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Abstract. This paper aims to design an algorithm dedicated to opera-
tional planning for microgrids in the challenging case where the scenarios
of production and consumption are not known in advance. Using expert
knowledge obtained from solving a family of linear programs, we build a
learning set for training a decision-making agent. The empirical perfor-
mances in terms of Levelized Energy Cost (LEC) of the obtained agent
are compared to the expert performances obtained in the case where the
scenarios are known in advance. Preliminary results are promising.

Keywords: Machine learning · Planning · Imitative learning ·
Microgrids

1 Introduction

Nowadays, electricity is distributed among consumers by complex and large elec-
trical networks, supplied by conventional power plants. However, due to the drop
in the price of photovoltaic panels (PV) over the last years, a business case has
appeared for decentralized energy production. In such a context, microgrids that
are small-scale localized station with electricity production and consumption
have been developed. The extreme case of this decentralization process consists
in being fully off-grid (i.e. being disconnected from conventional electrical net-
works). Such a case requires to be able to provide electricity when needed within
the microgrid. Since PV production varies with daily and seasonal fluctuations,
storage is required to balance production and consumption.

In this paper, we focus on the case of fully off-grid microgrids. Due to the cost
of batteries, sizing a battery storage capacity so that it can deal with seasonal
fluctuations would be too expensive in many parts of the world. To overcome
this problem, we assume that the microgrid is provided with another storage
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technology, whose storage capacity is almost unlimited, such as for example
as it is the case with hydrogen-based storage. However, this long-term storage
capacity is limited by the power it can exchange.

Balancing the operation of both types of storage systems so as to avoid at
best power cuts is challenging in the case where production and consumption are
not known in advance. The contribution presented in this paper aims to build a
decision making agent for planning the operation of both storage systems. To do
so, we propose the following methodology. First, we consider a family of scenarios
for which production and consumption are known in advance, which allows us to
determine the optimal planning for each of them using the methodology proposed
in [4] which is based on linear programming. This family of solutions is used as an
expert knowledge database, from which optimal decisions can be extracted into a
learning set. Such a set is used to train a decision making agent using supervised
learning, in particular Extremely Randomized Trees [5]. Our supervised learning
strategy provides the agent with some generalization capabilities, which allows
the agent to take high performance decisions without knowing the scenarios in
advance. It only uses recent observations made within the microgrid.

The outline of this paper is the following. Section 2 provides a formalization
of the microgrid. Section 3 describes the related work. Section 4 introduces a lin-
ear programming formalization of microgrid planning with fully-known scenarios
of production and consumption. Section 5 describes our imitative learning app-
roach. Section 6 reports and discusses empirical simulations. Section 7 concludes
this paper.

2 Microgrids

Microgrids are small structures providing energy available within the system
to loads. The availability of the power strongly depends on the local weather
with its own short-term and long-term fluctuations. We consider the case where
microgrids have both generators and storage systems and also loads. This section
formally defines such devices. It ends with a definition of Levelized Energy Cost
within a fully off-grid microgrid.

2.1 Generators

Generators convert any source of energy into electricity. They are limited by the
power they can provide to the system. More formally, let us define G as the set
of generators, yg as the supply power limit of g ∈ G in Wp and ηg the efficiency,
i.e. the percentage of energy available after generation, of g ∈ G and pg

t the
available power from the source of energy. The following inequation describes
the maximal power production:

pg
t η

g � yg. (1)

In our work, we consider photovoltaic panels, for which the power limitation
is linearly dependent of the surface size of the PV panel which is expressed in m2.
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Let xg be the surface size of g ∈ G. The total power production by the surface
size is expressed as the following equation, for which the constraint expressed
above still holds:

φg
t = xgpg

t η
g. (2)

2.2 Storage Systems

Storage systems exchange the energy within the system to meet loads demand
and possibly to fill other storage systems. They are limited either by capacity
or power exchange. We denote these limits by xσc and xσp respectively, where
σc ∈ ΣC , σc ∈ ΣP . We denote Σ = ΣP + ΣC as the set of both kind of
storage systems and ησ the efficiency of σ ∈ Σ. We consider also, ∀σ ∈ Σ, the
variables sσ

t for the storage content, a+,σ
t and a−,σ

t for the decision variables
corresponding discharge and the recharge amount of the storage system at each
time t. Dynamics of storage systems are defined by the following equations:

sσ
s,0 = 0,∀σ ∈ Σ, (3)

sσ
t = sσ

(t−1) + a−,σ
t−1 + a+,σ

(t−1), 1 � t � T − 1,∀σ ∈ Σ. (4)

2.3 Loads

Loads are expressed in kWh for each time step t. Power cuts occur when the
demand is not met, and the lack is associated with a penalty cost. Formally, we
define the net demand dt as the difference between the consumption, defined by
ct and the available energy from the generators. The following equation holds:

dt = ct −
∑

g∈G

φg
t ,∀0 � t � T − 1. (5)

Finally, Ft is defined as the energy not supplied to loads, expressed in kWh,
by the following equation:

Ft = dt −
∑

σ∈Σ

ησ(a+,σ
t + a−,σ

t ),∀0 � t � T − 1. (6)

We now introduce in the model the possibility to have several levels of priority
demand, defined by the cost associated to power cuts. Let Ψ be the set of priority
demands, and Fψ

t the number of kWh not supplied for the demand priority group
ψ ∈ Ψ . Hence, Eqs. (5) and (6) become:

dt =
∑

ψ∈Ψ

cψ
t −

∑

g∈G

φg
t ,∀0 � t � T − 1, (7)

∑

ψ∈Ψ

Fψ
t = dt −

∑

σ∈Σ

ησ(a+,σ
t + a−,σ

t ),∀0 � t � T − 1. (8)
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2.4 Levelized Energy Cost

Any planning of a microgrid given any scenario of production and consump-
tion leads to a cost based on power cuts and initial investment. It also takes
into account economical aspects (e.g. deflation). This cost, called the Levelized
Energy Cost (LEC) for a fully off-grid microgrid is formally defined below:

LEC =

∑n
y=1

Iy−My

(1+r)y + I0
∑n

y=1
εy

(1+r)y

, (9)

where

– n = Considered horizon of the system in years;
– Iy = Investments expenditures in the year y;
– My = Operational revenues performed on the microgrid in the year y (take

into account the cost of power cuts during the year y);
– εy = Electricity consumption in year y;
– r = Discount rate which may refer to the interest rate or discounted cash flow.

3 Related Work

Different steps of our contribution have already been considered in various appli-
cations. We used linear programming for computing expert strategies. This kind
of approach have already been discussed in [7–9] with different microgrid formu-
lations. We used supervised learning techniques with solutions provided by linear
programming. Cornélusse et al. [2] have considered this approach in the unit com-
mitment problem. Our prediction model needs an additional step to ensure com-
pliance of the policy learned by supervised learning algorithms with constraints
related to the system. This step consists to use quadratic programming to post-
process the solution. Cornélusse et al. [1] have considered a similar approach.

Online planning for microgrids has also been studied with others microgrid
configurations. For example, Debjyoti and Ambarnath [3] focuses on the specific
case of online planning using automatas, while Kuznetsova et al. [6] focuses on
the online planning using a model-based reinforcement learning approach.

4 Optimal Sizing and Planning

4.1 Linear Program

Objective Function. Let kψ
t ,∀0 � t � T − 1,∀ψ ∈ Ψ be the value of loss load of

the priority demand ψ ∈ Ψ . The LEC is instantiated in the following way:

LEC =

∑T
t=1

−∑ψ∈Ψ kψ
t F ψ

t

(1+r)y′ + I0
∑n

y=1
εy

(1+r)y

, (10)

where y′ = t/(24 × 365).
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Constraints. Storage systems actions are limited by their sizes. The following
constraints are added:

sσc
t � xσc ,∀σc ∈ ΣC , 0 � t � T − 1, (11)

a
+,σp

t � xσp ,∀σp ∈ ΣP , 0 � t � T − 1, (12)

− a
−,σp

t � xσp ,∀σp ∈ ΣP , 0 � t � T − 1. (13)

Figure 1 shows the overall linear program.

Min.
T
t=1

− ψ∈Ψ kψ
t F ψ

t

(1+r)y + I0
n
y=1

y

(1+r)y

, y = t/(365 × 24) (14a)

S.t., ∀t ∈ {0 . . . T − 1} )b41(:

sσ
t = sσ

t−1 + a−,σ
t−1 + a+,σ

t−1, ∀σ ∈ Σ , (14c)
sσc

t xσc , ∀σc ∈ ΣC , (14d)

a
+,σp

t xσp , ∀σp ∈ ΣP , (14e)

a
−,σp

t xσp , ∀σp ∈ ΣP , (14f)

ψ∈Ψ

Fψ
t −dt −

σ∈Σ

ησ(a−,σ
t + a+,σ

t ) , (14g)

ψ∈Ψ

Fψ
t 0 , (14h)

− Fψ
t cψ

t . (14i)

Fig. 1. Overall linear program for optimization.

4.2 Microgrid Sequence

When planning is performed given sequences of production and consumption
of length T > 0, a sequence of storage contents and a sequence of actions are
generated. Such a group of four sequences is called a microgrid sequence. In
the following, we abusively denote as an optimal microgrid sequence a set of
sequences obtained by solving linear programs. Figure 2 shows an illustration
of a sequence of decision, with the two kinds of storage systems. A microgrid
sequence is formally defined below:

(c0 . . . cT−1, φ0 . . . φ0...T−1, s
σ
0 . . . sσ

T−1, a
σ
0 . . . aσ

T−1), (15)

where ∀t ∈ {0 . . . T − 1}, aσ
t = a+,σ

t + a−,σ
t .
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Fig. 2. Sequence scheme (discharging/recharging).

The cost associated to a microgrid sequence is defined below for any microgrid
sequence s given any microgrid configuration M , any sequence of production
φ0...T−1 and any sequence of consumption c0...T−1:

LEC
c0...cT −1,φ0...φT −1
M (s) =

∑T
t=1

−∑ψ∈Ψ k
ψ
t ((ct−∑g∈G φ

g
t )−∑σ∈Σ ησ(a

+,σ
t +a

−,σ
t ))

(1+r)y′ + I0
∑n

y=1
εy

(1+r)y

.

(16)

5 Imitative Learning Approach

Optimal microgrid sequences are generated as an expert knowledge database.
The decision-making agent is built using a subset of this database. Such an
agent is evaluated on a distinct subset.

5.1 Data

Given production and consumption sequences, we can generate microgrid sequ-
ences by solving linear programs.

Formally, let (φ(k)
t , c

(k)
t )t∈{0...T−1},k∈{0...K} be a set of production and con-

sumption scenarios, with K ∈ N\0. To this set corresponds a set of microgrid
sequences:

(φ(k)
t , c

(k)
t , s

(k,σ)
t , a

(k,σ)
t )k∈K,t∈{0,...,T−1}. (17)

5.2 From Data to Feature Space

For each time t ∈ {0, . . . , T − 1}, production and consumption data are known
from 0 to t. Let φ

(k)
0...t =

〈
φ
(k)
0 . . . φ

(k)
t

〉
and c

(k)
0...t =

〈
c
(k)
0 . . . c

(k)
t

〉
be the sequences
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of production and consumption from 0 to t. We define a microgrid vector from
the previous sequences:

(φ(k)
0...t, c

(k)
0...t, s

(k,σ)
t , a

(k,σ)
t )k∈K,t∈{0...T−1},∀σ∈Σ . (18)

We now introduce, ∀t ∈ {0 . . . T − 1}, the function e : Rt × R
t × R

bt → R
bt

where b = #Σ. Such a function builds an information vector from sequences of
production and consumption. Let v = e(φ(k)

0...t, c
(k)
0...t) be the information vector,

vl the l-th component of v and L > 0 the size of the vector. Finally we define,
from the definition of microgrid vector, a feature space that will be used with
supervised learning techniques as below:

(v1 . . . vL, s
(k,σ)
t , a

(k,σ)
t )k∈K,t∈{0...T−1},∀σ∈Σ . (19)

5.3 Constraints Compliancy

An additional step is to ensure that the constraints related to the current infor-
mation of the system are not violated with the actions performed by the deci-
sion making agent. A quadratic program is designed to search for closest feasible
actions. This program is defined in Fig. 3. We use constraints from Fig. 1 with an
extra one defined below which represents the limit of storage system recharging
regarding the overall available energy in the system.

∑

σ∈Σ

a∗+,σ
t � −d′

t −
∑

σ∈Σ

a∗−,σ
t , (20)

where d′
t is defined below to take into account only the possible overproduction

by the following equation:

d′
t = −max(0, dt). (21)

We are going to illustrate the postprocessing part (see also Fig. 4). We will
consider three use cases below, with a battery limited in capacity by 11 kWh
and a hydrogen tank with a power exchange limit of 7 kWp.

– Underproduction with both storage systems empty. Initial actions are both
discharging but since this is not possible, the postprocessing part cancels the
actions (Fig. 4 - top);

– Overproduction with hydrogen tank empty and battery containing 7 kWh.
Initial actions are both charging. But the production itself does not entirely
meet the consumption. Again, there is a projection where only the battery is
discharging (Fig. 4 - middle);

– Underproduction with both storage systems are not empty. The actions are
both charging but the energy requested does not meet entirely the consump-
tion. As a consequence, the levels of charging of the battery and of the hydro-
gen tank are decreased by the projection (Fig. 4 - bottom).
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Min. (a +,σ
t − a∗+,σ

t )2 + (a ,σ
t − a∗−,σ

t )2 − Ft (22a)
)b22(:t.S

sσ
t + a∗−,σ

t + a∗+,σ
t 0, ∀σ ∈ Σ (22c)

sσc
t xσc , ∀σc ∈ ΣC , (22d)

a
∗+,σp

t xσp , ∀σ ∈ ΣP , (22e)

− a
∗−,σp

t xσp , ∀σ ∈ ΣP , (22f)

ψ∈Ψ

Fψ
t −dt −

σ∈Σ

ησa∗−,σ
t +

a∗+,σ
t

ησ
, (22g)

ψ∈Ψ

Fψ
t 0 , (22h)

− Fψ
t cψ

t , (22i)
− dt dt , (22j)
− dt 0 , (22k)

σ∈Σ

a∗+,σ
t −dt −

σ∈Σ

a∗−,σ
t . (22l)

Fig. 3. Quadratic program defined for any time step t ∈ {0 . . . T − 1} (postprocessing
part).

5.4 Evaluation

An evaluation criterion consists to compute the difference of cost observed
between control by the imitative agent and the optimally control microgrid,
for a given context (i.e. profile of production/consumption and microgrid set-
tings). More formally, let’s consider s∗ the optimal microgrid sequence and s′

the microgrid sequence generated by the decision making agent. Then the cost
difference is represented by the function below:

Err
c0...cT−1,φ0...φT −1
M (s′) = LECc0...cT−1,φ0...φT−1

M (s′) − LEC
c0...cT−1,φ0...φT −1
M (s∗).

(23)

6 Simulations

6.1 Implementation Details

The programming language Python1 was used for all the simulations, with the
library Gurobi2 for optimization tools and scikit-learn3 for machine learning
tools.
1 www.python.org.
2 http://www.gurobi.com/.
3 www.scikit-learn.org.

www.python.org
http://www.gurobi.com/
www.scikit-learn.org
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Fig. 4. Bar plots representing the projection from actions to feasible ones when needed.

6.2 Microgrid Components

Devices below are considered for the microgrid configuration.

– Photovoltaic panels accumulate energy from solar irradiance with a ratio of
loss due to technology and atmospheric issues. According to Sect. 2, they are
defined in terms of m2 and of Wp per m2. Table 1 gives the values of the
elements describing the PV panels.

– Batteries are considered as short-term storage systems with no constraint on
power exchange but with limited capacity. Table 2 gives the values of the
elements describing the batteries.
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– Hydrogen tanks, without capacity constraint, but limited in power exchange.
They are long-term storage systems. Table 3 gives the values of the elements
describing the hydrogen tanks.

Table 1. Photovoltaic panels settings.

Efficiency ηPV 20 %

Cost by m2 200 e

Wp/m2 200

Lifetime 20 years

Table 2. Batteries settings.

Efficiency charging/discharging ηB 90 %

Cost per usable kWh 500 e

Lifetime 20 years

Table 3. Hydrogen tank settings.

Efficiency charging/discharging ηB 65 %

Cost per kWp 14 e

Lifetime 20 years

6.3 Available Data

Consumption Profile. An arbitrarily pattern was designed as a representative
model of a common residential daily consumption with two peaks of respectively
1200 and 1750 W. Figure 5 shows the daily graph of such a consumption profile.

Production Profile. The production scenarios are derived from the production
data of a photovoltaic panel installation located in Belgium. These data have
been processed in a straightforward way so as to have histories of production
per m2 of PV panels installed. These will be used later to define the production
scenarios by simply multiplying them by the surface of the PV panels of the
microgrid.

Figure 6 shows a typical production scenario for PV panels in Belgium.
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Fig. 5. Residential consumption profile.

Fig. 6. Monthly production profile of PV panels in Belgium.

6.4 Test Protocol

We split the set of scenarios of production and consumption into two subsets, a
learning set for training the agent and a test set to evaluate the performances.
The learning set contains the two first years of production and the test set
contains the last year of production. We also apply linear transformations as
below to artificially create more scenarios for both learning and test sets.

⋃

i∈{0.9,1,1.1}

⋃

j∈{0.9,1,1.1}
{(ict, jφt)}, t ∈ {0 . . . T − 1}. (24)

Table 4 details the configuration of our microgrid.
The following information vectors have been considered, ∀t ∈ {0 . . . T − 1}:



12 S. Aittahar et al.

Table 4. Microgrid configuration.

Photovoltaic panels area (in m2) 42

Battery capacity (in kWh) 13

Hydrogen network available power (in kWp) 1

Fig. 7. Sample of typical Belgium production (1 year).

– 12 h of history, i.e. e(φ(k)
0 . . . φ

(k)
t , c

(k)
0 . . . c

(k)
t ) =

(φ(k)
max(t−12,0) . . . φ

(k)
t , c

(k)
max(t−12,0) . . . c

(k)
t );

– 3 months of history, i.e. e(φ(k)
0 . . . φ

(k)
t , c

(k)
0 . . . c

(k)
t ) =

(φ(k)
max(t−24×30×3,0) . . . φ

(k)
t , c

(k)
max(t−2160,0) . . . c

(k)
t );

– 12 h of history + summer equinox distance, i.e.
e(φ(k)

0 . . . φ
(k)
t , c

(k)
0 . . . c

(k)
t ) = (φ(k)

max(t−12,0) . . . φ
(k)
t , c

(k)
max(t−12,0) . . . c

(k)
t , |t−t∗|),

where t∗ is the summer equinox datetime.

A forest of 250 trees have been built with the method of Extremely Random-
ized Trees proposed in [5]. Our imitative learning agent and our optimal agent
are also compared with a so-called greedy agent that behaves in the following
way.

– If dt � 0, i.e. if underproduction occurs, storage systems are discharged in
decreasing order of efficiency;

– If dt � 0, i.e. if overproduction occurs, storage systems are charged in decreas-
ing order of efficiency.

The main idea of this greedy agent is to keep as most as possible energy into
the system.
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6.5 Results and Discussion

Optimal Sequence of Actions. Figure 8 shows the evolution of the storage systems
contents given optimal sequences of actions, for a given scenario. The empirical
mean LEC over the test set is 0.32e/kWh. The evolution is plotted over 1 year.

Fig. 8. Storage system state evolution (optimal).

As expected, the battery tries to handle short-term fluctuations. On the
other hand, the hydrogen tank content gradually increases during summer before
gradually decreasing during winter.

Greedy and Agent-Based Sequences of Actions. Table 5 shows the LEC for all
the sequences generated by the greedy algorithm and the controller given several
input spaces.

Considering a history of production and consumption of only 12 h is more
expensive in terms of LEC, compared to a history of production and consumption
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Table 5. Overall mean LECs.

Greedy controller 0.6

12 h 0.44

3 months 0.43

12 h + summer equinox distance 0.42

of 3 months. It shows that a decision making agent is more efficient with long-
term information. Additionally, we also report experimental results for which the
agent was also provided with the distance (in time) to summer equinox. This
additional information improves the performances.

7 Conclusion

In this paper, we have proposed an imitative learning-based agent for operat-
ing both long-term and short-term storage systems in microgrids. The learning
set was obtained by solving a family of linear programs, each of them being
associated with a fixed production and consumption scenario.

As having access to real data is expensive, we plan to investigate how to
transfer knowledge from one microgrid to another. In particular, we will focus
on transfer learning strategies [10].

Acknowledgments. Raphael Fonteneau is a Postdoctoral Fellow of the F.R.S.-FNRS.
The authors also thank the Walloon Region who has funded this research in the context
of the BATWAL project. The authors also thank Bertrand Cornelusse for valuable
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