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Microgrid
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Planning a microgrid

Given prior informations and possible actions at each time step,
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We aim to determine a smart
seguence of actions, minimizing
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Easy planning when future i1s known
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Why Is it easy ?
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Implementation of the microgrid dynamics as a linear program (inspired from
V.Francois-Lavet et al., business case study results on microgrids [2]). Such a

program can be solved efficiently using Simplex algorithm.



But, In real life...
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Designing a smart scheduler (i.e. performing a near-optimal planning) is complex ;

Informations about future consumption and production should be provided by
the history of consumption and production ;

And remember, generating a large optimal database is easy ;

How to use such data ?



Introduction to Machine Learning
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Datapoints
Regression

* Machine learning allows to build more complex systems from larger input space

 |Input space has great influence on the quality of the built system.



Example of learning structure :
Decision Tree

Input : X = <X, X, X X,>
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Algorithm : Extremely Randomized Trees developed by Geurts et al. [3]




Building the input space

Any efficient scheduler needs informative data from the microgrid ;

Need to choose smartly the attributes for building an efficient learning
structure from :
 Informations from a subwindow of production and consumption
history ;
e Current datetime (e.g. season). ;

The learning set will contains data from sequences of actions,
described by such attributes ;

The scheduler will be built from such a learning set as a function able
to choose actions, given informations extracted from the microgrid ;

Once such a function is built, the scheduler will make use of it to
perform planning in microgrids ;

This is imitative learning.



Ensure output consistency

» The scheduler can possibly apply actions independently on each
storage system. May lead to inconsistencies.

« Scheme below show how to guarantee compliance of actions with
constraints.

Any infeasible actions from scheduler

Feasible Projection to closest feasible

actions



How to Ensure output consistency
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Test protocol

» Sequences of actions are sampled with solar production in Belgium
and artificial load consumption (lack of real data...) computed by
arbitrarily pattern.

e Several input spaces (from 12 hours up to 3 months of history) have
been tested.

* The imitative scheduler will be compared to a greedy scheduler. The
strategy of such a greedy scheduler consists in minimizing the
energy wasting.



Optimal planning

Etat de la batterie
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Greedy planning

Etat de la batterie Etat du réseau & hydrogéne
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Agent planning

Etat de la batterie
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Battery content more often flushed than greedy.

Hydrogen tank content peak : 1400 kWh.
Still under-used but better than greedy.

Best input space found : 12 hours + additionnal attribute showing distance from

current and summer equinox dates



Conclusion

 Imitative learning scheduler performs better than the greedy
scheduler.

* More data (realistic ones !) would further improve the approach.
* Future work :
« Benchmarking on others learning structures ;

« Developing a learning structure and his algorithm to take directly
into account constraints ;

« Addressing of online planning on more complex microgrids (non-
linear dynamics, partial models...) using reinforcement learning.
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Thanks for your attention !

No, Neo, you
are just
paranoiid.

“Morpheus, I've heard this term, Smart Grid,
before. It's what they called the Matrix before
it took control of our lives.”



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

