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ABSTRACT 

The choice of sensitivity analysis methods for a model often relies on the behavior of model 

outputs. However, many building energy models are “black-box” functions whose behavior 

of simulated results is usually unknown or uncertain. This situation raises a question of how 

to correctly choose a sensitivity analysis method and its settings for building simulation. A 

performance comparison of nine sensitivity analysis methods has been carried out by means 

of computational experiments and building energy simulation. A comprehensive test 

procedure using three benchmark functions and two real-world building energy models was 

proposed. The degree of complexity was gradually increased by carefully-chosen test 

problems. Performance of these methods was compared through the ranking of variables’ 

importance, variables’ sensitivity indices, interaction among variables, and computational 

cost for each method. Test results show the consistency between the Fourier Amplitude 

Sensitivity Test (FAST) and the Sobol method. Some evidences found from the tests indicate 

that performance of other methods was unstable, especially with the non-monotonic test 

problems.        

Keywords: Monte Carlo approach; variance-based sensitivity analysis; regression-based 

sensitivity analysis; Morris method; comparison    

ABREVIATIONS 

FAST Fourier Amplitude Sensitivity Test 

KCC Kendall coefficient of concordance 

NMBE Normalized mean bias error 

OAT One-parameter-at-a-time 

PCC Partial correlation coefficient 
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PEAR Pearson product moment correlation coefficient 

PRCC Partial Rank Correlation Coefficients 

PTAC Packaged terminal air-conditioner 

RMSE Root mean square error 

SA Sensitivity analysis 

SPEA Spearman coefficient 

SRC Standardized regression coefficient 

SRRC Standardized rank regression coefficient 

1. Background and objectives of this study 

During the last decades, applications of computer simulation for handling complex 

engineering systems have emerged as a promising approach. In building science, researchers 

and designers often use dynamic thermal simulation programs to analyze thermal and energy 

behaviors of a building so as to achieve specific targets, e.g. reducing energy consumption, 

decreasing environmental impacts or improving indoor thermal environment (Garber 2009). 

Consequently, several techniques have been developed so as to support building simulation 

analysis, including parametric simulation, sensitivity analysis, simulation-based optimization, 

meta-model analysis, etc. This paper attempts to deal with the issues related to sensitivity 

analysis (SA). 

Sensitivity is a generic concept. SA has been conceived and defined as a measure of the 

effect of a given input on the output (Saltelli et al. 2004).  If a change of an input parameter 

X produces a change in the output parameter Y and these changes can be measured, then we 

can determine the sensitivity of Y with respect to X (Lam and Hui 1996). This measure of 

sensitivity can be obtained by calculations via a direct or an indirect approach, or system 

derivatives such as /  
jX jS Y X  (where Y is the output of interest and Xj is the input factor) 

(Saltelli et al. 2004).  

The philosophy of SA is that if we understand the relationships and the relative 

importance of design parameters, we can easily improve the building performance by 

carefully selecting important design parameters. Several SA methods have been developed 

during recent years and many of them can be applied to building simulation. Additionally, the 

relationship between simulation inputs and outputs is often unknown or uncertain due to the 

complexity of building energy models. This situation raises some questions of how to choose 

an appropriate SA method for the problem under consideration or whether a SA result is 
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reliable. In this study, several SA methods commonly used in building simulation were 

employed to assess the significance of various input parameters of some mathematical models 

and computer building energy models. By comparing the results of SA given by these 

different methods, this study provides an insight into the reliability (or accuracy) of these SA 

methods. The global objective of this study is to evaluate and recommend the most reliable 

SA methods for building energy models, with a particular focus on small residential buildings. 

2. A brief overview of SA methods and the state of the art of SA applied to 

building energy models 

There are a number of approaches used in SA which can be distinguished by their 

methods, purposes, sensitivity indices. Hamby (1994) provided a comprehensive review on 

SA methods according to which SA methods could be addressed in three groups:  

- Those that evaluate the output on one variable at a time (including 6 methods); 

- Those that are based on the generation of a sample of input vectors and associated 

outputs (including 10 methods); 

- Those that perform a partitioning of a particular input vector based on the resulting 

output vector (including 4 methods). 

According to Frey et al. (2003), SA methods may be broadly categorized into three 

groups as follows: 

- The “mathematical approach” typically involves calculating the output for a few values 

of an input within its possible range. This approach basically consists of the Nominal Range 

Sensitivity Analysis Method, the Differential Sensitivity Analysis, the method of Morris, most 

of the methods using the one-parameter-at-a-time (OAT) approach… 

- The “statistical (or probabilistic) approach” involves running of a large number of 

model evaluations on an input sample which is usually generated randomly. Depending upon 

the method, one or more inputs are varied at a time. The statistical methods allow quantifying 

the effect of simultaneous interactions among multiple inputs (Frey et al. 2003). The statistical 

approach includes: the linear Regression Analysis (RA), the analysis of variance (ANOVA), 

the Response Surface Method (RSM), the Fourier Amplitude Sensitivity Test (FAST), the 

Mutual Information Index (MII), Sobol’s method, methods using statistical indices: PEAR 

(Pearson  product moment  correlation  coefficient), SPEA (Spearman coefficient), SRC 

(Standardized regression coefficient), and SRRC (Standardized rank regression coefficient)… 

- SA methods using “graphical assessment” to estimate a qualitative measure of 

sensitivity using graphs, charts, or surfaces of pairs of inputs – corresponding outputs. It can 
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be used to strengthen the results of other quantitative methods for better interpretation. The 

most common forms of “graphical assessment” are the Scatter Plot and the Regression 

Analysis. 

Heiselberg et al. (2009) grouped SA methods into three classes: ‘local’ sensitivity 

methods, global sensitivity methods, and screening methods. ‘Local’ sensitivity methods are 

also often based on the OAT approach in which the variation of model outputs is considered 

under the variation of one design parameter, while all other parameters are held constant. In 

the global sensitivity approach, the significance of an input factor is evaluated by varying all 

other input factors as well. These SA methods usually generate a large number of input vectors 

and model evaluations. Screening methods are used to reduce computational cost in high-

dimensional or computationally expensive models. In these methods, the significance of each 

input is evaluated in turn and the sensitivity index is evaluated by the average of the partial 

derivatives at different points in the input space. The method of Morris (1991) is one of the 

most commonly used screening methods. 

In building research, SA is often quantified by the difference in simulated results caused 

by the variations of input parameters. A SA provides designers a robust tool to quantify the 

effect of various design parameters and to identify sources of uncertainty. Lomas and Eppel 

(1992) examined performance of 3 SA methods (Differential sensitivity analysis, Monte Carlo 

analysis, and Stochastic sensitivity analysis) on 3 building energy programs (ESP, HTB2, and 

SERI-RES). The variation of simulation outputs were caused by the perturbation of 70 input 

parameters. The study indicates that both Differential sensitivity analysis and Monte Carlo 

analysis yielded similar results and could be applied to the widest range of thermal programs 

while Stochastic sensitivity analysis was complex to implement. Lam and Hui (1996) 

performed a study on the effects of various design parameters on building energy 

consumption. They used a simple ‘local’ sensitivity test and the simulation tool DOE-2 to 

examine an office model in Hong Kong. As the variation of each design parameter was 

considered separately, their study could not quantify complex interactions among design 

parameters. The results were therefore unconvincing. Heiselberg et al. (2009, p. 2036) used 

the Morris method (Morris 1991) - a local sensitivity method - to perform SA for an office 

building in Denmark to measure the influence of design parameters on total building energy 

demand. They concluded that “SA in the early stages of the design process can give important 

information about which design parameters to focus on in the next phases of the design” and 

“improve the efficiency of the design process and be very useful in an optimization of building 



5 

 

performance”. Hopfe and Hensen (2011) performed uncertainty analysis and SA on three 

groups of input parameters of an office building, including: physical parameters, design 

parameters and scenario parameters. The perturbation of input parameters was generated by 

the Latin hypercube sampling (LHS) method and the Standardized Rank Regression 

Coefficient (SRRC) was used as the quantitative measure of sensitivity. This study revealed 

that the infiltration rate and the room geometry were among the most sensitive parameters of 

the model. By investigating the models of two office buildings, Eisenhower et al. (2011, p. 

2785) found that “the most sensitive parameters of the model relate to building operation (i.e. 

scheduling), and also find that a low energy building design is more robust to parameter 

variations than the conventional design”. In Eisenhower et al. (2012), the authors proposed 

and applied a decomposition of sensitivity indices to quantify which intermediate processes 

(e.g. Air handling unit, heating sources, cooling sources…) contributed the most to the 

uncertainty of building simulation outputs. 

The above mentioned studies show a preliminary insight of the importance and 

applications of SA among building research communities. This study investigates capability 

of three common global SA methods and a screening method with a total of nine sensitivity 

measures, as described in Table 1. The categorization in Table 1 is similar to the work of Tian 

(2013) and will be used hereafter. 

Table 1: SA methods investigated in this study and their basic features (adapted from 

(Morris 1991; Sobol 1993; Hamby 1994; Frey et al. 2003; Giglioli and Saltelli 2008; Tian 

2013; Saltelli et al. 2004; Nossent el al. 2011))  

Regression-

based 

sensitivity 

indices 

(Nguyen 2013; 

Yang 2011; 

Calleja 

Rodríguez et al. 

2013)  

1. PEAR PEAR measures the usual linear correlation coefficient between Y and a 

given input Xj. This sensitivity index is strictly applied to linear models. 

2. SRC SRC gives the strength of the correlation between Y and a given input Xj 

through a linear regression model having the form 

i j ij i

j

y a b x    ; where yi , i = 1, …, m, are the output values of 

the model; bj, j = 1, …, n, are  coefficients  that  must  be determined and εi 

is the error (residual) due to the approximation (m being  the  number  of  

inputs  in the sample, n being the number of input variables).  

Reliability of the SRC strongly depends on the R2 of the linear model. 

3. PCC PCC gives the strength of the correlation between Y and a given input Xj 

cleaned of any effect due to any correlation between Xj and any of the Xi 

,  j ≠ i. If input variables are uncorrelated, the order of variable importance 
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based either on SRC’s or PCC’s (in their absolute values) is exactly the 

same. 

Regression-

based 

sensitivity 

indices (using 

rank 

transformation 

techniques) 

(Nguyen 2013; 

Hopfe and 

Hensen 2011) 

4. SPEA SPEA is essentially the same as PEAR, but using the ranks of both Y and Xj 

instead of the raw values, i.e.:  SPEA(Y,Xj) = PEAR[R(Y),R(Xj)] 

where  R(*)  indicates  the  transformation  which  substitutes  the  variable 

value with its rank. 

5. SRRC SRRC is used instead of SRC when R2 is low. In this case, the input and 

output variables are replaced by their ranks, and the regression is then 

performed entirely on these ranks. SRRC is better than SRC if the model 

output varies non-linearly, but monotonically with each independent 

variable. 

6. PRCC PRCC is the PCC calculated on the rank of input variables. The 

performance of the PRCC shows the same features of performance as the 

SRCC: good for monotonic models, and not fully satisfactory in the 

presence of non-monotonicity. 

Variance-based 

sensitivity 

methods (Mara 

and Tarantola 

2008) 

7. Sobol 

index 

Both Sobol and FAST methods are model-independent approach in SA. 

They decompose the variance of model outputs into fractions which can be 

attributed to inputs or sets of inputs. These methods can deal with 

nonlinear and non-monotonic models or models with strongly correlated 

inputs. For each method, two measures of SA can be used: 

- "First-order sensitivity index": is the contribution to the output variance 

of the main effect of Xi, hence it measures the effect of varying Xi alone, 

but averaged over variations in other input parameters.  

- "Total-effect index": measures the contribution to the output variance of 

Xi, including all variance caused by its interactions, of any order, with any 

other input variables. 

8. FAST* 

sensitivity 

index 

Screening-

based method 

(Heiselberg et 

al. 2009) 

9. Morris’s 

SA 

method 

Morris method is also a model-independent approach in SA. It computes 

partial derivatives of a model at evenly-distributed points (often called 

“level”) within input ranges and these derivatives are then average out. 

Morris method gives 2 indicators related to SA: one (μ) is to estimate the 

main effect of the input factor on the output and the other (σ) is to assess 

the interaction with other factors or the nonlinear effects. This method does 

not support uncertainty analysis. 

* This study uses the extended FAST method which allows calculations of both first and total-order sensitivity indices. 

The selection of SA methods for a model requires some knowledge of the model output.  

In practice, it is not easy to know output behavior of a model, especially building energy 

models. Many studies have indicated that building simulation outputs are generally nonlinear, 

multimodal, discontinuous (Nguyen et al. 2014; Kampf et al. 2010), thus non-differentiable 
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and non-monotonic. These features generally cause many challenges for some SA methods. 

Moreover, variance-based SA methods, e.g. the Sobol method, need a large number of model 

evaluations to calculate sensitivity indices, whereas building energy models are generally 

computationally expensive. Therefore, there exists a growing concern about the relevancy of 

a SA method for a building energy model and how reliable a method is. The next sections of 

this paper present a test procedure and the SA results which provide some insight into this 

concern. 

3. Methodology 

This work performs global SA using the sampling-based approach. This approach is also 

referred to as the “Monte Carlo-based method”. A Monte Carlo-based SA provides statistical 

answers to a problem by running multiple model evaluations with a probabilistically 

generated input sample, and then the result of these evaluations are used to determine the 

sensitivity indices (Giglioli and Saltelli 2008). In this paper, the Monte Carlo-based SA 

consists of five major steps as follows (Mara and Tarantola 2008): 

-   Select the model to perform SA; 

- Identify simulation inputs of the model that should be included in the SA and the 

probability distribution functions of these variables; 

- Generate a sample of N input vectors for the model using a probability sampling 

method; 

- Run the simulation model N times on the input sample to produce N corresponding 

outputs; 

- Calculate the sensitivity indices for each input and draw necessary conclusions. 

3.1 Sampling methods 

In step 3, the input samples are generated by some sampling strategies. The calculation 

of the Sobol sensitivity indices imperatively needs the input sample generated by the Sobol 

sequence (Sobol 2001). For the FAST method, the FAST sampling method (Cukier et al. 

1978) is required. The modified Morris method generates its input sample by the Morris 

sampling strategy (Morris 1991). For the regression-based SA, some sampling methods can 

be applied. We observe that several SA studies employed the LHS method to generate input 

samples (Kotek et al. 2007; Hopfe Hensen 2011, Cosenza et al. 2013). They stated that the 

enforced stratification over the range of each sampled variable gives the LHS a desirable 

property for SA and uncertainty analysis. Particularly, Helton et al. (2005) compared the SA 
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results obtained by different sampling strategies and they recommended the LHS. Thus, the 

LHS was used in our study. 

The number of model evaluations (sample size) needed for a reliable Monte Carlo 

analysis must be large enough to assure convergence of the sensitivity indices, but should not 

be too large to delay the SA process. There are some basic principles for choosing the sample 

size of each SA method. For the FAST and Sobol methods, the sample size depends on the 

number of variables and the sampling method used (see (Saltelli and Bolado 1998) for further 

description of the sample size). The smallest sample size for the Sobol indices (both first and 

total-order indices) is n(2k+2), where n is the minimum model evaluations for estimating one 

individual effect; n takes the value of 16, or 32, 64…; k is the number of variables. The 

smallest sample size for the FAST indices is 65k; k is the number of variables (Giglioli and 

Saltelli 2008). The number of model evaluations for Morris μ* is r(k+1), where r is the 

number  of  trajectories (depends on number of levels, r is usually taken between 5 and 15 – 

see (Morris 1991)). We examined the result of the Morris method with different levels and 

sample sizes. For the regression-based sensitivity indices, although no explanation was 

mentioned, SimLab (Giglioli and Saltelli 2008) recommends the sample size of 1.5 up to 10 

times the number of input variables. In Monte Carlo analysis, Lomas and Eppel (1992) found 

that only marginal improvements in accuracy are obtained after 60-80 simulations; we 

therefore started the convergence test using the small sample size (40 simulations). As time 

for a model evaluation is negligible, we generated a large number of sample sets of input 

variables and see the variation of sensitivity indices calculated by the SA methods under 

consideration. Totally, 269117 function evaluations were done for the test. By examining the 

evolution of sensitivity indices as a function of the sample sizes, the convergence behavior 

and capability of the SA methods were derived. 

3.2 Test models and tools 

The test models are three benchmark functions and two real-world building energy 

models in EnergyPlus.  

3.2.1  Description of the test functions 

The performance of nine sensitivity measures (in Table 1) was tested using three 

benchmark functions. They were chosen from the literature in such a way that they provide 

increasing challenges to the SA methods by their increasing level of complexity. The 

objective of the test with these functions is (i) to examine the convergence behavior of the 

nine sensitivity indices calculated by the SA methods; and (ii) partly to compare the 
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performance of the nine SA methods. Six independent variables were examined. This number 

was kept unchanged in all tests because six variables will be relevant to the tests with 

computationally-expensive building models. All variables were considered continuous and 

their probability distribution functions are uniform (Saltelli and Bolado 1998; Archer et al. 

1997; Campolongo et al. 2000; Helton and Davis 2002). 

The first test function is a linear function (Model 3, reference (Campolongo et al. 2000; 

Helton and Davis 2002)) which is defined by:   

 
1

1
( ) ( )

2

n

i i

i

f x c x


   (1) 

with (0,1)ix U  and ci = (i - 11)2 for  i = 1, 2, …, 6. For this function, the significance 

of xi is proportional to the value of ci, which is inversely proportional to i. Thus, the correct 

order of variables’ importance should be x1, x2, x3, x4, x5, x6. 

The second test was performed using a monotonic function (Model 5, reference 

(Campolongo et al. 2000; Helton and Davis 2002)) which is defined by: 

 
1 1

( ) exp( ) ( 1) /i

n n
b

i i i

i i

f x b x e b
 

     (2) 

with (0,1)ix U  for i = 1, 2, …, 6 and b1 = 1.5, b2 = 0.9, b3 = 0.7, b4 = 0.5, b5 = 0.3, b6 

= 0.1. For this function, the importance of variables xi is proportional to its coefficient bi. By 

setting bi to the values above, the correct order of variables’ importance should be x1, x2, x3, 

x4, x5, x6. 

The third test was performed using a strongly nonlinear non-monotonic function, namely 

the “g-function” (Model 7 in reference (Campolongo et al. 2000), (Saltelli and Sobol 1995; 

Saltelli and Bolado 1998; Archer et al. 1997; Helton and Davis 2002)), which is defined by: 

 
1 1

4 2
( ) ( )

1

n n
i i

i i

i i i

x a
f x g x

a 

 
 


   (3) 

The function f(x) is defined in an n-dimensional unit cube - (0,1)ix U . The value of n 

is taken in the range [5,11] and ai ≥ 0. We examined the case n = 6 and a1 = 0, a2 = 1, a3 = 

4.5, a4 = 9, a5 = a6 =99.  

It is easy to prove that the function gi(xi) varies as 

 
1 1

1 ( ) 1
1 1

i i

i i

g x
a a

   
 

 (4) 
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For this reason, the size of ai determines the sensitivity of the function to the variation of 

variable xi. For example:  

- If ai = 0 then 0 ( ) 2i ig x   and gi(xi) is sensitive to the variation of xi; 

- If ai = 9 then 0.9 ( ) 1.1i ig x   and gi(xi) is much less sensitive to the variation of 

xi; 

- If ai = 99 then 0.99 ( ) 1.01i ig x   and gi(xi) is not sensitive to the variation of xi. 

This relationship is illustrated in Figure 1. 

 

Figure 1: Plot of the function gi(xi), for different values of the coefficient ai 

The g-function is a challenge to the SA methods since it allows an automatic tuning of 

the relative importance of variables, as well as their interactions (by definition, all interaction 

terms are non-zero) by using appropriate values of ai.  

There are some advantages to the use of these test functions, including: 

- Clear specification of the model under consideration; 

- Three different functions allowed the authors to vary the level of difficulty of the 

tests; 

- Function evaluations and sensitivity indices could be computed analytically; 

- Low computational cost that allows testing the influence of different sample sizes on 

the SA results (the convergence of the sensitivity indices); 

- These functions have both linear and nonlinear, monotonic and non-monotonic 

response, thus they provide good test arena for the SA methods;  

These three tests allowed the authors to compare the results with each other. 

3.2.2 Test A: thermal model of a naturally-ventilated apartment 

The selected building is located near the centre of Danang, Vietnam where the climate is 

warm and humid all year round. This seven-storey condominium, which was built in 2010, is 
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a typical dwelling designed for low income residents. The apartment has a gross floor area of 

53 m2 with two small bedrooms and is located on the 4th floor at a corner of the building (see 

Figure 2). The EnergyPlus model of this apartment was established and carefully calibrated 

by in-situ monitoring data. The simulated and monitored indoor temperature was in good 

agreement. The normalized mean bias error (NMBE) and the root-mean-square error (RMSE) 

of the model were 0% and 1.41%, respectively (see (Nguyen and Reiter, 2012; Nguyen 

2013)). As the whole building is naturally ventilated, indoor thermal comfort of occupants is 

obviously the greatest concern. The comfort assessment method in this EnergyPlus model 

was based on the adaptive thermal comfort theory and the result of a comprehensive meta-

analysis conducted by the authors (Nguyen et al. 2012). The implementation of this comfort 

model into EnergyPlus was carefully described in (Nguyen and Reiter 2014; Nguyen 2013). 

In this test, we examined the sensitivity of the discomfort period (total time - in hour - when 

the comfort criterion is not met) caused by the variation of 6 passive design parameters as 

listed in Table 2 (in random order). The ranges of these parameters were defined according to 

common passive design solutions of designers. For example, size of the window overhang 

could be 0 (no overhang) to 0.8 (large overhang in a common design); and the possibility of 

0 or 0.8, or any other value in the range [0, 0.8] is equal. For these reasons, the probability 

distribution function of all 6 parameters was set as uniform. These settings were used in some 

previous studies (Nguyen 2013; Nguyen and Reiter 2014). Among these six parameters, we 

intentionally chose 3 discrete parameters so as to challenge the SA methods. The number of 

parameters was limited to 6 due to computationally expensive simulations and large sample 

sizes, especially in the tests of the variance-based methods. 

Table 2: Parameters and parameter ranges used in sensitivity analysis 

 Description of parameters Name Range* Type Distribution 

T
h

e 
ap

ar
tm

en
t 

External wall type x1 100, 101, …, 109 Discrete Uniform 

Thermal absorptance - wall surface x2 0.25 – 0.80 Continuous Uniform 

Natural ventilation scheme x3 200, 201, …, 209 Discrete Uniform 

Window type x4 300, 301, …, 306 Discrete Uniform 

Size of window overhangs x5 0.00 – 0.80 m Continuous Uniform 

Thickness of internal walls (thermal mass) x6 0.10 – 0.33 m Continuous Uniform 

T
h

e 

d
et

ac
h

ed
 

h
o

u
se

 

Thickness of external wall insulation x1 0.00 – 0.04 m Continuous Uniform 

Thermal absorptance - wall surface x2 0.25 – 0.80 Continuous Uniform 

Thickness of roof insulation x3 0.00 – 0.04 m Continuous Uniform 
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Average infiltration rate – all zones x4 3.00 – 8.00 l/s Continuous Uniform 

Size of window overhangs x5 0.00 – 0.80 m Continuous Uniform 

Thickness of internal walls (thermal mass) x6 0.10 – 0.33 m Continuous Uniform 

* For discrete parameters, each number represents a codified name of building components or ventilation 

schemes in EnergyPlus (e.g. 101 means “220mm brick wall - no insulation or air gap”) 

    

Figure 2: Details of the selected building and the apartment (test A) 

3.2.3 Test B: energy model of an air-conditioned detached house 

The detached house situated near the seashore of Danang is being occupied by a family 

of 4. This house is surrounded by a garden; thus it is completely isolated from other buildings 

(see Figure 3). The house has 4 free-running zones (2 toilets, the roof attic and the corridor) 

and 6 climate-controlled zones by using 6 packaged terminal air-conditioners (PTAC). Each 

PTAC consists of an electric heating coil, a single-speed cooling coil, a ‘draw through’ fan, 

an outdoor air mixer, a thermostat control and a temperature sensor. It was assumed that the 

heating coil efficiency is 1; the coefficient of performance (COP) of the cooling coil is 3; the 

efficiency of the fan blades and the fan motor are 0.7 and 0.8 respectively; heating and cooling 

supplied air temperatures of the PTACs are 50°C and 13°C. Other features (e.g. flow rates, 

power of the coils) of these components are automatically estimated by EnergyPlus to meet 

thermal loads of the zones when design parameters vary. Energy consumption of a PTAC is 

the sum of heating, cooling, and fan electricity. The simulated result for SA tests was the 

annual energy consumption of the house which is the sum of electricity consumed by the 

lighting system, equipments and the PTACs. The thermal model of this house was carefully 

calibrated to achieve the NMBE of -0.16% and the RMSE of 1.13% (see (Nguyen 2013)). 

BEDROOM 2 BEDROOM 1

BALCONY

TOILET

LIVING ROOM

Apartment plan

0 1 5m
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Figure 3: Details of the selected detached house and its 3D EnergyPlus model (test B) 

In this SA test, we intentionally selected 6 passive design parameters (see Table 2 - in 

random order) which were nearly consistent with those of the apartment, but their values vary 

continuously. The aim is to generate a new test challenge as well as to facilitate comparison 

of the results between the two cases and to building design rules of thumb under the warm 

humid climate. 

3.2.4 Sensitivity analysis tool 

Both SimLab 2.2 (Giglioli and Saltelli 2011) and Dakota (Adams et al. 2009) can be used 

(free of charge) to perform SA. This study chose SimLab due to its simplicity and its user-

friendly interface. Input sampling and output processing are done with the support of SimLab. 

SimLab directly interacts with the three benchmark functions through Microsoft Excel®. 

SimLab interacts with EnergyPlus through a special interface developed by the authors, 

allowing to automatically extract the results from thousands of EnergyPlus output files and to 

convert them into a predefined format readable by SimLab. This SA process is summarized 

and illustrated in Figure 4. 
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Figure 4: The full process of a SA using SimLab and EnergyPlus 

3.3 Assessment criteria and Sensitivity indicators of the SA methods 

The modified Morris method (Campolongo el al. 2007) gives two sensitivity indicators, 

including the main effect μ* and the nonlinear effect σ (interaction with other variables). We 

consider μ* as the Morris indicator of sensitivity (see (Confalonieri et al. 2010)) and σ as the 

indicator of interaction. 

Each SA method will calculate and assign a sensitivity index to each input variable and 

its corresponding ranking. As sensitivity indices of different SA methods may not use the 

same metric, we decided to evaluate the performance of these SA methods using following 

comparisons and methods: 

- Compare variables’ sensitivity rankings to that of the reference method (qualitative 

comparison) using Kendall’s coefficient of concordance; 

- Compare variables’ degree of importance to that of the reference method (quantitative 

comparison) using the ‘normalized sensitivity value’; 

- Compare methods’ capability to detect interaction among input variables by 

considering both the sensitivity term and interaction term of the SA result; 

- Compare methods’ capability to provide results in reasonable amount of time by 

monitoring their convergence behavior. 
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4. Results 

4.1 Results of the SA tests with three benchmark functions 

Results of the test with the three test functions are presented in Figure 5, Figure 6, and 

Figure 7. For the linear function and the monotonic function, Figure 5 shows that the PEAR, 

PCC (Partial correlation coefficient) and SRC needed about 140 function evaluations to 

achieve stable solutions. Their solutions after 140 runs and those after 800 runs were likely 

the same. This number of simulations - 140 - was slightly higher than that proposed by Lomas 

and Eppel (1992). This is possibly because the “total sensitivity index” of Lomas and Eppel 

relies on the standard deviation of output samples, whereas the PEAR, PCC and SRC are 

derived by input-output linear regressions. The similar convergence behavior of the PEAR, 

PCC and SRC is understandable because all these indices are intrinsically calculated using 

the Pearson product moment correlation coefficient. Among them, the SRC was the most 

stable. Contrary to the stability of the PEAR, PCC and SRC, all the rank transformation SA 

indices - SPEA, PRCC (Partial Rank Correlation Coefficients) and SRRC - showed 

significantly changes of their values between the run 400th and 600th. Their solutions can be 

considered stable after the run 800th. It is worthy of note that the solutions of the rank 

transformation SA indices before convergence are completely incorrect, thus the convergence 

is crucial for their accuracy.  

For the g-function, all the regression-based sensitivity indices showed fluctuated 

outcomes and finally they failed to produce correct predictions of variables’ sensitivity, even 

at the large sample sizes. The performance of the regression-based sensitivity indices is 

normally satisfactory if the model output varies linearly or at least monotonically with each 

independent variable. Nevertheless, if the model is strongly non-monotonic, the accuracy of 

results may become dubious or completely misleading (Giglioli and Saltelli 2011). The strong 

non-monotonicity of the g-function is believed to be the reason of this failure. 
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Figure 5: Evolution of the regression-based sensitivity indices as a function of the sample 

sizes 
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Figure 6: Morris μ* as a function of sample sizes and levels (the red circles show the 

incorrect prediction of the Morris method for variable x3) 
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Figure 7: FAST and Sobol first order sensitivity indices as a function of sample sizes 

Figure 6 presents the performance of the modified Morris method with 6 different input 

samples for the three test functions. In most cases, the method gave fairly stable predictions 

which resulted in correct rankings of variables’ importance. Different from the regression-

based methods, the method of Morris was able to deal with the strong non-monotonicity of 

the g-function. This is because the Morris µ* of each input is estimated by averaging local 

derivatives (elementary effects) of the function which are separately calculated at different 

points within the input range, thereby overcoming the non-monotonicity of the function. 

However, it still failed two times in predicting the importance of x3 (see Figure 6). By 

investigating the input samples of these two cases, we found that these failures were possibly 

caused by the random sampling which resulted in uneven distribution of input vectors on the 

designed levels within the range of x3. Among the samples that gave reasonable predictions 

(4 levels – 49 inputs; 8 levels – 49 inputs; 4 levels – 70 inputs; and 6 levels – 70 inputs), we 

considered “6 levels and 70 input vectors” as the optimum setting for the next tests because 

this setting offers a balance between the number of levels and inputs (theoretically, a high 

number of levels to be explored needs to be balanced by a high number of trajectories (thus a 

large sample) in order to obtain an exploratory sample – see the number of model evaluations 

in section 3.1). 
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The outcomes of the FAST and Sobol method are shown in Figure 7. It is observed that 

in some tests, the predictions of these two methods suffer from small sample sizes (e.g. 

smaller than 1000). For the three test functions, FAST sensitivity indices can be considered 

stable if the sample size is equal or larger than 4374. Sobol sensitivity indices converged to 

stable solutions if the sample size is equal or larger than 3584. Both the FAST and Sobol 

methods had no problem with the g-function. In all tests, they gave reasonable predictions 

after convergence. Because of the space constraint, the total sensitivity indices of Sobol and 

FAST are not shown, but in our tests their convergence behavior was similar to that of the 

first order indices.      

Through the series of tests, we found that the sample sizes vary from one SA method to 

another, but is seems that the sample size needed for each method is fairly independent from 

the test problem. For six independent variables, the PEAR, PCC, and SRC need only 140 

function evaluations; the SPEA, PRCC, and SRRC need at least 800 function evaluations; the 

Morris method only requires 70 evaluations; the FAST and Sobol method require 4374 and 

3584 evaluations, respectively.  

The performance of the SA methods was not uniform, in terms of stability, accuracy and 

number of simulations required. The FAST and Sobol method outperformed the others in 

these tests, except their high number of simulations. They provided correct rankings as well 

as reasonable variables' importance with respect to variables’ coefficients. According to the 

literature (Saltelli et al. 2004; Campolongo et al. 2007; Saltelli et al. 1999) the variance-based 

measures can be regarded as good practice in SA and they can be considered as truly 

quantitative methods for numerical experiments. Based on many studies found from the 

literature that used or supported the Sobol method as the reference method (Saltelli and 

Bolado 1998; Ridolfi 2013; Massmann and Holzmann 2012; Wainwright et al. 2013; 

Confalonieri et al. 2010; Campolongo et al. 2007; Yang 2011), the Sobol method was 

considered the reference method for further investigations. 

4.2 Results of the SA test with real-world building energy models 

 In SA with building energy models, the convergence of different sensitivity indices has 

not been fully understood. The results in section 4.1 reveal that the sample size needed for 

each SA method is fairly independent from the test function. The sample size for each SA 

method was therefore determined as follows: 3584 for the Sobol method; 4374 for the FAST; 

140 for the PEAR, PCC, and SRC; 800 for the rank transformation SPEA, PRCC, and SRRC; 

and 70 inputs on 6 levels for the Morris method. Thus, for each model, the SA required 8968 



21 

 

simulations. As each simulation completed in around 1 to 2 minutes on our computer (CPU 

Intel core i5 4x2.53GHz and 4Gb RAM), the total simulation time was about 10 consecutive 

days (two simulations could run on the system concurrently). 

As explained in section 4.1, we compared results of the Sobol method (as the reference 

method) with that of the remaining methods. In out tests, as the Sobol method and the FAST 

provide both first and total order sensitivity indices and the differences between the two 

indices were small, we only present the first order sensitivity index in the comparison. 

4.2.1 Qualitative comparison using sensitivity rankings 

First, we compared the sensitivity rankings of the design parameters given by these SA 

methods. Figure 8 shows the rankings of different SA methods which were not consistent in 

the test A, but almost consistent in the test B. In the test A, the inconsistencies mainly occurred 

to the lowest ranked parameters (ranked 4th, 5th, and 6th), e.g. x1, x5, and x6. All the methods 

are consistent in predicting positions of the highly ranked parameters (ranked 1st, 2nd, and 3rd), 

namely x3, x4, x2. The discrete parameters often cause the simulation output non-monotonic 

and produce noise to the problem; thus they are possibly the reason of the disagreement among 

the SA methods. A similar phenomenon was observed in another SA study in which the 

problem of SA with discrete inputs disappeared if the value of discrete variables were 

appropriately rearranged (Nguyen 2013, p. 231). In the test B, all parameters are continuous, 

thus the SA results were more stable. All the methods were in good agreement except that the 

Morris method failed to predict the rankings of x1 and x2. 

 

Figure 8: Sensitivity rankings of the design parameters by nine sensitivity indices 

 

The Kendall’s coefficient of concordance (KCC) and its test of statistical significance 

(Kendall and Smith 1939; Helton et al. 2005) were used to assess the agreement between the 

ranking of a SA method and that of the Sobol method. The KCC is suitable for comparison 
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with a small number of parameters. The KCC ranges from 0 (no agreement) to 1 (complete 

agreement). In our case, the KCC can be described as follows: 

Suppose that parameter xi is given the rank ri,j by the SA method j where there are in total 

n parameters and m SA methods to compare. Then the total rank of parameter xi is: 
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The ranking agreement between a SA method and the Sobol method is reported in Table 

3. Table 3 indicates that the PEAR, PCC, and SRC were better than the SPEA, PRCC, SRRC, 

and FAST in the test A, but they were equally accurate in the test B. The KCCs of the PEAR, 

PCC and SRC consistently achieved 1 in the two tests, indicating that their ranking results 

were completely identical with that of the Sobol method. In terms of sensitivity rankings, the 

Morris method showed the lowest reliability due to its lowest KCCs. We performed chi-

square tests to see whether an observed value of KCC is significant, using the test method of 

Kendall and Smith (1939). All significance tests return p-value lower than 0.05 (all KCCs 

were statistically significant). 

Table 3: The KCC of the SA methods  

 PEAR SPEA PCC PRCC SRC SRRC Morris FAST 

Apart- 

ment 

KCC 1 0.91428 1 0.97143 1 0.97143 0.91428 0.97143 

p-

value 0.0143 0.01917 0.0143 0.01576 0.0143 0.01576 0.01917 0.01576 

Detached 

house 

KCC 1 1 1 1 1 1 0.97143 1 

p-

value 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.01576 0.0143 

 

4.2.2 Quantitative comparison using “Normalized sensitivity value” 

It is worthy of note that qualitative comparison using variables’ rankings can reveal only 

part of the intrinsic difference among the results. Hence, we performed another comparison 
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in a more quantitative way. We proposed to use the “normalized sensitivity value” S’ which 

is defined as:  

 
 
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i
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n

S
S

max S S S
  (8) 

where Si is the sensitivity value of parameter xi; for i = 1, 2, …, n. 

The use of the normalized sensitivity value S’ allows us to adjust sensitivity values 

measured on different scales to a notionally common scale, namely the scale [0,1]. The 

“normalized sensitivity value” of a parameter ranges from 0 (unimportant) to 1 (the most 

important parameter). On this scale, we could directly compare the sensitivity indices of the 

SA methods with those of the Sobol method. 

 

Figure 9: Quantitative comparison of normalized sensitivity values of 6 parameters given 

by the SA methods 

 

Figure 9 plots the normalized sensitivity values of all the SA methods under 

consideration. In terms of accuracy, comparison in Figure 9 reveals the followings: 

- The FAST and Sobol method yielded similar SA solutions – as observed and reported 

by Saltelli and Bolado (1998);  

- There was a big difference between the results of the variance-based methods and the 

remaining methods. Compared with the FAST and Sobol method, other methods 

overestimated the relative importance of many parameters; the results of these methods were 

inconsistent. The PCC and PRCC gave the worst predictions in the test B;  

- Despite using only 70 simulations, performance of the Morris method was seen as 

equivalent to the regression-based SA methods, with respect to the results of the FAST and 

Sobol method; 

Through the comparison in Figure 9, it can be said that one SA method may show good 

performance in sensitivity rankings, but its sensitivity indices may expose inaccuracy, 



24 

 

compared to a reference method. The regression-based methods were used several times in 

the literature. As an example, some studies (Yang 2011; Rodríguez et al. 2013) employed the 

SRC for SA, but these studies did not provide any specific justification for the choice of the 

SRC. In our tests, all the rank transformation-based sensitivity indices (SPEA, PRCC, and 

SRRC) did not give any outstanding result, but the PRCC and SRRC can be easily found from  

the literature on SA applied to building energy models, e.g. in (Hopfe and Hensen 2011; Kotek 

et al. 2007; Nguyen 2013; Hopfe et al. 2007). 

4.2.3 Other comparisons 

In terms of capability of quantifying interaction among the input parameters, we 

examined the results of the Morris method, the Sobol method and the FAST in Figure 10. For 

the Sobol method and the FAST, the interaction of each input parameter was estimated by the 

difference between its first-order and total-order sensitivity index. The Morris method is able 

to detect interaction among input parameters through the Morris σ. Other methods do not 

quantify or detect interaction among parameters. In the test A, all these three methods showed 

fairly good agreement. In the test B, the Sobol method showed deviation from the Morris 

method and the FAST in predicting the interaction term of x3. Through this comparison, we 

observed that the Morris method could detect interaction among input parameters with only 

a small number of simulations. 

 

 

Figure 10: Parameters’ sensitivity and interaction 
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In terms of computational cost, as time for data processing is assumed identical among 

the SA methods we only compared the time needed for simulation as shown in Figure 11. We 

estimated computational cost based on the number of simulations needed to achieve stable 

solutions. Both the Sobol method and FAST required much more time than the remaining 

methods. In our test cases, the Sobol method and FAST both required from 30 to 72 hours 

only for the simulation task while the Morris method needed only 1 hour. The simulation time 

for the PEAR, SRC, and PCC was about 2 hours. If our tests used more than 6 variables, we 

believe that the computational cost for the SA methods would accordingly increase. It is 

obvious that the Sobol method and FAST are not really relevant in the practice of building 

simulation due to their extremely expensive computational cost, unless these methods are 

supported by sophisticated techniques (e.g. machine learning methods). 

 

Figure 11: Estimated computational cost of different SA methods 

5. Summary and conclusions 

A comparison of the performance of nine sensitivity indices, including the Sobol method, 

the FAST, the Morris method, PEAR, SPEA, PCC, PRCC, SRC, and SRRC has been carried 

out by means of computational experiments and building energy simulation. These indices 

were applied to different test cases at different levels of difficulty. We applied a 

comprehensive test procedure which allows us to quantify many features of these SA 

methods.  

The FAST and Sobol method produced similar SA results and their results were 

consistent in all tests. Nevertheless, they are computationally expensive methods. 

In our study, the PEAR, PCC, and SRC could give more reliable results than those of the 

SPEA, PRCC, and SRRC. The PEAR, PCC, and SRC provided good sensitivity ranking, but 

they did not provide fully accurate sensitivity indices, compared with the variance-based 

methods. On the other hand, there were clear evidences to believe that the regression-based 
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sensitivity indices encountered difficulty with non-monotonic problems while non-

monotonicity may present in a building energy model. 

In SA of building energy models, expensive computational cost may be the most 

important obstacle that impedes the application of the variance-based SA methods. The 

Morris method and regression-based methods appear thus to be the possible choices for SA. 

From the limited experience of the present study, the PEAR, PCC and SRC can be applied to 

SA of building energy models. These choices are a compromise between accuracy and 

computational cost. This study does not recommend the sensitivity indices relying on rank 

transformation techniques, e.g. the PRCC, SRRC, and SPEA, as they did not exhibit any 

outstanding feature. Another issue of the rank transformation sensitivity indices is that they 

alter the model under investigation during their calculation, thereby resulting in sensitivity 

information of a different model. The new model is not only more linear but also more 

additive than the original one. They are likely qualitative measures of sensitivity (Giglioli and 

Saltelli 2008). As the computationally cheapest method of all, the Morris method showed 

acceptable capability in quantifying sensitivity and interaction among parameters, but it was 

not reliable in ranking variables’ importance; thus it can be used to classify and to screen out 

unimportant variables of a model to reduce the complexity of the problem.  This evaluation 

was also confirmed in some other studies (Confalonieri et al. 2010; Wainwright et al. 2013). 

One important finding of this study is that the sample size for different SA methods is 

not trivial as the SA result is sensitive to this value, as shown in section 4.1. It should be 

defined by testing the independence of SA solutions from the sample size. 

Through this paper, we expected that researchers would have a reliable basis to choose 

an appropriate SA method for their problem. The choice should be based on the features of 

the problem, the number of independent parameters, length of time for function evaluation 

and required precision of the result. Furthermore, performance of many SA methods is 

sensitive to test problems, as shown in this study. Knowledge and understanding about the 

SA methods is therefore important in order to draw correct conclusions. Our tests were 

performed with only 6 independent variables, thus we still have a question whether these 

numbers have any influence on the sample size required and the SA results. 
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