response coming from the MBS analysis using a dynamic re-
cursive formulation (Ider and Amirouche, 1989). They represented the time-dependent
constraints either by the most critical constraint or agglomerated with a Kresselmeier-
Steinhauser function. To perform the structural optimization of MBS, Etman et al.
(1998) applied the approximation concepts instead of considering a direct coupling be-
tween the MBS analysis and the optimizer. They used linear approximations of the
responses with respect to intermediate variables, and a combination of a constraint
screening strategy with pointwise constraints to treat the time-dependent constraints.
They validated the approach and illustrated it on several mechanisms.

Nowadays, the structural optimization of MBS can be divided into two main
methods: the weakly coupled and the fully coupled. The weakly coupled method deals
with a static response optimization wherein the dynamic response is mimicked by a set
of equivalent static scenarios derived from the MBS simulation. On the other hand, the
fully coupled method concerns the optimization problem which incorporates the time
response coming directly from the MBS analysis.

Weakly coupled method

The beginnings of the weakly coupled method have been initiated by Saravanos and
Lamancusa (1990) to perform the structural optimization of robotic arms. The authors
selected several configurations of the mechanism whereupon the optimization was car-
ried out based on representative static loading conditions coming from the designer’s
experience for each posture. Even if the strategy tries to account for the entire system,
this approach is non-rational since a few configurations can hardly represent the over-
all motion as well as the various operating conditions. Moreover, the optimal design
entirely depends on the designer’s choices.

The transformation of the dynamic response into a set of equivalent static scenarios has
been properly defined with the incorporation of the MBS analysis in the optimization
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process. This transformation is realized in a two step approach. Firstly, a MBS sim-
ulation is performed whereby the loads applied to each component can be computed.
Secondly, each component is optimized independently using a quasi-static approach in
which a series of static load cases evaluated at the first step are applied to the re-
spective components. The equivalent static loads are fixed during the optimization
whereas they are design-dependent. Hence, cycles between the MBS analysis and the
optimization are needed to account for this dependence. The weakly coupled method
sounds appealing as it circumvents solving the complex dynamic response optimization
problem. However, the method focuses on the optimization of isolated components
wherein the load cases stem from the system analysis. A series of works were realized
in which a couple of load cases associated to the reaction forces of the kinematic joints
and boundary conditions were evaluated during the MBS analysis, and then considered
for the static optimization process (Häussler et al., 2001, 2004; Albers et al., 2002).
This approach has also been combined with lifetime prediction - durability analysis
(Ilzhöfer et al., 2000; Albers and Häussler, 2005).

An important breakthrough has been made by Kang et al. (2005) who proposed a
method to define Equivalent Static Loads (ESL) for the optimization of flexible
mechanisms. For each time step and for each optimized component, they define an ESL
producing the same displacement field as the one generated by the dynamic load at the
considered time step in a body-attached frame. However, even if the concept seems
totally general, it has been developed for MBS based on a floating frame of reference
formulation. This formalism separates the elastic coordinates from the coordinates
describing the global motion of the bodies which enables to define the ESL for each
optimized component by simply isolating some terms of the equations of motion. The
ESL approach has been employed in numerous studies with conclusive results (Kang
et al., 2007; Witteveen et al., 2009; Hong et al., 2010; Sherif and Irschik, 2010) and is
used in commercial software tools.

Fully coupled method

In lieu of solving an equivalent static optimization problem, the fully coupled method
incorporates the time response coming directly from the MBS simulation. Therein, the
optimization considers the system as a whole instead of isolated components as encoun-
tered with the weakly coupled method. The fully coupled method leads to dynamic
response optimization problems which are more challenging to solve than classical struc-
tural optimization problems chiefly due to the difficulties of evaluating the dynamic
response and then incorporating it in the optimization (Haug and Arora, 1979). In-
deed, the treatment of time-dependent constraints is an essential issue as well as the
computation of the sensitivities of the displacements, velocities and accelerations, that
can become extremely costly (Park, 2007). Also, the local or global approximation
of the original problem used in response surface methods or mathematical program-
ming approaches is more complex as early reported by Etman (1997); Kurtaran and
Eskandarian (2001); Marklund and Nilsson (2001); Kurtaran et al. (2002); Hong and
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Park (2003). The fully coupled problem can be solved using either the conventional
nested approach or the SAND (Simultaneous ANalysis and Design) approach (Haftka
and Gürdal, 1992). In the conventional nested formulation, only the design variables
are treated as optimization variables whereas the state variables are solved by forward
integration. With the SAND formulation, the design variables and the state variables
are treated as optimization variables. In the present research, the nested formulation
is employed.

Regarding the structural optimization of structures considering transient loads,
comprehensive studies were initiated in the seventies. Before the early seventies, the
frequency response was predominant. Nowadays, dynamic response optimization is
still a field of active research. One of the earliest work has been proposed by Fox and
Kapoor (1970) who minimized the weight of frame structures subject to base motion
and constraints on dynamic stresses and displacements. One must also cite the works
of Willmert and Fox (1974), Afimiwala and Mayne (1974) and Feng et al. (1977) as
well as the literature survey realized by Pierson (1972). Later on, Cassis and Schmit
(1976) applied the concepts of approximation to incorporate the dynamic responses.
Interested readers may refer to the review article written by Kang et al. (2006) for
further details.

Focusing on the structural optimization of mechanical systems, Pereira and Dias
(2003) employed the fully coupled method to solve optimization problems with crash-
worthiness and dynamic requirements. Later on, Brüls et al. (2011b) took advantage of
the evolution of numerical simulations and topology optimization to design structural
components within a flexible MBS simulation. They showed the feasibility and con-
venience of integrating the flexible MBS simulation directly in the optimization loop.
Indeed, the dynamic effects are naturally incorporated into the design. Amongst other
recent works, Seifried and Held (2011) used the fully coupled approach to optimize
controlled flexible MBS. Durability-based constraints have also been considered in the
fully coupled work of Tobias et al. (2010). They avoid post-processing the MBS sim-
ulation results by evaluating the damage values during the MBS simulation to hasten
their computations. Other contributions about the fully coupled method have been
realized with the PhD theses of Wang (2006) who investigated alternative formulations
of the optimization problem and Dong (2012) who explored the topology optimization
for multi-functional components in MBS.

1.3 Motivations, assumptions and objectives of the thesis

The present thesis continues along the study initiated by Brüls et al. (2011b) wherein
the authors employed a fully coupled approach to design optimal components of MBS
described using a classical nonlinear finite element formalism (Géradin and Cardona,
2001). The mechanism synthesis aspect is not considered by assuming that the me-
chanical system has a fixed configuration and topology (at the system level). Also, the
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optimal control is not directly treated in this thesis but future works are foreseen to
couple structural optimization and optimal control.

The design of lighter and more flexible mechanical systems requires more advanced and
more accurate numerical tools for the analysis but also for the design of optimal com-
ponents. The use of a nonlinear finite element formalism provides a general framework
to analyze complex mechanical systems wherein the flexibility is naturally taken into
account. This contrasts with most of the previously cited studies wherein the MBS
dynamics was described with a floating frame of reference formulation or rigid body
MBS formulations.

The first two objectives of this thesis are related to the fully coupled approach for the
optimization of MBS described using a classical nonlinear finite element formalism.
As a dynamic response optimization is involved, the treatment of time-dependent con-
straints is a central issue to formulate properly the optimization problem. The first
objective is to investigate the formulation of the optimization problem in order to con-
duct robust and effective optimization runs. Local formulations, enforcing constraints
at each time step, and global formulations, agglomerating the responses into a few
constraints, are studied. Secondly, the sensitivity analysis method is revisited. Indeed,
the sensitivity analysis can drastically affect the computation time of the optimization
process. Employing a basic finite difference scheme requires one additional simulation
per design variable at each optimization iteration whereby the CPU grows by a fac-
tor nv + 1, where nv numbers the design variables. This is especially pertinent with
the fully coupled approach since the MBS simulation time is much larger than for a
static analyses. Furthermore, for nonlinear systems, the derivative can be wrong if a
bifurcation of the response occurs. Hence, a novel semi-analytical sensitivity analysis
is proposed to compute the gradients in an efficient and simplistic manner.

A third objective concerns the parameterization of the design problem, which directly
affects the performance of the optimization process. In this thesis, an implicit represen-
tation of the component geometry based on the level set method is proposed to design
MBS components. The resulting optimization method can be qualified as a generalized
shape optimization method as the component boundaries are smooth and topology
changes are possible in a limited manner. While this description is totally general, our
research has been conducted using the fully coupled approach. However, the proposed
parameterization is independent of the optimization method and can thus be handily
employed with other optimization methods.

The last set of objectives focuses on the weakly coupled approach. The ESL method
was developed based on a floating frame of reference formulation (Kang et al., 2005).
This formalism possesses inherent properties that enable to evaluate efficiently the
ESL. Adapting the ESL evaluation to a classical nonlinear finite element formalism
is not straightforward. The fourth objective is to propose a method to evaluate the
ESL for MBS dynamics described using a classical nonlinear finite element formalism
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(Géradin and Cardona, 2001). As an alternative, a nonlinear finite element approach
based on a Lie group formalism (Sonneville and Brüls, 2014) is selected as it exhibits
a number of attractive properties. Therein, the fifth objective is to take advantage of
these properties to develop an efficient method to evaluate the ESL. The last objective
is to conduct a fair comparison between the weakly and the fully coupled methods to
point out the advantages and drawbacks of each method.

The main thread of the objectives targeted by the thesis is illustrated in Figure 1.2
which also depicts the flowchart of the thesis organization.

The MBS simulations are performed using the nonlinear finite element software Samcef
Mecano1 or using MBS simulation tools developed at the University of Liège using Mat-
lab (The MathWorks, Inc., 2012b). The optimization processes are conducted either
using the optimization shell Boss Quattro2 or using scripts in Matlab (The MathWorks,
Inc., 2012b).

1.4 Layout of the thesis
After this introductory chapter, Chapter 2 presents the fundamental tools used in this
thesis, and is composed of two distinct sections. The first section presents the MBS
analysis and gives an overview of the methods employed to formulate and solve the
equations of motion. The second section introduces the basic principles of structural
optimization and gives an insight into the main methods that are hereafter employed
to perform the structural optimization of MBS components.

Chapter 3 summarizes the work carried out in this thesis. It introduces the MBS
optimization wherein the different methods are detailed. The main results are briefly
presented and glimpse the issues treated in the articles included as appendices. The
main methods to perform the MBS component optimization are discussed based on the
experience accumulated during the thesis.

Chapter 4 briefly summarizes the work that is performed in each of the four articles
and the original contributions and impact of the present thesis are detailed. Finally,
Chapter 5 concludes the thesis and points out several directions for future work.

1www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-
motion-analysis.shtml

2www.plm.automation.siemens.com/en_us/products/lms/samtech/boss-quattro.shtml

http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/boss-quattro.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/boss-quattro.shtml
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This research is developed in a computer-aided engineering (CAE) framework involving
notably computer-aided design, multibody system dynamics, structural optimization
and sensitivity analysis. This chapter introduces the fundamental tools that are later
on coupled to perform the integrated optimization of flexible components within a MBS
approach.

First, the flexible multibody system analysis is presented. The choice of the reference
frame is discussed and the equations of motion as well as the time integration scheme
are described. Afterwards, structural optimization is introduced wherein the design
parameterization, the problem formulation and the solution algorithms including the
sensitivity analysis are discussed.

11
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2.1 Multibody system analysis

2.1.1 Introduction to MBS simulation

A flexible multibody system (MBS) can be defined as a collection of rigid and flexible
bodies interconnected by rigid and flexible kinematic joints (e.g. revolute, prismatic or
universal joints) and by force elements (e.g. springs or dampers). A basic multibody
system is depicted in Figure 2.1. The analysis of such systems may involve strong
couplings between the gross motion and deformations within the system.

rigid body

flexible body

external force

force element

kinematic constraint

Figure 2.1: Multibody system diagram.

Owing to the research carried out the last decades and the growth of computational
resources, mechanisms are nowadays commonly analyzed using multibody system sim-
ulation tools. Forward dynamics of MBS is the most usual approach and consists in
understanding how the systems move under the influence of forces. Conversely, the
inverse dynamics studies the forces that are needed to move the system in a desired
manner.

Numerous fields of engineering call for MBS analyses. Classical applications are en-
countered in robotics, e.g. to simulate the robot trajectory (Dwivedy and Eberhard,
2006), in aerospace, e.g. to analyze the deployment of antennas (Li, 2012) or in ma-
chining process to predict the manufacturing performance (Zaeh and Siedl, 2007). In
air and ground transport sectors, MBS analyses are also extensively employed with
applications in aeronautics (Doan, 2004; Bottasso et al., 2006; Krüger and Morandini,
2011) in automotive (Virlez, 2014; Blundell and Harty, 2015) and in railways (Docquier
et al., 2007). More recently, the development of sustainable energy systems motivates
accurate multibody models of wind turbines (Heege et al., 2007; Helsen et al., 2014;
Schulze et al., 2014). Finally, biomechanics recently pushes forward the development
of MBS simulation methods wherein researchers simulate the dynamics of human body
(Grosu et al., 2014; Quental et al., 2015).
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Independently of the underlying approach adopted to analyze the MBS dynamics, the
simulation process is composed of 4 steps:

1. Modeling assumptions and definition of the boundary conditions,
2. Element formulation and generation of the equations of motion,
3. Time-integration of the system of equations,
4. Interpretation of the results.

Physical system

Modeling assumptions

Rigid body

Flexible body

Cylinder joint
Plain bearing element

Material:

• Aluminum

• Copper

• Steel

Boundary conditions

Cam element

f(x)
f1(x)

f2(x)

x

1

Behavior laws

M(q)q̈ + Φ
T
q (q, t) (kλ + pΦ (q, t)) = g(q̇,q, t),

kΦ(q, t)=0,

subject to the initial conditions

q(0) = q0 and q̇(0) = q̇0.

Equations of motion

Result analysis

Figure 2.2: Framework of a MBS analysis.

The first step involves the engineer’s capabilities to determine the components that
should be incorporated in the MBS model in order to perform an accurate and efficient
dynamic analysis, matching his desiderata. The analysis of a crankshaft is illustrated
in Figure 2.2. Only a limited number of engine parts are necessary to simulate the dy-
namic behavior of the crankshaft considering a desired level of accuracy. Furthermore,
the designer makes assumptions on the behavior of each component, e.g. the piston
flexibility can be neglected and it is assumed to behave as a rigid body. Within this
step, the designer also determines the boundary conditions to perform the simulation
and the material properties of each component.

The second step mainly concerns the element formulation wherein the kinematics of
each element (body, joint, etc) is described using a set of coordinates. All the forces
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generated inside the element must be expressed as functions of the coordinates and
their time derivatives. In case of external forces or elements such as actuators, forces
may explicitly depend on time. Several types of coordinates exist in the literature:
minimal coordinates (Hiller and Kecskeméthy, 1994), relative coordinates (Samin and
Fisette, 2003), reference point coordinates (Shabana, 2013), natural coordinates (de
Jalón, 2007) and finite element coordinates (Géradin and Cardona, 2001). The choice
of a coordinate set is fundamental as it determines the form and the dimension of the
equations describing the physical system. Thusly, the computational efficiency and the
implementation ease are directly related to this choice. Nevertheless, each set has its
own advantages and drawbacks and the best choice depends on the application. In this
research, the finite element coordinates, particularly well-suited for the description of
flexibility, are used.

The third step chiefly implies computational resources. The equations of motion are
assembled and the time-integration is performed.

The last step is dedicated to the analysis and the interpretation of the results. MBS
simulations provide a lot of information, e.g. stresses, strains, reaction forces in kine-
matic joints, trajectory tracking, etc, which are accumulated during the simulation and
can be post-processed. The engineer role is fundamental to take advantage of the MBS
simulation results. First, the consistency and the accuracy of the mechanical responses
must be checked whereupon the results can be interpreted and the conclusions drawn.
Numerical results may be validated with experimental results or analytical models.

2.1.2 Several types of reference frames

Flexible MBS analysis aims at computing the elastic deflections of structural com-
ponents undergoing large displacements, including large rotations, wherein the global
motions and deformations are strongly coupled. The strain field is generally deter-
mined by means of shape functions (vibration modes or finite element shape functions)
associated to a finite set of coordinates (amplitude of modes, position of nodes) arising
from the spatial discretization of the flexible body. Depending on the reference frame
wherein deformations are evaluated, several methods have been proposed in the liter-
ature to analyze both the large motions and the deformations in an integrated way,
see Wasfy and Noor (2003) for a detailed review. Hereafter, the inertial frame, the
floating frame and the corotational frame approaches are briefly introduced. The dif-
ferent approaches for an isolated component are depicted in Figure 2.3, which follows
the classification proposed by Wasfy and Noor (2003).

The floating frame of reference method (Fig. 2.3(a)) may be interpreted as an
extension of the analysis of rigid MBS in order to simulate flexible MBS (Shabana and
Wehage, 1983). The motion of a flexible body is separated into a global rigid body
motion represented by the floating frame of reference, and elastic deformations defined
with respect to this body-attached frame (De Veubeke, 1976; Nikravesh and Lin, 2005;
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(a) Floating frame of ref-
erence.

(b) Corotational frame. (c) Inertial frame.

Rigid motions + deformations No distinction
Rigid + Elast. Coord. Absolute Nodal Coordinates (FE)

Figure 2.3: Several types of reference frames.

Shabana, 2013). In case of small deformations, a linear elastic model can be used within
the floating frame leading to compact and simple expressions of elastic forces. Model
order reduction techniques may improve the simulation process by reducing the system
size. Nonetheless, this formalism leads to a highly nonlinear inertia matrix because
rigid and elastic coordinates are coupled by nonlinear terms. In case of more general
situations, when the assumptions of small deformations and small velocities are no
longer valid, the formalism suffers from a lack of accuracy and higher-order terms must
be included to capture the geometrically nonlinear behavior of the system (Wallrapp
and Schwertassek, 1991).

Following Shabana (2013), the equations of motion that govern a flexible MBS using a
floating frame of reference formulation are expressed as mb

xx mb
xθ mb

xf

mb
θθ mb

θf

mb
ff




ẍb0
θ̈
b
0

q̈bf

+

 0 0 0
0 0 0
0 0 Kb

ff


 xb0

θb0
qbf

 =

−


CT
xb

CT
θb

CT
qb

f

λ +


(
gbext

)
x(

gbext
)
θ(

gbext
)
f

+


(
gbvel

)
x(

gbvel
)
θ(

gbvel
)
f

 , b = 1, . . . , nb,

(2.1)

where nb is the number of bodies, qf is the set of flexible coordinates accounting for
the deformations in the body-attached frame, xb0 is a set of Cartesian coordinates that
defines the origin location of the floating frame of reference and θb0 is a set of rotational
coordinates that describes the orientation of the floating frame of reference. The right-
hand-side terms of Equation (2.1) are the reaction force vector C resulting from the
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joint constraints, the external load vector gext and the quadratic velocity vector gvel
accounting for the effect of Coriolis and centrifugal forces.

In Equation (2.1), the separation between the two sets of coordinates is clearly high-
lighted. The first two rows concern the rigid body motion of body b whereas the last
row pertains to the flexibility of this body. This characteristic is the cornerstone of
the Equivalent Static Load (ESL) method initially developed by Kang et al. (2005) to
perform the structural optimization of flexible component in MBS. This is detailed in
Articles [3]-[4] given in appendix.

Examples of MBS software tools based on this formalism are RecurDyn1, Simpack2

or Robotran3. These simulation tools were initially developed to perform rigid MBS
simulation and were afterwards improved to account for component flexibility.

An inertial frame approach is typically adopted for classical nonlinear finite el-
ement formulations (Géradin and Cardona, 2001; Bauchau, 2011), wherein absolute
nodal coordinates are defined. These coordinates correspond to the displacements and
orientations of each node of the finite element mesh (Fig. 2.3(c)). In contrast to the
floating frame of reference approach, the resulting motion of the flexible MBS does not
exhibit any decoupling between the global rigid body motion and the deformations.
However, due to the geometric nonlinearities involved by large amplitude motions and
deformations, this formulation requires a nonlinear elastic model even if the deforma-
tions are small in order to accommodate the nonlinear relation between the strains and
the generalized coordinates. Nonetheless, the inertial frame approach eases the inertia
force computation. This formulation is further developed in Section 2.1.3, as a classical
nonlinear finite element formalism is mainly adopted in this thesis.

The corotational frame approach can be interpreted as a mixture between the
inertial frame and the floating frame of reference approaches (Fig. 2.3(b)). It has been
proposed to facilitate the computation of elastic forces in a nonlinear finite element
model (Belytschko and Hsieh, 1973; Cardona and Geradin, 1991; Crisfield et al., 1997).
Although the absolute nodal coordinates are used to determine the spatial configuration
of the flexible body, a corotational frame is attached to each element of the finite
element mesh and follows its gross motion. This approach is interesting as it combines
the advantages of the two previous methods. First, despite the large displacements
of flexible bodies, a linear elasticity model can be used at the element level in case of
small deformations. Ergo, the computation of elastic forces is facilitated. Then, the
generalized coordinates are not explicitly separated into a set defining the position of
the body-attached frame and a set of flexible coordinates. The position and orientation
of the corotational frame are determined as a function of the absolute nodal coordinates
of the finite element nodes, which can be considered as intermediate variables describing

1www.functionbay.org
2www.simpack.com
3www.robotran.be

http://www.functionbay.org/
http://www.simpack.com/
http://www.robotran.be/
http://www.functionbay.org/
http://www.simpack.com/
http://www.robotran.be/
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the gross motion of the flexible body. A corotational description is also employed to
formulate superelements within the nonlinear finite element method. The corotational
frame approach is used in Article [3] in order to derive the equivalent static loads for
MBS described using a classical nonlinear finite element formalism.

MBS simulation tools resulting from the last two approaches generally stem from the
finite element community, and are available in the software Samcef Mecano4 for in-
stance.

2.1.3 Classical nonlinear finite element approach for MBS dynamics

The standard nonlinear finite element formulation (Bauchau, 2011; Géradin and Car-
dona, 2001) is mainly adopted in this thesis to describe flexible MBS dynamics. The
next two sections present the basic principles of the method.

This formulation stems from the finite element community that initially developed a
robust theory for the analysis of a lone flexible component. Later on, the theory was
generalized to analyze the dynamics of flexible MBS. As a result, the theory accounts
for the flexibility and the nonlinear effects in a natural way. Also, the principles of the
finite element method are recovered, i.e. the contributions to the equations of motion
of each component and each kinematic joint are first expressed independently and
are afterwards assembled via a systematic procedure. In the nonlinear finite element
formalism, flexible components, rigid bodies as well as superelements can be mixed to
obtain the best compromise between accuracy and computational efficiency.

Equations of motion

The equations of motion of flexible MBS are established from the Hamilton principle of
mechanics. Let us assume that the potential energy of external forces V(q), the strain
energy of elastic bodies W(q) and the kinetic energy defined by

K(q, q̇) = 1
2 q̇TM(q) q̇ (2.2)

of a flexible MBS are known. The vector q contains the displacements and orientations
of each node of the finite element mesh, i.e. the absolute nodal coordinates in the inertial
frame. We note that the symmetric mass matrix M may depend on the generalized
coordinates due to the parameterization of the rotation variables. The Lagrangian
function of the conservative system is defined as

L(q, q̇) = K(q, q̇)− V(q)−W(q) . (2.3)

By combining the Hamilton principle with the Lagrange function (2.3), the equations
of motion can be derived. Hamilton principle states that the actual trajectory of the

4www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-
motion-analysis.shtml

http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
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unconstrained system between two time instants ti and tf is such that the variation
of the integral is stationary provided that the initial and final configurations are fixed.
However, sincem kinematic constraints are enforced between generalized coordinates of
the system, the trajectory is then a solution of the following constrained minimization
problem

minimize
q

A =
∫ tf

ti

L dt

subject to Φ (q) = 0.
(2.4)

The term Φ (q) is a set of algebraic equations imposing holonomic constraints between
nodal coordinates, which typically represents the connections between bodies due to
hinges, spherical joints, etc. The treatment of the more general case of non-holonomic
constraints Φ (q, q̇, t) is described in e.g. Géradin and Cardona (2001).

Several methods exist to solve this type of problem. A possibility is to use the La-
grange multiplier method wherein additional unknowns, the Lagrange multipliers λ,
are associated to the algebraic equations Φ, transforming the constrained minimiza-
tion problem into an unconstrained problem. Expressing the stationarity condition on
this unconstrained problem leads to

δ

∫ tf

ti

(
L− λTΦ

)
dt = 0. (2.5)

Integrating by part Equation (2.5) and remembering that the motion is specified at
instants ti and tf yields( d

dt

(
∂L

∂q̇

)
− ∂L

∂q + C
)
δq + δλTΦ = 0, (2.6)

where C represents the internal forces applied onto the generalized coordinates due to
the holonomic constraints. These reaction forces Ci are expressed as

Ci = ∂Φ
∂qi

T

λ. (2.7)

An augmented Lagrangian method can be employed to improve the numerical condi-
tioning of the solution. The expression of Ci is modified by means of two terms, a
scaling factor k and a penalty term pΦT

qΦ, leading to

Ci = ΦT
q (kλ + pΦ) (2.8)

where the subscript (•)q denotes the derivative with respect to q. The multiplication of
the constraint equations by a scaling factor k creates matrices with terms of the same
order of magnitude which avoids the ill-conditioning of the iteration matrix (Géradin
and Cardona, 2001). The penalty term pΦT

qΦ eases the convergence of the Newton-
Raphson iterative process when Φ → 0. Since this term vanishes at convergence, the
response of the system is independent of the choice of the penalty factor p.
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Introducing Equation (2.3) into Equation (2.6) and considering an augmented La-
grangian approach, the equations of motion finally take the general form of an index-3
differential-algebraic system (DAE)

M (q) q̈ + ggyr (q, q̇) + gint (q) + ΦT
q (q) (kλ + pΦ (q)) = gext (q) , (2.9)

kΦ (q) = 0, (2.10)

where q, q̇ and q̈ are respectively the generalized displacement, velocity and accel-
eration vectors, and gext, gint and ggyr are respectively the external, internal and
complementary inertia forces. The set of Lagrange multipliers λ can be interpreted as
the reaction forces needed to impose the algebraic constraints Φ (q) = 0.

The equations of motion consist of a set of n nonlinear differential equations (2.9)
supplemented by m algebraic equations (2.10) related to the kinematic and rigidity
constraints. Nonlinearities arise from various origins: nonlinear material behavior,
geometry, contact phenomena, etc. Thusly, at each simulation time step, the nonlinear
DAE-system of n + m equations with n + m unknowns must be solved. The set of
equations is often large since numerous generalized coordinates are involved but the
global system matrices are sparse.

Time integration scheme

Numerical methods are employed to solve the equations of motion. Three families of
time integration methods can be identified in the literature: the algorithms for first-
order ODEs (multistep and Runge-Kutta methods), the algorithms for second-order
ODEs (methods of the Newmark family) and structure-preserving methods (energy-
preserving schemes and variational integrators). This section focused on an algorithm
of the Newmark family, namely the generalized-α method initially developed by Chung
and Hulbert (1993), which is used in this research.

The Newmark family of methods has several advantages to solve stiff differential-
algebraic equations as encountered with the analysis of flexible MBS due to kinematic
constraints. Géradin and Cardona (2001) suggested to use the generalized-α time in-
tegration scheme to solve the set of nonlinear DAE equations (2.9)-(2.10). Indeed,
this method combines the advantages of one-step implementation, unconditional sta-
bility for linear problems, second-order accuracy and adjustable high-frequency numer-
ical damping. Numerical damping is especially valuable to eliminate spurious high-
frequency effects caused by the higher-order modes of a finite element model. Arnold
and Brüls (2007) achieved a full convergence analysis in the DAE case and demonstrated
that, despite the presence of algebraic constraints and the non-constant character of
the mass matrix, the generalized-α method leads to accurate and reliable results with
a small amount of numerical damping.

The generalized-α method is an implicit time integrator, i.e. at each time step, the
computation of the generalized coordinates and their velocity requires the knowledge
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of accelerations at the current time step. To ensure the stability of the numerical
solution, implicit time integrators are preferable. Indeed, the crucial choice of the time
step size is mainly governed by accuracy considerations as the high frequencies are
filtered out by numerical damping.

At each time step of the MBS analysis, the numerical variables qn+1, q̇n+1, q̈n+1 and
λn+1 must satisfy the residual equation{

res ≡Mq̈ + g + ΦT
q (kλ + pΦ) = 0,

kΦ = 0. (2.11)

In order to have the same number of equations as the number of unknowns (q, q̇, q̈,
λ), the equations of motion are supplemented by the Newmark integration formulae
resulting from a Taylor series expansion of the displacement and velocity fields. Ac-
cording to the generalized-α method, a vector a of acceleration-like variables is defined
by the recurrence relation

(1− αm) an+1 + αman = (1− αf ) q̈n+1 + αf q̈n, (2.12)

with a0 = q̈0. The vector an is an auxiliary variable used by the algorithm and
can be interpreted as an approximation of the true acceleration q̈(t) at time t =
tn + h (αm − αf ) where h denotes the time step. The time integration scheme is sub-
sequently obtained by employing a in the Newmark integration formulae

qn+1 = qn + hq̇n + h2
(1

2 − β
)

an + h2βan+1, (2.13)

q̇n+1 = q̇n + h (1− γ) an + hγan+1. (2.14)

If the parameters αf , αm, β and γ are properly chosen according to Chung and Hulbert
(1993), second-order accuracy and unconditional stability are guaranteed for linear
problems. It is convenient to define these parameters in terms of the spectral radius at
infinite frequencies ρ∞ ∈ [0, 1] as

αm = 2ρ∞ − 1
ρ∞ + 1 , αf = ρ∞

ρ∞ + 1 ,

γ = 1
2 − αm + αf , β = 1

4

(
γ + 1

2

)2
.

(2.15)

The choice ρ∞ = 0 annihilates the high frequency response whereas ρ∞ = 1 corresponds
to no numerical damping.

To solve the implicit system of equation (2.11) at time tn+1, a Newton-Raphson proce-
dure is employed. Using a predictor-corrector scheme, the unknown response (q̈, q̇,q,λ)
is divided into an approximate solution (q∗, q̇∗, q̈∗,λ∗) and a correction (∆q,∆q̇,∆q̈,∆λ)
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leading to

q → q∗ + ∆q, (2.16)
q̇ → q̇∗ + ∆q̇, (2.17)
q̈ → q̈∗ + ∆q̈, (2.18)
λ → λ∗ + ∆λ. (2.19)

where the subscript n+1 is dropped. The correction is computed based on the linearized
form of the residual equation (2.11) around the approximate solution (q∗, q̇∗, q̈∗,λ∗)
as [

reslin (q∗ + ∆q, q̇∗ + ∆q̇, q̈∗ + ∆q̈,λ∗ + ∆λ, t)
kΦlin (q∗ + ∆q, t)

]
=[

res∗ (q∗, q̇∗, q̈∗,λ∗, t)
kΦ∗ (q∗, t)

]
+
[

M 0
0 0

] [
∆q̈
∆λ

]
+[

Ct 0
0 0

] [
∆q̇
∆λ

]
+
[

Kt kΦT
q

kΦq 0

] [
∆q
∆λ

]
= 0, (2.20)

where Ct = ∂res/∂q̇ and Kt = ∂res/∂q denote respectively the tangent damping and
stiffness matrices.

To solve Equation (2.20), the integration formulae (2.12)-(2.14) are manipulated by
solving Equation (2.12) for an+1 and inserting that result into Equations (2.13)-(2.14).
The resulting two equations are

∆q̇ = γ

βh
∆q, (2.21)

∆q̈ = 1
βh2

1− αm
1− αf

∆q. (2.22)

Using Equations (2.21)-(2.22), the linearized form of the update equation (2.20) reduces
to

St
[

∆q
∆λ

]
= −

[
res∗
kΦ∗

]
, (2.23)

where St is the tangent iteration matrix defined as

St =

 1− αm
1− αf

1
βh2 M + γ

βh
Ct + Kt kΦT

q

kΦq 0

 . (2.24)

Equation (2.23) is solved for the correction (∆q,∆λ) and the approximate solution is
updated, cf. Equations (2.16)-(2.19) and (2.21)-(2.22). Iterations continue until the
residuals of Equation (2.11), res and Φ, are close to zero, i.e. until ‖res‖ < tolres and
‖Φ‖ < tolΦ.
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Algorithm 1 summarizes the previous developments. We note that the process is ini-
tialized with λn+1 = 0 and q̈n+1 = 0. Initialization with the previous time step, i.e.
q̈n+1 = q̈n and λn+1 = λn, is also possible but does not significantly improve the
convergence speed. The condition it < itmax limits the number of iterations inside the
iterative process.

Algorithm 1 Generalized-α time integration scheme
Initialize values q0, q̇0
Assign q̈0 = a0 = 0
for n = 0 to nend do

Assign q̈n+1 = 0, λn+1 = 0
Compute an+1, qn+1, q̇n+1 via (2.12)-(2.14)
while (‖res‖ < tolr and ‖Φ‖ < tolΦ and it < itmax) do

Compute the residuals res and Φ
Compute the corrections via (2.23)[

∆q
∆λ

]
= −S−1

t

[
res
kΦ

]
Increment q, q̇, q̈, λ via (2.16)-(2.19) and (2.21)-(2.22)

end while
an+1 = an+1 + 1− αf

1− αm
q̈n+1, cf. (2.12)

end for

2.1.4 Lie group formalism for MBS dynamics

In a classical nonlinear finite element approach (Géradin and Cardona, 2001; Bauchau,
2011), the treatment of rotations is an important issue since large rotation motions
are considered, leading to a non-trivial problem. To illustrate the complexity of the
problem, one can observe the non-commutative property of the rotation matrix prod-
uct, i.e. reversing the order of two successive rotations around two different axes leads
to different geometric configurations of the object to which they are applied. Also, a
parameterization of the rotation variables is needed and may strongly affect the effi-
ciency of nonlinear computations as it depends on the adequacy of the set of parameters
adopted (Bauchau and Trainelli, 2003). Moreover, singularities of the parameteriza-
tion exist and require a careful consideration. In this section, a particular Lie group
formalism is presented which, among others, circumvents the problem of rotation pa-
rameterization.

Free rigid body motion analysis

Before introducing the mathematical description of flexible MBS using a Lie group
formalism, let us analyze the free 3D motion of a single rigid body as depicted in
Figure 2.4. We assume the existence of a fixed inertial frame {O,X, Y, Z}. The motion
of the rigid body can be described as the motion of a body-attached frame {OA, x, y, z}
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with respect to the inertial frame. According to the notation of Figure 2.4, geometric
vectors are introduced to describe the position of an arbitrary point P of the rigid body,
leading to

−→x = −→x OA
+−→x ′. (2.25)

X

Y

Z
O

x

yz

OA

Configuration A

P

−→x ′

−→x

−→x OA

x

y
z

OB

Configuration B

x

y
z

OC

Configuration C

Figure 2.4: Free 3D motion of a single rigid body represented at three different config-
urations.

The geometric vector −→x ′ can be expressed either in the inertial frame by the 3 × 1
algebraic vector x′ or in the body-attached frame by the 3 × 1 algebraic vector X.
These vectors satisfy

x′ = RX (2.26)

where R is a 3×3 rotation matrix. As a consequence, Equation (2.25) can be rewritten
as

x = xOA
+ RX (2.27)

which is the fundamental equation describing the rigid body kinematics. The rigid body
transformation from a reference configuration to a configuration A is thus represented
by a rotation matrix R and a position vector xOA

. The transformation is defined via 6
parameters: 3 parameters are related to xOA

and 3 parameters are related to R where
the orthogonality conditions have been considered, enforcing 6 independent constraints
over the 9 initial parameters.

Using the homogeneous representation of vectors, the rigid body motion can be de-
scribed in a compact way as [

x
1

]
= H(R,x)

[
X
1

]
(2.28)
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where the 4× 4 matrix H(R,x) is defined as

H = H(R,x) =
[
R x
0 1

]
. (2.29)

It is worth noticing that the matrix H represents a frame transformation. Moreover,
two transformations of the body can be conveniently composed. Let us consider three
distinct configurations A, B and C of the rigid body (Fig. 2.4). The transformation from
A to B and from B to C are respectively denoted HAB and HBC . The configuration
transformation from A to C is simplistically defined by the following composition law

HAC = HABHBC . (2.30)

The setH(R,x) has the mathematical structure of a matrix Lie group, which is denoted
as the special Euclidean group SE(3). In this thesis, the Special Euclidean group SE(3)
is considered since this Lie group leads to a formalism with inherent valuable properties
to perform the structural optimization of MBS.

Lie group description of mechanical systems on SE(3)

While continuing with a nonlinear finite element approach as in Géradin and Cardona
(2001), the dynamics of flexible MBS can alternatively be described on a k-dimensional
manifold G with a Lie group structure (Brüls et al., 2012; Sonneville and Brüls, 2014;
Sonneville et al., 2014). From a mathematical point of view, a Lie group G is a differ-
entiable manifold for which the product (or composition) and inversion operations are
smooth maps and on which differential geometry can be employed to perform opera-
tions. This section briefly introduces some fundamentals of the Lie group theory. A
more detailed description can be found in Holm et al. (2009) or Boothby (2009).

With the Special Euclidean group SE(3), the configuration space G of a flexible MBS
is described as a set of frame transformations that can be represented by 4×4 matrices,
defined as

HI =
[

RI xI
03×1 1

]
(2.31)

where RI ∈ SO(3) is a rotation matrix and xI ∈ R3 is a position vector. These frames
are used to describe 2 different features. 1) The absolute position and orientation of
each node of the rigid and flexible bodies. 2) The relative transformation occurring
in kinematic joints. As a consequence, a mixed variable formulation is achieved since
absolute and relative variables are similarly treated. The matrix HI has kI = 6 degrees
of freedom for each node of the rigid and flexible bodies, namely 3 translations and
3 rotations. However, for kinematic joints, the matrix HI is restricted to belong to
a subgroup of SE(3) and has kI < 6 degrees of freedom. Hence, the dimension k of
the group is obtained by summing the degrees of freedom of the nodes and the degrees
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of freedom of the relative transformations. The configuration of the system H is thus
represented as a block diagonal matrix gathering all the HI ’s.

The composition operation G × G → G that associates two elements of the group to
one element of the group is based on the matrix product

Htot = H1H2. (2.32)

This composition rule has several properties, e.g. the existence of a neutral element e
such that He = eH = H, which is simply the identity matrix, and the existence of an
inverse such that ∃ H−1 : HH−1 = H−1H = e, ∀ H ∈ G.

The tangent space at a point H ∈ G is a vector space denoted THG and the Lie algebra
is defined as the tangent space at the identity element of the group, i.e. g = TeG. The
Lie algebra is a vector space that is isomorphic to Rk by an invertible linear mapping,

(̃•) : Rk → g, v 7→ ṽ. (2.33)

The time derivative can be introduced by mean of a left invariant vector field as

Ḣ = Hṽ (2.34)

where ṽ is an element of the Lie algebra g. This results from a fundamental property
stating that a tangent vector at any point H can be represented in the Lie algebra
using the left translation map LH. Indeed, LH is a diffeomorphism of G

LH : G→ G,y→ Hy (2.35)

where y ∈ G and its derivative define a diffeomorphism between TyG and THyG. In
the particular case y = e, a bijection exists between TeG = g and THG:

DLH(e) : g→ THG, w̃ 7→ DLH(e)w̃ (2.36)

where DLH(e)w̃ is the directional derivative of LH evaluated at point e in the direction
w̃ ∈ g. Hence, a tangent vector w̃ ∈ g defines a left invariant vector field on G which
is constructed by the left translation of w̃ to the tangent space at any point of G.

At the light of the the previous developments, the Lie algebra is thus a vector space
such that ṽ can be associated to a velocity vector v of dimension k, which includes 6
(resp. kI) velocity variables for each node (resp. relative transformation). For each
node, the element ṽI is defined as

ṽI =
[
Ω̃I uI
0 0

]
(2.37)
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where uI corresponds to the 3 linear velocity component vector and Ω̃I is the well-
known skew-symmetric matrix composed of the 3 angular velocity components ΩI =
[ΩI1 ΩI2 ΩI3 ]T , i.e.

Ω̃ =

 0 −ΩI3 ΩI2

ΩI3 0 −ΩI1

−ΩI2 ΩI1 0

 . (2.38)

The velocity vector vI represents the absolute velocity of a node expressed in the nodal
local frame. Hence, the interpretation of the velocity vector is the same as with the
classical nonlinear finite element approach.

The exponential map is a useful operator that maps any element of the Lie algebra to
an element of the Lie group,

exp : g→ G, q̃ 7→ q = exp(q̃). (2.39)

The inverse map is called the logarithmic map,

log : G→ g, q 7→ q̃ = log(q). (2.40)

The nodal variables are a priori considered as independent variables whereupon 6 kine-
matic constraints between nodal frames and relative transformation frames are intro-
duced for each kinematic joint. Formally, m constraints Φ : G → Rm are enforced,
restraining the dynamics to the submanifold N of dimension k −m

N = {H ∈ G : Φ(H) = 0} . (2.41)

Equations of motion in a Lie group formalism

Using the classical principles of mechanics (Géradin and Cardona, 2001) and following
a similar approach as detailed in Section 2.1.3, the equations of motion of a flexible
MBS described with a Lie group formalism on the Special Euclidean group SE(3) have
the following index-3 differential-algebraic (DAE) structure

Ḣ = Hṽ (2.42)
r = Mv̇− v̂TMv + g(H) + BT (H)λ = 0k×1 (2.43)

Φ(H) = 0m×1. (2.44)

where (̂•) is a linear operator of the Lie group which transforms a k × 1 vector into a
k × k matrix (Brüls et al., 2011a). The configuration of the system is represented by
H ∈ G, v ∈ Rk is the velocity vector and λ ∈ Rm is the vector of Lagrange multipliers
associated with the constraints Φ. M is the k×k symmetric mass matrix, the vector g
gathers the external, internal and complementary inertia forces and B is the m × k
matrix of constraint gradients.
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Notice that the first equation is a matrix equation while the other two are vector equa-
tions. The equations of motion (2.42)-(2.44) represent the dynamics of a general class
of conservative flexible multibody systems in a local frame approach. The formulation
can be easily extended to account for non-conservative forces. More details about the
derivation of the equations of motion are given in Article [4].

These equations of motion can be directly integrated on the nonlinear manifold without
introducing generalized coordinates, i.e. without introducing a parameterization of
rotations. The adopted Lie group time integrator described in Brüls and Cardona
(2010) and in Brüls et al. (2012), is an extension of the generalized-α time integration
method for the simulation of flexible multibody systems. This Lie group time integrator
exhibits second-order accuracy for all solution components, i.e. for nodal translations,
rotations and Lagrange multipliers.

The Lie group formalism offers several advantages compared to a classical nonlinear
finite element approach. Firstly, no parameterization of rotations is needed to derive
the equations of motion that can then be directly solved on the nonlinear manifold.
It ensues important simplifications in the formulations and algorithms. Secondly, dis-
placements and rotations are represented as increments with respect to the previous
configuration, and those increments can be expressed in the local frame. As a result,
geometric nonlinearities are automatically filtered from the relationship between in-
cremental displacements and elastic forces, which strongly reduces the fluctuations of
the iteration matrix during the simulation. The increments result from the Newton-
Raphson iterative scheme that is used at each time step to satisfy the residual form of
the equations of motion. The iterative process is similar to the one described for a stan-
dard nonlinear finite element formalism, see Equations (2.20)-(2.24). Furthermore, the
choice of the Special Euclidean group SE(3) combined with the left invariant represen-
tation of derivatives defined in Equation (2.36), enable to consider the tangent stiffness
matrix Kt as constant under the assumption of small deformations. The tangent stiff-
ness matrix is defined from the directional derivative as Dr(H,v, v̇,λ) · δ̃h = Ktδh.
The efficient evaluation of ESL for MBS optimization, as detailed in Article [4], takes
advantage of these properties.

2.2 Structural optimization

This section introduces the fundamental principles of structural optimization and gives
an overview of the techniques used in this work. In Chapter 3, these structural op-
timization techniques are coupled with the dynamic analysis of MBS to perform the
structural optimization of MBS components.

2.2.1 Design parameterizations and design variables

Over years, optimization techniques have been developed to improve the design process
and to lessen the empirical or intuitive choices of the designer. The generality of
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optimization methods is related to the number of inputs coming from the designer.
Indeed, a smaller number of inputs leads to a broader design space and more freedom
for the optimizer. Nevertheless a more general optimization problem usually requires
a higher computational cost, which explains the concurrent evolution of optimization
techniques and computational performance.

Initial designs

Optimal designs

Optimal sizing Shape
optimization

Topology
optimization

Figure 2.5: Structural optimization parameterizations.

Optimal sizing of structures, also known as automatic sizing, is the simplest strategy
in structural optimization. This method mainly concerns the modifications of transverse
dimensions of structural components, such as the cross section of bars and beams or
the thickness of plate and shell elements (Fig. 2.5), considering that the shape and
the connectivity of the structure are known a priori and fixed during the optimization
process. Since no geometrical modification of the structure arises, the same structural
model, e.g. the finite element mesh, is kept along the optimization process.

Zienkiewicz and Campbell (1973) initiated the developments of shape optimization
whereupon a rapid evolution occurred until reaching an industrial maturity. Shape op-
timization is a more ambitious method consisting in the design of internal and external
boundaries of the structure without modifying the component topology. Two different
approaches can be adopted. Firstly, the optimization problem can be formulated at the
level of the CAD model, independently of the finite element model, wherein the design
variables are the parameters describing the geometrical entities such as a length, a ra-
dius, etc, or more generally, the control points of NURBS curves (Braibant and Fleury,
1984; Beckers, 1991). Secondly, the shape optimization problem can accommodate the
nodal coordinates and nodal thicknesses as design variables whereby the optimizer di-
rectly works on the finite element mesh (Bletzinger et al., 2010). Shape optimization is
suitable to improve detailed design of structures considering simultaneously numerous
criteria such as displacement, frequency, stress or buckling requirements.

The main issue of shape optimization concerns the mesh distortion occurring during
the optimization. The regular mesh of the initial design is distorted after a few de-



2.2 Structural optimization 29

sign iterations whereupon tangled and sliver elements appear. Ergo, the accuracy of
the simulated response decreases. Adaptative mesh algorithms have been developed to
combat this problem, however the re-meshing operations are time consuming (Haftka
and Grandhi, 1986; Duysinx et al., 1994; Schleupen et al., 2000). Moreover, adapta-
tive mesh techniques produce discontinuities at the level of the discretized model and
consequently in the objective function and/or constraints between iterations (Braibant
and Morelle, 1990; Van Keulen et al., 2005).

Besides the classical shape optimization, Van Miegroet and Duysinx (2007) coupled
a level set description of the geometry with the extended finite element method (X-
FEM). This association leads to a generalized shape optimization wherein the com-
ponent topology can be altered. More recently, Christiansen et al. (2015) combined
shape and topology optimizations to perform 3D optimization of structures. Their
optimization process is based on the Deformable Simplicial Complex (DSC) method
(Misztal and Bærentzen, 2012), which represents a solid structure using a conforming
tetrahedral mesh.

Topology optimization has been developed to determine the optimal design of a
component without a priori information of the component layout (Bendsøe and Sig-
mund, 2003; Eschenauer and Olhoff, 2001). The optimization method only requires
the definitions of the spatial design domain, material properties, boundary conditions
and load cases. Hence, regarding the reduction of the cost function, this method out-
performs the two previous methods for which the designer’s initial choices strongly
influence the outcome of the optimization process.

As depicted in Figure 2.6, topology optimization problems can be formulated as an
optimal distribution of a certain quantity of material within a fixed design domain in
order to minimize some performance criteria, generally a global criterion such as the
compliance or the fundamental eigenfrequency (Bendsøe, 1989). As a consequence,
the explicit CAD design parameterization used in sizing and shape optimizations is
replaced by an implicit representation. Two main parameterization approaches can be
adopted either by using an indicator function leading to the SIMP approach (Bendsøe
and Sigmund, 1999, 2003) or by resorting to level set functions (Wang et al., 2003;
Allaire et al., 2004). Besides, topology optimization works on a fixed mesh avoiding
the mesh distortion issues encountered in shape optimization.

Since the seminal work of Bendsøe and Kikuchi (1988) who first handled efficiently
topology optimization using the homogenization method, this method has undergone
considerable developments leading to an industrial maturity and the commercialization
of several finite element codes, e.g. Optistruct by Altair5, Topol by Samtech6 and
SIMULIA Tosca Structure by FE Design7, now owned by Dassault Systèmes.

5www.altairhyperworks.com
6www.plm.automation.siemens.com
7www.fe-design.de

http://www.altairhyperworks.com
http://www.plm.automation.siemens.com/fr_be/products/lms/samtech/index.shtml
http://www.fe-design.de/en/products/simulia-tosca-structure/
http://www.altairhyperworks.com
http://www.plm.automation.siemens.com/fr_be/products/lms/samtech/index.shtml
http://www.fe-design.de/en/products/simulia-tosca-structure/
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Design domain where
the material properties
are distributed

Solid: µi = 1 →
{
Ei = E0

ρi = ρ0

Void: µi = 0 →
{
Ei = 0
ρi = 0

Figure 2.6: Optimal distribution of material in topology optimization (Duysinx and
Bruyneel, 2002).

2.2.2 Design problem formulation

Engineering design problems can be cast into mathematical optimization problems upon
which optimization methods can be applied. The optimization problem concerns the
minimization of an objective function f0 (p) subjected to m constraints fj (p) ≤ f j
which ensure the integrity of the structural design and its manufacturability (Haftka
and Gürdal, 1992; Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006). The
vector p gathers the nv independent design variables pi that are modified by the op-
timizer. Side-constraints p

i
≤ pi ≤ pi limit the design space and reflect technological

considerations. Mathematically, the optimization problem reads

minimize
p

f0 (p)

subject to fj (p) ≤ f j , j = 1, . . . ,m,
p
i
≤ pi ≤ pi, i = 1, . . . , nv.

(2.45)

Depending on the type of optimization considered, the design variables p can be geo-
metrical parameters of CAD features such as the radius of a circle or the position of
NURBS curve control points for shape optimization or in topology optimization, they
are related to the volume fraction of each element. The cost and constraint functions f0
and fj are generally implicit nonlinear functions of the design variables. They represent
the mass, the compliance, the displacements, the stresses, etc.

With the general and robust design framework provided by this problem formulation,
optimization problems can be solved using the various types of optimization algorithms
presented in the next section.
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2.2.3 Optimization methods

Several strategies can be adopted to solve optimization problems. The beginnings of
structural optimization were essentially based on Optimality Criteria (OC) methods
that use an iterative scheme based on the optimality conditions to reach the optimal
solution. The optimality condition characterizes the optimal solution and its defini-
tion constitutes the starting point of the method. It can be rigorously derived from
mathematical statement such as the Karush-Kuhn-Tucker (KKT) conditions or it can
be intuitive as for the fully stressed design (FSD) criterion (Haftka and Gürdal, 1992),
which is the most famous criterion. Afterwards, an iterative procedure that modi-
fies the variables during the optimization must be adopted. Rigorous mathematical
methods or heuristic procedures can be implemented to progress towards the opti-
mality condition. The first rigorous optimality criterion method has been introduced
by Prager and Taylor (1968). Later on, Fleury (1979b) demonstrated the usefulness of
optimality criteria by establishing a relationship between optimality criteria and dual
solution methods combined with approximation techniques. However, these methods
are problem-dependent and are only convenient to solve a limited number of optimiza-
tion problems. Moreover, a lack of convergence can be observed with no guarantee to
reach the optimum solution (Ma et al., 1993).

Mathematical Programming (MP) methods consist in a second family of strategies
relying on mathematical tools to reach an optimum solution. The steepest descent
method is the simplest MP method that uses the information given by the gradient of
the functions to improve the current solution. To minimize the value of the function f0,
this method characterizes the improved solution p∗ at a given iteration by p∗ = p −
l∇f0, where l is the step length and −∇f0 is the descent direction. This iterative
process continues until a convergence criterion is achieved. Constrained optimization
problems are usually tackled by a Lagrangian approach which allows accounting for the
constraints in a convenient way.

In structural optimization, the problem is generally nonlinear and implicit with respect
to the design variables. To solve these problems efficiently, the resolution of the original
problem is circumvented by solving a sequence of approximated sub-problems, which
is nowadays known as the sequential convex programming (Schmit, 1960; Fox,
1965; Fleury, 1973; Schmit and Farshi, 1974; Schmit and Miura, 1976; Schmit and
Fleury, 1980). The sub-problems are explicit in the design variables whereupon they
can be solved efficiently using mathematical programming algorithms. Each structural
response is replaced by an explicit approximation, which is generally built to be convex
and separable.

Besides these deterministic methods, a third strategy concerns the heuristic meth-
ods which include the evolutionary algorithms (Ashlock, 2006; Simon, 2013; Eiben and
Smith, 2003). Many variants of evolutionary algorithms exist but the underlying idea
behind all these techniques is similar. Given a population of individuals, the environ-



32 Chapter 2. Fundamental Tools

mental pressure causes natural selection whereupon a fitness of the population rises.
Concretely, an initial random set of candidate solutions, i.e. elements of the design
space, is selected and an abstract fitness measure is related to each candidate based on
the cost function to minimize, the least the better. Based on this fitness, natural evo-
lution is applied to the candidates. The better are chosen to seek the next generation,
the worst disappear while recombination and/or mutation of candidates are also used
to generate new candidates for the next generation and to maintain the possibility of
exploring the full design space. This process is repeated until a convergence criterion
is reached, e.g. a criterion on the cost function or a maximum number of iterations.
These evolutionary methods generally require a large number of iterations and func-
tion evaluations to converge to an acceptable solution but they suffer less from being
stuck in local optima. These methods are useful when the gradient computations of the
functions are painstaking or not available since these are zero-order methods. Swarm
algorithms are related to this class of heuristic methods (Kennedy and Eberhart, 1995).

Many high-fidelity models are so computationally expensive that applying the previ-
ous optimization methods directly to the problem is not practical, often due to a time
constraint. As a consequence, approximate models, also called surrogate models or
meta models, are constructed whereupon the optimization is performed (Roux et al.,
1998; Queipo et al., 2005; Myers et al., 2009; Colson et al., 2010; Koziel and Leifsson,
2013). Classical and popular surrogate models are polynomial response surfaces, Krig-
ing, support vector machines and artificial neural networks. During the optimization
process, a correction may be applied to the approximate model so that it better fits the
original model. Different corrections were developed such as the additive/multiplicative
correction (Eldred et al., 2004), the space mapping (Bandler et al., 1994, 2004) and the
manifold mapping (Echeverria and Hemker, 2005).

2.2.4 Mathematical programming approach

Mathematical programming approach is mainly adopted in this thesis. Therein, this
section details its main principles.

Concepts of approximations and convex sub-problems

The general optimization problem (2.45) generally involves nonlinear and implicit
functions with respect to the design variables. Furthermore, their nature results in
a monotonous or non-monotonous behavior with respect to a given design variable
change. Hence, the direct solution of the original problem with mathematical program-
ming methods is too heavy from a computational point of view since the evaluation
of the functions and their derivatives require a numerical computation, e.g. finite ele-
ment analysis or MBS analysis. In order to solve efficiently the problem, Fleury (1973)
proposed to replace the resolution of the original optimization problem (2.45) by a
sequence of explicit sub-problems (2.46) with respect to the design variables, that are
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solved iteratively. The approximated problem reads

minimize
p

f̃k0 (p)

subject to f̃kj (p) ≤ f j , j = 1, . . . ,m,
p
i
− αki ≤ pi ≤ pi + βki , i = 1, . . . , nv.

(2.46)

where k is the iteration number, (̃•) denotes the explicit approximation of the functions
around the current design point p(k) and the parameters αki and βki are move limits that
restrain the modification of the current design point within a neighborhood. The idea
underlying the method is that each sub-problem must steadily improve the solution
of the original problem and converge towards the original problem, i.e. a convergent
series of design points.

Later on, the notion of sequential convex programming (SCP) generalized the
approach wherein each approximation is convex to enforce a conservative behavior
(Fleury, 1993). As illustrated in Figure 2.7, an explicit approximation is constructed
at the current design using an expansion based on the value of the responses, combined
with their first order derivatives and sometimes also with their second order derivatives.
Afterwards, efficient mathematical programming algorithms such as Lagrangian maxi-
mization (dual method) or interior point methods are used to solve the approximated
problems. The iterative process of the SCP method is illustrated in Figure 2.8.

Explicit local

convex 

approximation

Implicit function

to minimize

New approximation

point Successive quadratic

approximations

Solution of

the approximated problem

Iter 1

Iter 2

Iter 4

Iter 3

fj(p)

Figure 2.7: Sequential convex programming approach.

Resolution of the approximated sub-problems

The idea of replacing the original problem by a sequence of sub-problems stands since
efficient mathematical programming algorithms exist to solve the sub-problems. In-
deed, powerful and efficient methods such as sequential quadratic programming (SQP)
methods (Belegundu and Arora, 1984; Schittkowski, 1986) are tailored to solve these
types of problems. Nonetheless, the demonstration of obtaining an efficient method
has been realized by Fleury (1979a) who proposed to resort to a dual maximization
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Initialization:
k = 0 and initial design p(k)

At the current point p(k), computation of the cost and
constraint function responses and their derivatives:

fj(p
(k)) and ∂fj(p

(k))/∂pi,
j = 0, . . . ,m and i = 1, . . . , nv

Generation of the approximated functions:
f̃j(p), j = 0, . . . ,m

Resolution of the explicit sub-problem.
Then p(k+1) = p(k)∗ and k = k + 1.

Convergence ?

Stop

No

Yes

Figure 2.8: Iterative process of the sequential convex programming method (Bruyneel
et al., 2002).

approach. In this approach, the primal problem with a high number of variables is
replaced by its dual problem. In the dual space of the Lagrange multipliers associated
to the constraints, the optimization problem is transformed into a quasi-unconstrained
maximization problem of the dual function. The effectiveness of the method lies in
the dimension of the problem which is limited to a sub-space related to the set of
active constraints. Thusly, the effectiveness of the method is conditioned by a high
ratio between the number of design variables and the active constraints, making the
dual space dimension much smaller than the primal space dimension. Furthermore, the
dual approach is even more appealing if the approximated sub-problem is convex and
separable because the primal-dual relationships are not expensive.

Adopting high quality approximations that have been developed over years (see next
section), the most efficient approach combines dual and SQP concepts. In this approach,
the primal or dual sub-problems are also solved using a sequence of quadratic sub-
problems (Fleury, 1993).
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Approximation schemes

The key element of the sequential convex programming approach lies in the quality of
the approximation with the smallest cost of information evaluation to build it. These
approximations must be explicit for each function, they must be convex to have a
conservative behavior and to allow a dual solution as well as being separable to obtain
low-cost primal-dual relationships. Several types of approximation schemes have been
proposed in the literature. The most famous are hereafter reviewed. Depending on the
approximation schemes, several efficient optimization algorithms have been proposed
such as SQP (Schittkowski, 1986), ConLin (Fleury, 1989a), MMA (Svanberg, 1987),
GCMMA (Svanberg, 2002) and some extended versions of MMA (Bruyneel et al., 2002).

First order and monotonous approximation

The ConLin scheme developed by Fleury and Braibant (1986) is a convex approx-
imation based on a first-order Taylor series expansion with respect to either direct
or reciprocal variables. Using both types of design variables is necessary to generate
approximations whose curvature is strictly positive or null. The algorithm selects a
linearization in terms of direct and reciprocal design variables upon the sign of the
derivatives.

The approximation of a design function f̃j(p) is expressed based on the function re-
sponse and on the first derivatives at the current design point p(k) as

f̃j (p) = fj |p(k) +
∑
+,i

∂fj
∂pi

∣∣∣∣
p(k)

(
pi − p(k)

i

)

−
∑
−,i

(
p

(k)
i

)2 ∂fj
∂pi

∣∣∣∣
p(k)

(
1
pi
− 1
p

(k)
i

)
(2.47)

where the symbols ∑+,i and
∑
−,i denote the summations over terms having positive

and negative first-order derivatives, respectively. Since this linearization scheme only
provides convex and separable approximations, Fleury and Braibant (1986) suggested
the name ConLin for “Convex Linearization”. Furthermore, since the created sub-
problems are convex and separable, a dual approach is particularly suitable. Starnes Jr.
and Haftka (1979) demonstrated that this scheme leads to the most convex approxi-
mation that can be created using a combination of mixed variables.

In some circumstances, the ConLin scheme may be penalized due to an inadequacy
between the real curvature and its approximation. If the curvature is too low, oscil-
lations appear in the convergence process while a too high curvature slows down the
convergence rate. Furthermore, the curvature depends on the sign of the derivative
and varies with the design variable. It is also noted that the second derivative of the
approximations are fixed and can not be modified.
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Following these drawbacks, Svanberg (1987) proposed a generalization of the approach
leading to the Method of Moving Asymptotes (MMA). Looking back, the ConLin
scheme can be interpreted as if the inverse linearization considers a vertical asymptote in
p = 0 while the direct linearization positions a vertical asymptote at p = +∞. Therein,
the MMA method introduces vertical asymptotes in the approximation expression,
whose positions can be adapted. Indeed, by modifying the position of the asymptotes
with respect to the design point, it is possible to better fit the curvature of the real
problem, i.e. the method enables to adjust the convexity of the approximation.

In the MMA method, each function is approximated using two types of intermediate
variables 1/

(
U

(k)
i − pi

)
and 1/

(
pi − L(k)

i

)
that leads to

f̃j (p) = f0j +
n∑
i=1

r
(k)
ij

U
(k)
i − pi

+
n∑
i=1

q
(k)
ij

pi − L(k)
i

(2.48)

where the parameters Ui and Li define the asymptotes related to the design variable
pi, and satisfy the criterion Li ≤ pi ≤ Ui. In Equation (2.48), only one of the two
coefficients r(k)

ij or q(k)
ij is different from zero at the same time for one design variable.

Furthermore, the values of r(k)
ij , q(k)

ij and f0j are adjusted in order to retrieve the function
value and its derivatives from the approximation at p = p(k). It yields

r
(k)
ij = max

{
0,
(
U

(k)
i − p(k)

i

)2 ∂fj
∂pi

∣∣∣∣
p(k)

}
, (2.49)
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)2 ∂fj
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}
, (2.50)

f0j = fj |p(k) −
n∑
i=1

r
(k)
ij

U
(k)
i − p(k)

i

−
n∑
i=1

q
(k)
ij

p
(k)
i − L

(k)
i

. (2.51)

Depending on the sign of the first order derivative ∂fj

∂pi

∣∣∣
p(k)

, only one asymptote is
used for each design variable pi. As a consequence, the approximation is always a
monotonous function.

Deriving the approximation expression (2.48), it is observed that the approximation is
a monotonous increasing or decreasing function and that the second order derivatives
at p = p(k) read

∂2f̃

∂p2
i

∣∣∣∣∣
p(k)

= − 2
p

(k)
i − L

(k)
i

∂fj
∂pi
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p(k)

or ∂2f̃
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i
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p(k)

= 2
U

(k)
i − p(k)

i

∂fj
∂pi
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p(k)

. (2.52)

From these relations, it is obvious that the curvature increases if the asymptote gets
nearer to the linearization point and decreases in the opposite case.

To update the asymptote parameters from one iteration to another, Svanberg (1987)
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proposed a heuristic scheme. This scheme is based on the convergence history of the
design variables and it reads

L
(k)
i = p

(k)
i − si

(
p

(k−1)
i − L(k−1)

i

)
, (2.53)

U
(k)
i = p

(k)
i + si

(
U

(k−1)
i − p(k−1)

i

)
(2.54)

where the parameter si is computed based on the variation of the corresponding design
variable values pi within three iteration steps.

It is worth noticing that the process defines a pair of asymptotes for each variable
but it uses the same asymptotes for all the functions. In order to adjust the level of
convexity for each function independently, some researchers generalized the classical
MMA method by attaching a proper set of moving asymptotes to each design variable
for each design function, i.e. L(k)

i or U (k)
i are replaced by L(k)

ij or U (k)
ij . The resulting

method is named the Generalized Method of Moving Asymptotes (GMMA).

First order and non-monotonous approximation

In order to create non-monotonous approximations, Svanberg (1995) proposed to extend
the MMA approximation scheme (2.48) in which both rij and qij become simultaneously
nonzero. Therein, both asymptotes are used to create the approximation and defer to
it the non-monotonous behavior. Furthermore, a term associated to a non-monotonic
parameter ρ(k)

j is introduced in the definition of rij and qij . By updating the non-
monotonic parameter and the asymptotes according to the rules given by Svanberg
(1995), the global convergence property of the approximation scheme can be proven,
which leads to the globally convergent version of MMA (GCMMA). More details
can be found in Svanberg (1995) and Svanberg (2002).

Second order and non-monotonous approximation

A second order approximation of a function fj is straightforwardly achieved by employ-
ing a Taylor series expansion around the design point and limited at the second order,
leading to

f̃j (p) = fj |p(k) +
(
p− p(k)

)T
∇fj |p(k) + 1

2
(
p− p(k)

)T
∇2fj

∣∣∣
p(k)

(
p− p(k)

)
(2.55)

where∇fj is the gradient of fj and∇2fj is the Hessian matrix of fj . The approximation
is not separable since second order cross derivatives are involved.

In order to solve the constraint optimization problem, a Newton iterative scheme com-
bined with the Lagrangian function of the optimization problem and the Karush-Kuhn-
Tucker conditions are used. Moreover, convergence of the procedure can be guaranteed
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(Fleury, 1989b). Several other variants of the SQP algorithm solve the constraint opti-
mization problem, e.g. the most famous are from Han (1976), Han (1977), Pshenichny
and Danilin (1978), Schittkowski (1981) and Schittkowski (1986).

The bottleneck of this approach lies in the evaluation of the second order derivatives
that become extremely costly when the number of design variables grows since i design
variables require i(i+ 1)/2 evaluations. Furthermore, the dual approach is not efficient
since the approximation is not separable as noted previously. Ergo, Fleury (1989c)
suggested to only consider the diagonal terms of the Hessian matrix and to neglect the
effects of the cross derivatives. The quadratic separable approximation reads

f̃j (p) = fj |p(k) +
n∑
i=1

∂fj
∂pi

∣∣∣∣
p(k)

(
pi − p(k)

i
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+ 1

2
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 ∂2fj
∂p2

i

∣∣∣∣∣
p(k)

+ δii

(pi − p(k)
i

)2
(2.56)

where the terms δii are added to easily adjust the convexity behavior of the approxi-
mation. This expression gave rise to the diagonal SQP algorithm.

2.2.5 Sensitivity analysis

Gradient-based optimization methods require a sensitivity analysis to compute the
derivatives of the structural responses, i.e. the functions fj , with respect to the design
variables. The sensitivities are provided to the optimizer to build accurate approxima-
tions of the problem and to determine effective descent directions. The efficiency of the
sensitivity analysis is essential in the optimization process because it can drastically
affect the computation time, especially when the simulation time is large.

Let us consider a general response function fj representing any performance measure
or restriction within the optimization problem. The function fj has the general form

fj = fj (p,q (p)) (2.57)

where q is the solution of the equilibrium equation. The function fj depends explicitly
on the design variables p and implicitly through the structural response q. Therein,
invoking the chain rule, the total derivative of the function fj with respect to the design
variable pi reads

dfj
dpi

= ∂fj
∂pi

+ ∂fj
∂q

dq
dpi

. (2.58)

In contrast to the derivatives of the first two terms ∂fj/∂pi and ∂fj/∂q, that are
easily calculated since the functions fj depends explicitly on pi and q respectively,
the derivative of the term dq/dpi is more difficult to compute. Indeed, the structural
response q depends implicitly on pi through the equilibrium equation and so do its
derivatives. To compute the sensitivities, several methods can be used and they are
hereafter described.
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Finite difference method

Finite difference sensitivity analysis method is undoubtedly the most simple approach.
The total derivative of the function fj is approximated using a Taylor series expansion.
Three forms of finite difference are commonly used. Forward (2.59) and backward
differences are the most used with a truncation error of O (∆pi). As a consequence,
a smaller ∆pi yields a more accurate approximation. Nonetheless, a too small ∆pi
deteriorates the accuracy of the computation since numerical round-off errors appear
(Greene and Haftka, 1991). Central differences (2.60) are used to achieve a better
accuracy with a truncation error of O

(
∆p2

i

)
.

dfj
dpi

≈ ∆fj
∆pi

= fj (p + ∆pi)− fj (p)
∆pi

, (2.59)

dfj
dpi

≈ ∆fj
∆pi

= fj (p + ∆pi)− fj (p−∆pi)
2∆pi

(2.60)

where ∆pi = [0 . . . 0,∆pi, 0 . . . 0] is the parameter perturbation.

Finite difference methods are easy to implement and can accommodate almost any
type of functions. Nevertheless they suffer from computational inefficiency since they
require at least one additional simulation per design variable and therefore, the CPU
cost grows by a factor nv + 1, where nv numbers the design parameters. Furthermore,
this method suffers from two types of errors: truncation and round-off errors that
lead to a difference between the numerical evaluation of the function and its exact
value (Moin, 2010; Tortorelli and Michaleris, 1994). Truncation errors, also known
as discretization errors, occur with large perturbation steps leaving from the small
perturbation assumption. The round-off errors concern the loss of precision due to
computer rounding of decimal quantities.

For these reasons, the finite difference method is viewed as a last resort for computing
sensitivities while still being suitable to carry out investigations on a new problem.

Direct differentiation method

The direct differentiation method first evaluates the derivative dq/dpi and then com-
putes the total derivative dfj/dpi (Tortorelli and Michaleris, 1994). The method begins
by differentiating the equilibrium equation with respect to the design parameters p. Let
us consider a linear static problem whose equilibrium equation is stated as

K(p)q(p) = g(p). (2.61)

Differentiating Equation (2.61) yields

dK
dpi

q + K dq
dpi

= dg
dpi

(2.62)
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which can be rearranged as
K dq

dpi
= dg

dpi
− dK

dpi
q. (2.63)

Solving the above pseudo problem gives the pseudo response dq/dpi whereupon the
total derivatives dfj/dpi is obtained with Equation (2.58).

This method can be efficient if properly implemented. Indeed, Equation (2.63) resem-
bles to the equilibrium equation (2.61). Hence, by storing the decomposed stiffness
matrix K during the structural analysis, the derivatives dq/dpi can be obtained in an
inexpensive way by forming the pseudo load dg

dpi
− dK

dpi
q and then performing a backward

substitution. This process is repeated for each design parameter pi.

In comparison with the finite difference method, the method is more efficient since
it does not require additional stiffness matrix assemblies and decompositions for each
design parameter perturbation. Moreover, these results are exact in the sense that they
do not suffer from the truncation errors.

Adjoint method

The adjoint method concerns the elimination of the derivative dq/dpi from Equa-
tion (2.58) (Tortorelli and Michaleris, 1994). To this end, an augmented function f̂j
that incorporates the equilibrium equation (2.61), is defined via a Lagrange multiplier
method and is stated as

f̂j = fj (p,q (p))− λ(p) (K(p)q(p)− g(p)) (2.64)

where λ is the Lagrange multiplier vector. Since the augmented term K(p)q(p)−g(p)
equals zero, we have f̂j = fj . Differentiating and rearranging the above equation yields

df̂j
dpi

=
(
∂fj
∂pi
− λ

(dK
dpi

q − dg
dpi

))
+ dq

dpi

(
∂fj
∂q −KTλ

)
(2.65)

where the equilibrium equation (2.61) is used to simplify the expression. As the me-
chanical problem is a self adjoint problem, the stiffness matrix is symmetric K = KT .
Since the Lagrange multiplier vector λ is arbitrary, it can be selected to annihilate the
coefficient of the dq/dpi term. As a result, the sensitivity expression gets rid of the
unknown derivative dq/dpi.

To determine the adjoint response λ, the following adjoint problem must be solved

KTλ = ∂fj
∂q . (2.66)

Once the adjoint response is computed, the desired sensitivity is obtained from the first
term in parentheses of Equation (2.65). Indeed, considering the equilibrium equation,
it is straightforward to establish that df̂j

dpi
= dfj

dpi
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As for the direct differentiation, the new problem to solve has the same form as the
equilibrium equation. Thusly, the adjoint response is efficiently computed by forming
the adjoint load and performing a backward substitution into the already decomposed
stiffness matrix. This method also avoids the truncation errors and results are efficiently
obtained when compared to the finite difference method. The adjoint problem requires
as many solutions of the adjoint problem as the number of response functions.

Direct differentiation method vs adjoint method

The direct differentiation method and the adjoint method are employed to compute
the same term but their purpose is different. The computational cost is similar. Both
require evaluating a pseudo load and then solving an associated problem using back-
ward substitutions. However, the adjoint method requires to solve one adjoint problem
for each response function fj , whereas the direct differentiation method requires to
solve one pseudo problem for each design parameters pi. As a consequence, the ad-
joint method is preferred when the number of response functions is smaller than the
number of design parameters. In the opposite case, the direct differentiation method
is preferable.
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3.1 Introduction
The structural optimization of flexible components within a MBS involves the coupling
of several software tools. A general flowchart of the coupling approach is illustrated
in Figure 3.1. As observed, several complementary software packages are involved in
the optimization process. The process starts with the creation of a geometrical model
representing the physical system. Afterwards, before running the MBS simulation,
a mesh generator is often used to introduce flexibility via the finite element method
within the MBS analysis. With a nonlinear finite element program, these last two steps
are integrated since the flexibility stems naturally from the formulation. Finally, the
optimization process, gathering the sensitivity analysis and the numerical optimization,
is in charge of generating an improved design to close the loop. Afterwards, the process
is restarted until a satisfactory design is obtained.

Computer-Aided
Design (CAD)

Mesher

MBS Simulation

Sensitivity Analysis

Numerical Optimization

Figure 3.1: MBS optimization flowchart.

The coupling of these software tools may restrict the designer’s freedom, especially when
using commercial software tools. The limitations mainly arise from the information
exchanges that must occur between the different software packages. For instance, to
perform an efficient sensitivity analysis using semi-analytical methods, one needs to
get access to the data coming from the MBS simulation and these are usually rather
complex to extract. In order to obtain an efficient coupling, a monolithic approach
wherein all the tools are embedded is appealing. However, it relies on the companies
owning the software tools, i.e. they have to enable communications with their software
tools. Another possibility is to use open data structures and open solvers allowing the
access and the treatment of the data.

These limitations have already been encountered in multidisciplinary optimization
where thorny problems are faced concerning the integration of several software pack-
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ages. For an industrial case study, Heiserer and Chargin (2000) say that “more than
80% of the invested man power was spent in gluing the software components together,
10% in running and maintaining the job procedure and about another 10% in doing the
real engineering job, such as describing the problem and interpreting the results”.

To perform the structural optimization of flexible components in MBS, the challenge is
thus to couple the different software packages together. Even if the general flowchart of
the MBS optimization stays as presented in Figure 3.1, the MBS optimization problem
can be solved by several methods. Specific levels of coupling (stronger or weaker)
between software packages can be achieved, leading to the fully and weakly coupled
methods.

In structural optimization, a parameterization of the model is required so that the
optimizer can provide an improved design by modifying the parameters. Sizing and
shape optimizations have first been performed in this work. However, as introduced in
Section 2.1, the MBS analysis is in essence a nonlinear process. Hence, when coupling
MBS analyses with optimization methods, the optimization problem is significantly
hardened by the parameterization complexity. Therein, the first part of this chapter
introduces a compact design parameterization of the component geometry based on a
level set description. This approach enables to keep a simple optimization procedure
which nonetheless allows deep modifications of the component geometry. The fully and
weakly coupled methods are afterwards detailed whereupon the merits and limitations
of each method are discussed.

3.2 Component parameterization using a level set descrip-
tion

3.2.1 From explicit to implicit representation of the geometry

In shape optimization, the component geometry is generally described explicitly, e.g.
using circles, splines, etc. This explicit representation hinders deep modifications of the
component geometry such as topological changes and is partly responsible for the mod-
erate performance improvement in classical shape optimization (Haftka and Grandhi,
1986). In contrast to topology optimization, the explicit representation using CAD
entities permits to keep smooth and well-defined boundaries that are not subject to
interpretations. Moreover, well-defined models allow an accurate computation of the
system response.

In this work, the level set description of the component geometry is the cornerstone
of an extended method laying in between shape and topology optimizations, namely
the Generalized Shape Optimization Method (Van Miegroet and Duysinx, 2007). The
level set description consists in an implicit representation of the component geometry
whereby the advantages of both optimization methods can be combined. Firstly, the
component geometry is precisely described by CAD entities with a reasonable number
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of parameters as in shape optimization. Secondly, the geometrical description works
with a fixed mesh grid which avoids the mesh management difficulties presented in
Section 2.2.1. Thirdly, the component topology can be changed in a limited manner.

Originally, the level set method was developed as a numerical technique for tracking
interfaces and shapes. It was introduced by Osher and Sethian (1988) who suggested an
implicit representation to facilitate the tracking of an interface instead of the traditional
explicit method. The implicit description relies on the introduction of a smooth scalar-
valued function φ, namely the level set function (LSF), which is mathematically defined
as

φ : D ∈ Rn × Rnv → R (3.1)

where D ∈ Rn is the design domain (D ∈ R2 for planar geometry and D ∈ R3 for 3D
geometry) and Rnv is the parameter space. The boundary Γ is subsequently represented
by the set of dimension n− 1

Γ = {(x,p) ∈ D × Rnv : φ (x,p) = 0} (3.2)

where x is an element of the design domain D and p is the design parameter vector.
Hence, the boundary is implicitly defined as the zero-level of a higher dimension scalar
function, i.e. the LSF φ (x,p). Likewise, working with solid-void structures, the LSF
defines the material domain Ω, the void domain D\Ω and the material interface ∂Ω as

φ(x,p) > 0, ⇔ x ∈ Ω (material)
φ(x,p) < 0, ⇔ x ∈ D\Ω (void)
φ(x,p) = 0, ⇔ x ∈ ∂Ω (interface).

(3.3)

During the optimization process, both shape and topology of the domain Ω can be
altered according to the changes of the LSF parameter p.

To illustrate the level set description of geometries, let us introduce a hole in a 1× 1 m
square plate. For simplicity’s sake, the LSF φ(x) is defined by the analytical function
of a super-ellipse that reads

φ(x) =
∣∣∣∣(x− cx)

a

∣∣∣∣ξ +
∣∣∣∣(y − cy)b

∣∣∣∣η − 1. (3.4)

The level set function is illustrated in Figure 3.2 with the following set of parameters:
a = 0.3 m, b = 0.2 m, cx = cy = 0.5 m and ξ = η = 3. In Figure 3.2(b), the isocontours
are plotted and the boundary of the super-elliptical hole can be observed as the zero-
level of the LSF.

3.2.2 Parameterization and mapping of the level set function

Numerous level set methods and approaches have been developed to perform structural
optimization (Van Dijk et al., 2013). Therein, in order to categorize each method, the
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(a) Level set function φ(x).
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(b) Isocontour representation of φ(x).

Figure 3.2: Implicit representation of a super-ellipse feature.

authors recommend to mention the LSF parameterization and the geometry mapping,
defining the link between the geometrical model and its mechanical counterpart.

In this thesis, the implicit representation of the geometry is combined with common
CAD entities such as circles, splines, NURBS, etc. That is the LSF parameterization,
based on CAD features, enables a precise description of the geometry. Analytical
functions can be adopted for simple features. Nonetheless, using polar coordinates,
Gielis (2003) introduced a Superformula φsf , expressed as

φsf = 1((∣∣∣ 1a cos
(
θm4
)∣∣∣)n2 +

(∣∣∣1b sin
(
θm4
)∣∣∣)n3)1/n1

(3.5)

where ni, m ∈ R+ and a, b ∈ R+
0 . This function describes a large variety of shapes using

a single and simple geometrical equation. Several features are illustrated in Figure 3.3.
For more complex features, the signed-distance function d (x) can be used, which is
defined as

d (x) = min
xΓ∈Γ

‖x− xΓ‖ , ∀x ∈ D (3.6)

where ‖•‖ denotes the Euclidean norm.

Each geometrical feature is described by a specific LSF although different LSF can de-
scribe the same geometrical feature (non-uniqueness). Afterwards, the final component
geometry is generated by applying boolean operations to the individual features, i.e.
the Constructive Solid Geometry approach is employed (Shapiro, 2007). The creation
of a cross hole in a square plate using an union operator is illustrated in Figures 3.4(a)-
3.4(c).
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Figure 3.3: Several shapes of the Superformula (3.5).

In this thesis, the flexible components of MBS are modeled using the finite element
method. Therefore, the level set function geometry must be mapped to the finite
element mesh. To do so, a volume fraction based Eulerian approach is adopted (Norato
et al., 2004). The approach is similar to the SIMP in topology optimization wherein a
pseudo density is assigned to each element depending on the number of nodes in Ω and
inD\Ω. Allaire et al. (2004) also adopted a similar mapping wherein an Ersatz material
is introduced for element laying across the boundaries. Figure 3.4(d) illustrates such a
mapping on the cross hole example. More details about the adopted parameterization
and geometry mapping are given in Article [2].

3.2.3 Implicit representation and structural optimization of MBS

The design problem of MBS components is nonlinear in essence since the MBS analysis
is already nonlinear. Developing such an optimization problem parameterization aims
at enabling deep modifications of the component geometry while keeping a compact
design parameterization and thus a simple optimization process. It is known that
the adopted geometry mapping leads to fuzzy boundaries regarding the finite element
model. However, since the geometry is described by CAD features, the exact geometry
is known. As a consequence, the manufacturability is straightforward. Moreover, this
approach is interesting for industrial applications involving confidentiality. Indeed,
the proprietary CAD model used to generate the initial model is not required for the
optimization, only the finite element mesh must be shared.



3.2 Component parameterization using a level set description 49

(a) Implicit representation of a first
super-ellipse feature.

(b) Implicit representation of a second
super-ellipse feature.
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(c) Exact geometry of the cross hole.
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(d) Mapping resulting of the boolean
operation AND of the two LSF’s.

Figure 3.4: Geometrical description of a cross hole in a square plate.

It is worth noticing that the adopted implicit representation of the component geom-
etry differs from a true topology optimization based on a level set approach (Wang
et al., 2003; Allaire et al., 2002, 2004). Indeed, the number of holes in the geometry is
introduced a priori so that topological changes are limited to holes merging. Hence, the
optimal topology may be absent from the design space since holes cannot be nucleated.
However, as a future extension, introducing the topological derivative (Novotny and
Sokolowski, 2013) can remedy this limitation.

As an illustrative example, the optimization of a connecting rod presented in Article [2]
is considered. The objective is to minimize its mass while restraining its elongation un-
der operating conditions. Figure 3.5 illustrates the connecting rod geometry at different
stages of the optimization process. It is observed that the geometry and especially the
topology, i.e. the connectivity, continuously evolves as the optimization proceeds.
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(a) Iteration 2. (b) Iteration 5.

(c) Iteration 18 - Optimal design.

Figure 3.5: Topology evolution of the connecting rod.

3.3 Fully coupled method

The fully coupled method relies on the optimization of the dynamic response com-
ing directly from the MBS analysis. Therein, it involves dynamic response optimiza-
tion problems that are rather challenging compared to classical structural optimization
problems chiefly due to the difficulties of evaluating and considering the dynamic re-
sponse in the optimization. In this section, the optimization process framework and
the optimization problem formulation are first discussed. The difficult treatment of
time-dependent constraints is then introduced and its impact over the optimization
convergence is pointed out. Finally, the sensitivity analysis of MBS is revisited and the
advantages of the proposed method are detailed.

3.3.1 Framework of the optimization process

The optimization problem is formulated as an extension of the optimization problem
formulation (2.45) in which the time parameter t steps in, leading to a dynamic response
optimization problem. Extending the formulation (2.45) and incorporating explicitly
the equations of motion (2.9)-(2.10), expressed with a classical nonlinear finite element
formalism, it comes

minimize
p

f0 (s)

subject to M (q,p) q̈ + g (q, q̇,p) + ΦT
q (q,p) (kλ + pΦ (q,p)) = 0,

kΦ (q,p) = 0,
q (t0) = q0 (p) , q̇ (t0) = q̇0 (p) , ∀t ∈ [ti, tf ] ,
fj (s, t) ≤ f j , j = 1, . . . , nc,
p
i
≤ pi ≤ pi, i = 1, . . . , nv.

(3.7)
The vector

s = [q, q̇, q̈,λ,p] (3.8)
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gathers the dependent variables q, q̇, q̈ and λ, defining the MBS response and the
vector of the nv independent design variables p, ruling the optimization process. The
first set of variables is denoted as “dependent” since they implicitly depend on the design
variables p. However, as a nested approach is used, they are not directly involved in
the optimization process since they can be eliminated from the optimization problem
after the forward time integration of the equations of motion. The time dependency of
q, q̇, q̈ and λ is not explicitly indicated for the sake of conciseness. We note that the
optimization problem (3.7) is totally general and can incorporate equality constraints
as well as functional constraints.

The flowchart of the fully coupled method process is provided in Figure 3.6. Using
this method, the MBS simulation and the optimization process work in an integrated
manner, i.e. a MBS analysis is performed at each iteration of the optimization and
provides the sensitivities to the optimizer. The optimization process loops until a
convergence criterion is achieved. As shown in Section 3.3.3, the sensitivity analysis can
be integrated in the time integration scheme of the equations of motion. Consequently,
the sensitivities are obtained as a supplementary result of the analysis with a low
computation cost.

MBS analysis
+

Sensitivity analysis

Initial design

Dynamic response
optimization

Convergence?

Design update
it = it + 1

Stop
YesNo

q, q̇, q̈,λ

dq
dp

, dq̇
dp

,

dq̈
dp

,dλ
dp

Figure 3.6: Fully coupled method framework.

3.3.2 Treatment of time-dependent constraints

The optimization problem (3.7) is stated in a continuous time domain. However, since
numerical methods are used to solve the governing equations of the mechanical system,
the functions involved in the optimization problem (3.7) are treated in a discrete time
domain.
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Let us consider a general function

fj (q, q̇, q̈,λ,p, t) , ∀t ∈ [ti, tf ] . (3.9)

After the time discretization, it becomes

fj (qn, q̇n, q̈n,λn,p, tn) , n = 1, . . . , nend (3.10)

where n numbers the time steps. Since nend can be large, incorporating directly the
discretized function (3.10) in the optimization can be costly. Firstly, the high number
of constraints complexifies the task of the optimizer. Secondly, using gradient-based
algorithms, the gradient computation of the responses is required at each time step.
Therein, particular treatments of the time-dependent constraints are reviewed and pro-
posed below to ease the optimization process.

Pointwise constraints

A pointwise constraint is a constraint that is defined at each integration time step. A
first possibility is to incorporate directly this discretized function in the optimization.
In this thesis, this treatment is referred to as a local formulation. However, several
treatments can be applied to the pointwise constraint before incorporating it in the
optimization problem (Fig. 3.7) and these are hereafter detailed:

All the time steps combined with an active set strategy
The time-dependent constraint can basically be treated by considering all the
time steps. An active constraint set strategy can slightly reduce the number of
constraints by neglecting the non-active time steps (Fig. 3.7(a)).
All the local maxima
A more radical treatment consists in considering all the local maxima of the
response as constraints (Fig. 3.7(b)). Additional effort is required to track the
local maxima. Grandhi et al. (1986) suggested an algorithm to find the maxima.
All the local maxima and their neighborhood
The previous treatment may suffer from convergence difficulties since the local
maximum points can vary as the design proceeds. Indeed, a local maximum can
move to a different time step at the next iterations. Including a couple of points
around each maximum may help the convergence. The number of constraints is
marginally increased while remaining relatively moderate (Fig. 3.7(c)).
Worst case approach
A simplistic treatment is to restrict the constraint to the worst case approach,
i.e. the maximum violated response (Fig. 3.7(d)). As a consequence, a single
constraint is considered except if multiple points have the same maximum value.
However, this treatment generally exhibits a slow convergence or divergence as the
worst case time step generally changes in a discontinuous way as the optimization
proceeds. While this treatment seems to be very restrictive, it has been used in
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several studies, e.g. Haug and Arora (1979) and Oral and Kemal Ider (1997).

time

fj

(a) All the time steps combined with an active set strategy.

time

fj

(b) All the local maxima.

time

fj

(c) All the local maxima and their neighborhood.

time

fj

Worst case

(d) Worst case approach.

Figure 3.7: Treatments of a pointwise constraint.
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Functional constraints

In order to circumvent the difficulty of incorporating the nend constraints related to
Equation (3.10) in the optimization problem, the continuous form of this equation can
be replaced by a single equivalent functional. The equivalent functional is expressed as

Fj =
∫ tf

ti

〈fj (q, q̇, q̈,λ,p, t)〉 dt (3.11)

where
〈fj (q, q̇, q̈,λ,p, t)〉 ≡

{
0 if fj < f j

fj − f j if fj ≥ f j
(3.12)

It follows that satisfying Fj ≤ 0 is equivalent to satisfying fj ≤ f j . More details about
this approach are given in Feng et al. (1977), Kocer and Arora (2002) and Kang et al.
(2006).

The concept of using mathematical tools to transform many active or violated con-
straints, e.g. Equation (3.10), into one or a few constraints, is denoted as a global
formulation in this thesis. Other mathematical tools can be used to perform this
reduction.

Let us exemplify the use of the p-norm function in the particular case where the function
f+
j has only positive values, i.e. f+

j ≥ 0. Mathematically, the constraint reads

‖f+
j (q, q̇, q̈,λ,p, t) ‖p =

(∫ tf

ti

(
f+
j

)p
dt
)1/p

≤
∥∥∥f+

j

∥∥∥
p

(3.13)

where p ∈ R and p ≥ 1. If p = 2, one resorts to the Euclidean norm and dividing the
integral by the time duration yields√

1
tf − ti

∫ tf

ti

(
f+
j

)2
dt ≤

∥∥∥f+
j

∥∥∥
2

(3.14)

which can be interpreted as the root mean square value of the constraint. When a
global formulation is adopted to agglomerate the response function f+

j , it should be
noted that the constraint bound definition can become more difficult since it is no
longer directly related to the physical response of the system but to the agglomerated
response. If the parameter p → ∞, the p-norm reaches the infinity norm, also known
as the maximum norm, i.e.

‖f+
j (q, q̇, q̈,λ,p, t) ‖∞ = max

t

(
f+
j (t)

)
. (3.15)

This formulation enables to identify the maximum value of the function, however, the
infinity norm is a non-differentiable function. We note that the infinity norm leads to
a similar formulation as the worst case approach.
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Influence on the design space for MBS optimization

The design problem of MBS components is quite complex and poor convergence prop-
erties are encountered if the problem is not properly formulated. Indeed, the existence
of significant couplings between vibrations and large amplitude motion, the influence of
the changes of component inertial property on the vibrations as well as the interactions
between flexible components lead to a daunting task for the optimizer. Article [1] in ap-
pendix is mainly concerned with the formulation of the optimization problem. Several
treatments of time-dependent constraints have been investigated and discussed.

In order to tightly control the optimized design, it is required to consider one constraint
at each time step. This local formulation can be coupled with an active set strategy.
However, this formulation generally involves numerous constraints which hinder the
optimization convergence. Moreover, it turns out that the design space resulting from
such a formulation exhibits a lot of oscillations and is tortuous (Fig 3.8(a)). It follows
that the design space is not the most suitable for gradient-based algorithms. Global
formulations agglomerate the entire response into a few constraints and ease the con-
vergence even if the resulting function is nonlinear since it involves a reduced number
of constraints. Unfortunately, the precise control at each time step is lost due to their
global nature. Nonetheless, global formulations create a smooth design space which is
really convenient and well-suited for gradient-based algorithms (Fig 3.8(b)).

As an illustrative example, Figure 3.8 represents the design space of the mass minimiza-
tion problem of a 2-dof robot subject to a trajectory tracking constraint. The robot
has 6 design variables (arm thickness) and the design space is plotted when varying
design parameters p5 and p6 while others are fixed. The smoothness characteristics
previously explained can be observed. More details about the adopted formulation in
this example are given in Article [1].
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Figure 3.8: Design space representation for a local formulation at time step n = 20 (a)
and for a global formulation (b).
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3.3.3 Sensitivity analysis of MBS

Sensitivity analysis is the essential link between the system analysis and the numerical
optimization. The sensitivities indicate the influence of parameters over the system
response but they are also needed to construct structural approximations of the original
problem (Etman, 1997). Using the fully coupled method, the sensitivity analysis can
be costly if not addressed with care as a dynamic response optimization is involved.

Several works have been carried out to develop an accurate and efficient design sensitiv-
ity methods for MBS. In the case of kinematic systems, Sohoni and Haug (1982) were
amongst the first to propose a method generating the equations for both the primal
analysis and the sensitivity analysis. The dynamics was included in the equations by
Haug and Sohoni (1984). Later on, several authors contributed to the development
of sensitivity analysis methods (for instance, Hsieh and Arora, 1984; Ashrafiuon and
Mani, 1990; Bestle and Seybold, 1992; Cardoso and Arora, 1992; Tortorelli, 1992; Wasfy
and Noor, 1996; Dias and Pereira, 1997; Brüls and Eberhard, 2008; Ding et al., 2008;
Dong et al., 2011).

Brüls and Eberhard (2008) proposed a semi-analytical direct differentiation technique
to perform the sensitivity analysis for dynamic systems with large rotations. They
established close connections between the structure of the sensitivity equations and
of the linearized dynamic equations of motion. Therein, they proposed to use the
algorithm developed for the original problem as well as for the sensitivities. Deriving
the equations of motion and after some algebra (see e.g. Brüls and Eberhard, 2008),
the sensitivity equations are stated as

M dq̈
dpi

+ Ct
dq̇
dpi

+ Kt
dq
dpi

+ kΦT
q

dλ

dpi
= −∂res

∂pi
,

kΦq
dq
dpi

= −k∂Φ
∂pi

.

(3.16)

It can be observed that their structure resembles the structure of the linearized dynamic
equations of motion (2.20).

To evaluate the sensitivities dq/dpi, dq̇/dpi, dq̈/dpi and dλ/dpi, all the terms of
Equations (3.16) have to be computed. The pseudo-loads, ∂res/∂pi and ∂Φ/∂pi, are
approximated using a finite difference method which requires nv evaluations of the
residual res|p+∆pi

and Φ|p+∆pi
at each time step where the parameter perturbation

is ∆pi = [0 . . . 0, ∆pi, 0 . . . 0]. Also, the structural matrices M, Ct and Kt must be
evaluated. They cannot generally be retrieved from the primal analysis since they are
aggregated in the tangent iteration matrix St, see Equation (2.24).

Ergo, a part of Article [2] is dedicated to an alternative sensitivity analysis formulation
to ease the computational solution of Equation (3.16). A semi-analytical method is
also considered to establish the sensitivity equations, derived from the residual form of
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the equations of motion (2.11). After some developments detailed in Article [2], the
sensitivity equations read

− St

 dq/dpi
dλ/dpi

 =


1

∆pi
respert

k

∆pi
Φpert

 (3.17)

where

respert = res
(

q|p, q̇|p + dq̇
dpi

∣∣∣∣
p

∆pi, q̈|p + dq̈
dpi

∣∣∣∣
p

∆pi,λ|p, t,p + ∆pi
)
, (3.18)

Φpert = Φ (q|p,p + ∆pi) . (3.19)

The sensitivity equations (3.17) have several interesting properties. The tangent itera-
tion matrix St itself is involved in Equation (3.17), which has already been computed
and factorized during the primal analysis. Hence, while many Newton iterations are
required to evaluate the primal response qn, only nv back-solves are required to obtain
its derivatives dqn+1/dpi if the convergence criterion of the Newton-Raphson iterative
scheme is sufficiently small. Indeed, it is reasonable to use the tangent iteration ma-
trix of the converged Newton-Raphson iteration (i.e. without recomputing it with the
updated values qn+1, etc.).

The perturbed terms, respert and Φpert can efficiently be computed. MBS simulation
codes generally possess a function to compute the residuals. Therefore, the perturbed
residuals in Equation (3.17) can be handily evaluated by calling this function with the
perturbed arguments. Finally, the proposed sensitivity analysis method can easily be
incorporated in the generalized-α time integration scheme where the sensitivities are
subsequently obtained as an additional result of the primal analysis.

3.4 Weakly coupled method

The weakly coupled method reformulates the optimization problem (3.7) such that
the dynamic response of the system is replaced by a series of static responses, i.e. at each
time step tn, the component deformation under the dynamic loading is mimicked by an
equivalent static load (ESL). Hence, all the standard techniques of static response
optimization can be applied to solve the reformulated problem. This section introduces
the principles of the ESL method and the ESL evaluations adapted to different MBS
formalisms. The formulation of an equivalent optimization problem and the framework
of the optimization process are then described, concluding the section.
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3.4.1 ESL evaluation

ESL for an isolated structure

Safety factors, dynamic amplification factors, designer’s experience, etc, were tradition-
ally used to convert a dynamic loading into static loads and to account for unmodeled
phenomena. However, this approach may increase the weight of the structure and de-
crease its reliability, i.e. the design is not optimal with respect to the actual loading
cases. The concept of converting a dynamic loading into static loads has been clarified
with the ESL method that was introduced for the structural optimization of an isolated
structure subjected to a dynamic loading (Choe et al., 1996; Choi and Park, 1999). The
authors proposed to define the ESL based on the displacement field resulting from the
dynamic loading as follows:
“When a dynamic load is applied to a structure, the equivalent static load is defined as
the static load that makes the same displacement field as that by the dynamic load at
an arbitrary time”.
Hence, the dynamic loading is mimicked by a series of static loads, namely the ESL, that
gives at each time step the same displacement field as the one given by the dynamic
loading. Regarding the analysis, this transformation is useless. However, the ESL
utility lies in the optimization procedure where they allow transforming the dynamic
response optimization into a static response optimization problem by regenerating the
displacement field from only static loads.

ESL combined with a floating frame of reference formulation

Kang et al. (2005) extended the previous definition to optimize components of flexible
MBS. To define the ESL, they considered that the component is isolated from the
system and that the displacement field is evaluated with respect to the body-attached
frame. They developed the method for MBS dynamics based on a floating frame of
reference formulation. As previously introduced, this thesis targets to extend the ESL
method to MBS dynamics based on a nonlinear finite element formalism. Indeed, the
latter formalism is appealing as its generality enables to analyze complex systems, and
its formulation is suitable to perform more advanced optimization processes such as
topology optimization.

The development of an ESL method for MBS optimization can be decomposed in
three steps. Firstly, a term, that can be identified as a force, must be extracted from
the equations of motion. It must be demonstrated that this force is able to generate
the same displacement as the displacement field resulting from the dynamic loading
at a given time step in a body-attached frame. Secondly, the method relies on the
optimization of isolated components, i.e. they have been decoupled from the system.
As a consequence, boundary conditions must be enforced to prevent rigid body modes in
the static analysis. Thirdly, if the small deformation assumption is valid, a linearized
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problem must be derived from the nonlinear equations governing the motion of the
system.

These three steps are naturally fulfilled when adopting the floating frame of reference
formulation mainly as this formalism treats separately the rigid body motions and
elastic deformations. Indeed, by isolating the last row of the equations of motion (2.1)
related to the elastic coordinates, it is straightforward to identify the ESL that, for
body b, reads

Kb
ffqbf = gbeq = −mb

xf ẍb0 −mb
fθθ̈

b
0 −mb

ff q̈bf −CT
qb

f
λ +

(
gbext

)
f

+
(
gbvel

)
f
. (3.20)

Moreover, the problem of the boundary conditions is handily circumvented since the
floating frame of reference formalism already includes boundary conditions to connect
the floating frame to the moving body. For instance, Shabana (2013) employs the Com-
ponent Mode Synthesis method to introduce flexibility with this formalism, wherein
boundary conditions are applied for the modal analysis. Hence, identical boundary
conditions are adopted to fix all rigid body modes during the static analysis. Finally,
the linearization of the original problem is not necessary since linear elasticity assump-
tion is usual, so that Equation (3.20) is linear.

The extension to nonlinear finite element formalisms is not straightforward. Articles [3]-
[4] in appendix are concerned with the ESL evaluation for a classical nonlinear finite
element formalism and a Lie group formalism, respectively.

ESL combined with a classical nonlinear finite element formalism

In contrast to the floating frame of reference formulation, the equations of motion
using a classical nonlinear finite element formalism (Géradin and Cardona, 2001) are
developed in an inertial frame, i.e. the elastic forces are not expressed in a body-
attached frame. Moreover, rigid body motions and elastic deformations exhibit no
decoupling, in addition to the fact that the tangent stiffness matrix is not constant and
evolves with the system configuration. As a result, the ESL evaluation becomes a more
arduous task.

The evaluation of ESL is not as easy as isolating a term directly from the equations
of motion as in Equation (3.20). The proposed method evaluates the ESL in a post-
processing step of the MBS analysis, without modifying the analysis. The approach
relies on the definition of a corotational frame that allows establishing the transforma-
tion laws to switch from a current configuration to a reference configuration. Hence,
a single tangent stiffness matrix for the reference configuration Kb

t(tref ) is considered
instead of a different tangent stiffness matrix for each time step, since the latter evolves
with the system configuration. The ESL are subsequently evaluated in the corota-
tional frame thanks to a local generalized displacement vector ubn that measures the
deflection with respect to the undeformed configuration (Fig. 3.9). During the static
analysis, rigid body modes are prevented using the boundary conditions associated
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with the definition of the corotational frame. Also, the linearization is not necessary as
nonlinearities are filtered out by the use of the corotational frame. It follows that the
ESL in the corotational frame for the component b at time step tn reads

gbn,eq = Kb
t(tref )ubn. (3.21)
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Figure 3.9: Description of the deflection of node i in body b with respect to a corota-
tional frame.

ESL combined with a Lie group formalism

While still describing the MBS dynamics via a nonlinear finite element formalism, the
Special Euclidean group SE(3) exhibits several attractive properties for the weakly
coupled approach. In particular, combining the Special Euclidean group SE(3) with
the left invariant representation of derivatives leads to a tangent stiffness matrix Kt

that can be considered as constant under the assumption of small deformations, i.e.
the tangent stiffness matrix is independent of the system configuration.

Another interesting characteristic of this formalism is that the equations of motion are
expressed in the nodal local frame of each node. This aspect is decisive to evaluate
efficiently the ESL since it leads to the definition of the ESL vector for body b merely
as the internal force vector acting on this body. Article [4] demonstrates that applying
the internal force vector gint,bn to the isolated body gives the same statically deformed
configuration Hb

stat as the dynamically deformed configuration Hb
n up to a rigid body

motion Hb
rig, i.e. Hb

n = Hb
rigHb

stat. This non-uniqueness issue is fixed by enforcing
some boundary conditions to prevent rigid body motions, which are denoted by the
symbol (•)�. Figure 3.10 depicts the previous statements.

This formalism can naturally account for large deformations at the sole price of solving
the nonlinear problem

gint,b�(Hb�
stat) = gb�n,eq. (3.22)

Nonetheless, as small deformations are usually encountered, it is appealing to derive
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Figure 3.10: ESL evaluation in a Lie group formalism.

an equivalent linear static problem by performing a linearization of Equation (3.22)
around the undeformed configuration, which produces

Kb�
t ∆nb�stat = gb�n,eq. (3.23)

The term ∆nb�stat can be interpreted as a small increment vector that binds the statically
deformed configuration Hb

stat to the reference configuration Hb�
ref .

3.4.2 Formulation of the optimization problem

By definition, the weakly coupled method reformulates the original dynamic optimiza-
tion problem (3.7) such that the dynamic response of the system is replaced by a series
of equivalent static responses. Thusly, Kang et al. (2005) proposed to solve the following
static response optimization problem wherein ESL, denoted by gn,eq, are incorporated

minimize
p

f0 (p)

subject to Kb(p)qbn,eq = gbn,eq, b = 1, . . . , nb,
fj (p,qn,eq) ≤ f j , j = 1, . . . , nc,
p
i
≤ pi ≤ pi, i = 1, . . . , nv,

(3.24)

for n = 1, . . . , nend and where b numbers the components. In contrast to the optimiza-
tion problem (3.7), the equations of motion are replaced by a linearized version of the
equilibrium equation of each component for each time step. As a consequence, the op-
timization problem is solved using classical techniques of static structural optimization
with multiple load cases as presented in Section 2.2.

It is worth noticing that the formulation of the optimization problem includes all com-
ponents independently. Indeed, the weakly coupled method considers the optimization
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of isolated components wherein the loading stems from the system analysis. Therein,
the formulation of multicomponent-based constraints, i.e. design constraints involving
several components, cannot be treated. For instance, such a constraint can be used to
restrict the global behavior of the system. Exceptions exist when the multicomponent-
based constraint can be transformed into several component-based constraints. Arti-
cle [3] discusses the equivalence between the optimization problem formulations result-
ing from the weakly and fully coupled methods. It is shown that both methods can
converge towards the same optimized design when the optimization problem can be
formulated in an identical manner.

3.4.3 Framework of the optimization process

The framework of the optimization process for the weakly coupled method, illustrated
in Figure 3.11, differs from the fully coupled method framework depicted in Figure 3.6.
Indeed, the MBS analysis and the optimization process are no longer fully coupled but
coupled via an intermediate step related to the ESL process.

The optimization problem formulation (3.24) considers that each component b is loaded
by as many load cases as the number of time steps. However, the ESL are fixed during
the static response optimization process. Hence, to account for the effects of design
modifications over the ESL, cycles are needed between the MBS analysis and the static
response optimization. To solve the design problem using the weakly coupled method,
Choi and Park (2002) proposed an algorithm to loop between the MBS analysis and
the optimization process, which proceeds, apart from the stopping criteria, as follows:

1. Initialize the design variables and set the cycle counter to it = 0.
2. Perform a flexible MBS analysis.
3. Process the ESL.
4. If it = 0, go to step 5. If it > 0 and if

tend∑
n=1
‖gbn,eq,it − gbn,eq,it−1‖

tend∑
n=1
‖gbn,eq,it−1‖

< ε, (3.25)

then, stop. Otherwise go to step 5.
5. Solve the static response optimization problem (3.24). The iterations to solve

this optimization problem are denoted as inner iterations.
6. Set it = it+ 1 and go to step 2.

Figure 3.11 illustrates the algorithm. Stolpe (2014) discussed the convergence of the
solution obtained using the weakly coupled method towards the optimal solution of the
original dynamic response optimization problem. Moreover, the author criticized the
proof establishing that if the ESL algorithm terminates then the KKT conditions of
the original problem and the final sub-problem are identical (Park and Kang, 2003).
Stolpe (2014) suggested a modified version for which the requested result is proven.
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Figure 3.11: Weakly coupled method framework.

3.5 Weakly vs Fully coupled method

The choice of an optimization approach to perform the structural optimization of MBS
components strongly depends on the considered application.

If the optimization problem incorporates multicomponent-based constraints, i.e. not
limited to the response of a lone component, and that these constraints cannot be
properly translated into component-based constraints, the fully coupled method is re-
quired. When the optimization problem formulation enables to use both methods, our
experience shows that they can converge towards the same optimum.

The weakly coupled method generally lessens the CPU time as it avoids the expensive
computation of the sensitivities. Mechanical systems with a rather moderate flexibility
generally require less dynamic analyses to converge when employing the weakly cou-
pled approach. However, this reduction is partly counterbalanced by inner iterations
performed by the static response optimization at each cycle albeit these are based on
static computations.

The fully coupled method is completely general and accommodates any types of con-
straints at the price of a more complex optimization process. For highly flexible systems,
the fully coupled method may experience a faster convergence than the weakly coupled
method since the ESL can drastically change from one cycle to another, hardening the
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convergence. However, the designer must have a strong knowledge of the mechanical
system dynamics to properly formulate the optimization problem. An inappropriate
formulation results in poor convergence properties.



Chapter 4

Summary of the work

This chapter briefly introduces the four articles given in the appendices, afterwards the
contributions and impact of the thesis are detailed. The first two articles are related to
the fully coupled method and the last two articles to the weakly coupled method. The
first article mainly focuses on the time-dependent constraint formulation. The second
one introduces the level set description of the component geometry and revisits the
sensitivity analysis of MBS. The third article investigates the ESL evaluation adapted
to a classical nonlinear finite element formalism to describe the MBS dynamics. Also,
a comparison with the fully coupled method is performed. The last article is dedicated
to the ESL evaluation by taking advantage of the attractive properties of the Lie group
formalism.

4.1 Summary of the articles

4.1.1 Formulation of time-dependent constraints for MBS optimiza-
tion, Article [1] (Appendix A)

Article [1] is concerned with the fully coupled method which enhances most existing
studies that are limited to weakly coupled (quasi-) static or frequency domain loading
conditions. The difficult treatment of time-dependent constraints is investigated as it
turns out to be a central point to establish a robust and reliable method. Indeed,
the resulting dynamic response optimization problem is challenging to solve and naive
implementations may lead to inaccurate and unstable results. The efficiency of the
different formulations are explained by analyzing the complex nature of the design
space. Also, the influence of the optimization algorithms on the convergence is analyzed.
The introduced concepts and discussions are illustrated on two numerical applications:
the mass minimization of a 2-dof robot subject to a trajectory tracking constraint and
the optimization of a slider-crank mechanism.
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4.1.2 Level set techniques and sensitivity analysis, Article [2] (Ap-
pendix B)

Article [2] is also dedicated to the fully coupled optimization method for the structural
optimization of MBS components. Although, the component geometry is implicitly
defined by a level set description leading to a generalized shape optimization problem.
The optimization problem is solved via efficient gradient-based optimization methods
requiring the gradients of cost and constraint functions. Hence, the sensitivity analy-
sis is deeply revisited and reformulated to facilitate its implementation and retain its
computational efficiency. The procedure is illustrated with the optimization of a 2-dof
robot and a slider-crank mechanism.

4.1.3 Weakly coupled method in a classical nonlinear finite element
formalism and comparison with the fully coupled method, Ar-
ticle [3] (Appendix C)

Article [3] deals with the weakly coupled method and is composed of two majors parts.
The first part of the work concerns the ESL evaluation that strongly depends on the
adopted formulation to describe the MBS dynamics. Initially, the ESL evaluation
has been developed based on a floating frame of reference formulation. Here, the
standard ESL evaluation is extended to a nonlinear finite element formalism. The
latter formalism is totally general to analyze complex MBS and is convenient to perform
advanced optimization problems such as topology optimization. An original procedure
is proposed to evaluate the ESL in a post-processing step. The second part focuses on
a detailed comparison between the fully and the weakly coupled method. Our position
is supported by several numerical examples. At the light of the comparison results, it is
concluded that the fully coupled method is more general and accommodates any types
of constraints at the price of a more complex optimization process.

4.1.4 Weakly coupled method in a Lie group formalism, Article [4]
(Appendix D)

Article [4] continues along the ESL evaluation based on a nonlinear finite element
approach. As previously mentioned, this approach is appealing due to its generality to
analyze mechanisms and its convenience to perform advanced optimization problems
such as topology optimization. In this paper, the nonlinear finite element approach
relies on a Lie group formalism exhibiting attractive properties to evaluate the ESL.
In particular, the selected Lie group formalism expresses the equations of motion in
the local frame. An original method to efficiently evaluate the ESL is proposed by
taking advantage of these interesting properties. Several standard examples validate
the method.
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4.2 Contributions and impact

The work presented in this thesis focuses on the coupling between structural opti-
mization techniques and multibody system simulation tools to perform an integrated
optimization of flexible components. While most of the structural optimization devel-
opments have been conducted under (quasi-)static loadings or vibration design criteria,
the proposed approach aims at considering as precisely as possible the effects of dynamic
loading in mechanical systems under service conditions. Two main coupling methods
between the MBS analysis and the numerical optimization have been identified: the
weakly and the fully coupled methods.

The weakly coupled method has been used for years and is nowadays implemented
in commercial software tools. However, this approach was limited to floating frame
of reference or rigid body MBS formalisms. This thesis extends the weakly coupled
method to a nonlinear finite element approach, which is not straightforward since the
formalisms rely on different fundamental concepts. The nonlinear finite element ap-
proach is attractive as it is totally general to analyze complex mechanical systems and
is well-suited for advanced optimization problems such as topology optimization. Two
existing nonlinear finite element formalisms have been considered. A first method has
been proposed to evaluate the ESL based on a classical nonlinear finite element method
(Géradin and Cardona, 2001) in a post-processing step (Article [3]). A second method
has been developed based on a Lie group formalism (Sonneville and Brüls, 2014) whose
particular properties enable to efficiently evaluate the ESL (Article [4]).

In order to conduct a fair comparison between the optimization methods, it is impor-
tant to consider the same MBS formalism to avoid discrepancies from the analysis part.
Therein, we compared both weakly and fully coupled optimization methods based on
a standard nonlinear finite element formulation. It is shown that both methods can
converge toward the same optimum when the optimization problem can be formulated
in a similar way (Article [3]). It is worth mentioning that the weakly coupled method
considers the optimization of isolated components while the loading stems from the sys-
tem analysis. Hence, the formulation of design constraints involving multi-components
may be incompatible with the weakly coupled method. The fully coupled method is
more general and accommodates any types of constraints at the price of a more complex
optimization process.

The fully coupled method is a more challenging method as it relies on the time response
coming directly from the MBS analysis. Studies on the treatment of time-dependent
constraints have been initiated with the master thesis of Emonds-Alt (2010). In the
present thesis, we pushed further the investigations (Article [1]). It results that a uni-
versal formulation, suitable for all problems, is difficult to find. To ensure convergence
and efficiency, the formulation should rather be tailored to the considered application.
However, guidelines about the formulation are proposed. Also, the sensitivity analysis
has been deeply revisited and reformulated to facilitate its implementation and retain
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its efficiency (Article [2]). Indeed, gradient-based optimizations are conveniently used
since they require less iterations to converge than heuristic methods. Besides, the time
computation of MBS analyses is more expensive than for static analyses.

Since MBS analyses are in essence highly nonlinear, it is attractive to develop an
optimization problem parameterization that enables deep modifications of the geometry
while keeping a simple optimization process. To achieve this, an original coupling
between an implicit description of the geometry based on the level set method and a
geometry mapping based on a volume fraction has been proposed (Article [2]). This
coupling leads to a generalized shape optimization method wherein the component
topology can change in a limited manner.

The weakly and fully coupled methods were first implemented and validated using
mainly academical tools. The MBS analysis was performed using simulation tools de-
veloped at the University of Liège, the optimization process was conducted by scripts in
Matlab (The MathWorks, Inc., 2012b) and the optimization algorithm was either MMA
(Svanberg, 1987) or the algorithms of the Matlab optimization toolbox (The Math-
Works, Inc., 2012a). Afterwards, the fully coupled method was implemented using
commercial software tools. The MBS simulation was performed using Samcef Mecano1

and the optimization process was conducted using the optimization shell Boss Quattro2.
The latter implementation was possible since the fully coupled method does not require
modifications in the MBS simulation code in contrast to the weakly coupled method,
if the sensitivity analysis is based on a finite difference scheme or already available.

The developments of this thesis were mainly realized in the framework of a research
project, namely the LightCar project. This project facilitated establishing contacts with
industrial partners interested to collaborate and validate the developments carried out
in the thesis. In particular, the fully and weakly coupled methods were applied to
optimize power-train components in collaboration with Toyota Motor Corporation and
Jtekt Torsen companies.

1www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-
motion-analysis.shtml

2www.plm.automation.siemens.com/en_us/products/lms/samtech/boss-quattro.shtml

http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/boss-quattro.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/samcef-solver-suite/nonlinear-motion-analysis.shtml
http://www.plm.automation.siemens.com/en_us/products/lms/samtech/boss-quattro.shtml


Chapter 5

Conclusion and perspectives

5.1 Concluding remarks

This thesis focuses on the structural optimization of flexible mechanical system com-
ponents. In contrast to the mechanism synthesis defining the mechanism at a system
level in a conceptual phase, the detailed design of the mechanical components is ad-
dressed here. However, to design innovative and lightweight mechanical systems, the
influence of the entire system should be accounted for, since the interactions between
components strongly affect the optimal design. As a consequence, a system-based op-
timization approach incorporating a MBS simulation is adopted.

Throughout the thesis, a nonlinear finite element approach is chosen to describe the
MBS dynamics for several reasons. First, the nonlinear finite element formalism ac-
counts for both large rigid-body motions and elastic deflections of the structural compo-
nents in an integrated way. It follows that the approach is totally general to analyze the
deformations of complex mechanisms undergoing arbitrary joint motions. Moreover,
the approach is suitable to perform advanced optimization problems such as topology
optimization since the continuum domain is discretized into finite elements.

The adopted system-based optimization approach is completely general to perform the
structural optimization of mechanical system components. In particular, the thesis
firstly focuses on sizing and shape optimizations accounting for time-dependent con-
straints. Secondly, a generalized shape optimization is performed in which the topology
can change in a limited manner whereas the geometry is still precisely described by CAD
entities.

The structural optimization of flexible components within a MBS approach is tackled
by means of two general methods, so that a comparison of their respective merits and
limitations can be performed. It is demonstrated that the nonlinear finite element
approach can be successfully coupled with the two optimization methods, namely the
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weakly and the fully coupled methods. Moreover, it is shown that some problems
can be solved by both methods, leading to similar optimized designs. However, some
optimization problems cannot be solved by the weakly coupled method which thus
appears less general than the fully coupled method.

5.2 Future work
This work is a contribution to the structural optimization of flexible components in
MBS and numerous perspectives can be foreseen. Hereafter, several directions for
future work are detailed, in direct relationship with the present work.

A first perspective is to implement the discussed optimization methods into a com-
mercial code. As a result, more complex examples could be handily treated since the
computational time would be lessened. Also, examples of structural topology optimiza-
tion problems, which are not included in this thesis, can be treated using the proposed
system-based optimization framework.

This work focused on a nested approach to solve the fully coupled optimization problem.
In this approach, most of the computational effort is invested to solve the equilibrium
equations (Amir et al., 2010). Conversely, future work may address the SAND (Simul-
taneous ANalysis and Design) approach which does not solve the equilibrium equations
apart from the optimization process but incorporates them into the optimization pro-
cess. Consequently, the optimization problem size is largely increased. However, the
matrices exhibit interesting properties such as sparsity that enable to obtain an effi-
cient optimization process. Regarding the optimization problem of MBS components,
its size is even larger since the integration formulae must be added to the equilibrium
equation. Nonetheless, the SAND approach could be an interesting approach to solve a
combined problem of structural optimization and optimal control. Optimal control can
be performed using a SAND formulation that is named “Direct transcription method”
in robotics (Bastos Jr. et al., 2013). In that reference, simple examples demonstrated
the ability of the SAND formulation to solve MBS optimization problems. Ergo, an
interesting perspective would be to investigate the coupled optimal control/component
structural optimization problem.

The weakly coupled method considers the optimization of isolated components where
the loading comes from the MBS analysis. The resulting approach is somehow restric-
tive because the optimization problem must be formulated with functions related to a
single component and not to several components. Furthermore, the method depends
on a subjective choice of boundary conditions to remove the singularity of the stiffness
matrix at the component level. An interesting perspective would be to extend the
weakly coupled method to consider the whole system in the static response optimiza-
tion process and to get rid of the implicit assumption of the optimization of isolated
components. The Lie group formalism seems to be particularly well-suited since the
tangent stiffness matrix of the system slightly changes during the motion of the system.
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