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SUMMARY

A review of main types of contact and friction be-
tween part and contactor and a set of isotropic and
anisotropic surface constitutive equations are pre-
sented. Three typical tests are then described : up-
setting of cylinders with bulk plastic deformation, in-
dentation translation on parts specimens with local-
ized plastic deformation, bench test of parts speci-
mens until pickup. Examples show that realistic coet-
ficients of surface constitutive equations are ob-
tained with the simulation-scale tests and that practi-
cal data are directly enhanced.

Subsequently, the finite element modelling of con-
tact-friction is exposed : implementation of a constitu-
tive law of unilateral contact, of sticking and slipping
friction conditions with a penalty method, develop-
ment of a variational principle and of two functionals
for the discretization of contact using mixed finite ele-
ments. Finally, three examples of finite element mod-
els with large strain, displacement and rotation are
given : two dimensional models with loading of a
crank head and drop forging of a hub, three dimen-
sional model with rail rolling.

Keywords : plastic flow, elasto-plasticity, elasto-visco-plasticity,
sliding velocity, contact, friction, lubrication,wear, linite element,
penally method, mechanical joint, forging, roiling



NOTATION

At,Ac Ay restrictions ot boundary surface A

b seating length
B interpolation tunctions derivatives
ce elastic constitutive tensor

d?AdB  normal penetrations between contactor and part
] thickness of lubricant film
£1.8,.89 local base vectors on contact surface

£1.£5.£, global base vectors on contact surface
te yield potential

g flow potential

F body force

Fy tangential force

Fq normai load

G virutal power functional

H hardness

K shear isotropic yield stress

K sliffness matrix

Ke contact tangential constitutive tensor
KP,K‘ contact penaity factors

m isotropic subiayer friction coefficient
m, visco-plastic friction coefficient

N interpolation fucntions

p effective penetration of indenter

p' seating width

P contact interpolation functions

q contact stress discretization parameter
S deviatoric stress tensor

t time

T surface traction vector

u displacement

U nodal displacement

Uy sliding disptacement

Vv volume of the part

w, contact strain energy

w'c complementary contact strain energy
X coordinate

B characteristical friction stress

Eq contact strain vector

b isotropic friction coetficient

1 viscosity

I, nc' functionals

Og Cauchy slress tensor

Oc contact stress vector

O contact pressure



9 yield stress
T, T, T, friction stress components

3 isoparametric coordinate
f tima derivative of !

M7 transpose of matrix M

M inverse of matrix M

1. INTRODUCTION

Large deformation problems are frequent in the me-
chanical engineering field and most of them involve
non standard boundary conditions due to unilateral
contact and friction. The influence of these condi-
tions in the analysis of the problems has been often
remarked mainly in the particular field of metal form-
ing in which the most severe and the most various
conditions are found [1,2,3]. The contact-friction sys-
tem is somewhat analogous to the material part sys-
tem for which macro scale and micro scale analyses
are both required to get pertinent information. The
macro scale variables for the parts and workpieces
are the material flow stress, the composition and
temperature ; the micro scale variables are, for the
part, rugosity, adsorbed film, reaction film, bulk par-
ent structure and for the contactor, matrix constitu-
tion, hard phase particles. For mechanical design
purposes, some different numerical models of unilat-
eral contact-friction systems have been proposed,
see for instance [4, 5, 6, 7, 8].

The first aim is to have significant surface constitutive
equations to take into account the most effective
macro scale and micro scale parameters, the second
is to implement the constitutive equations into nu-
merical models. Contact occurrences involve kine-
matic and sthenic macroscopic variables : sliding ve-
locity, contact pressure and friction stress.
Depending of contact interfaces, generally one of
these variables is a leader for the friction-contact
problem and it corresponds to a constitutive equa-
tion. The determination of the coefficients and char-
acteristical values of the above equations is recom-
mended with three simulation scale tests : upsetting,
indentation-transiation and bench tests.

The hereafter presented numerical model has been
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implemented in a finite element code dedicated to
the analysis of elasto-plastic and elasto-visco-plastic
bodies under large strains, dispiacements and rota-
tions, i. @. in a highly non-linear context. The solution
is obtained in using an updated Lagrangian descrip-
tion and Newton Raphson equilibrium iterations.
Therefare, the approach is different from the other
proposed ones because it takes into account very
large displacements of the so-called contactors and
of the strained body first, it uses the finite element
concept with integration of the virtual power at the
Gaussian integration points (based on a mixed vari-
ational principie) second and third it solves the non-
linearity step by step with Newton Raphson iterations
together with other non-linearities.

2. CONTACT AND FRICTION ANALYSES

The nan standard boundary contact and friction con-
ditions are effective in the virtual power functional
which is the integral form of the equilibrium condition

for the current volume V of the part {9]

$
G'(u.n)=[cv ndv-| TndA- | c ndA.
v A
Ar o )

In this equation, o, represents the contact and friction
stress vector on the apparent contact surface A_, T
the standard surface traction vector prescribed on
boundary surface A, , athe Cauchy stress tensor,nna

virtual cinematically admissible field with n = u on
surface Ay and VSn the symmetrised gradient of n.

2.1. BEHAVIOUR OF INTERFACES

The mechanical behaviour of interfaces is related to
the properties of the part (workpiece)}, of the contac-
tor {die) and of a third body which appears during
the contact time or which has been deposited before
contact. Microscopic observations show that the sur-
face material of the part is not similar to the parent
bulk material and typically, three main zones are



found : a 20-50 A adsorbed fiim, a 20-100 A oxide
film and a 1-5 um enriched-depleted layer (Fig. 1).
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Fig. 1. Typical structure bounding contact surfaces.

Beside these local heterogeneities, the effective con-
tact surface A, is more or less smaller than the ap-

parent macroscopic one A, due to the existence of
surface asperities which profiles are various [10].

apparent
contact surface

contactor Yy effective
J— hd = contact surface

Flg. 2. Effective contact surface with a rough part.

A wider range of contact surface situations are ob-
tained with deposited coatings, adhesives, lubricants
depending on problems specifications. Six main sit-
uations are observed for most contacts : first, the dry
contact with only two heterogeneous and rough sur-
faces, second, thick film lubricated contact in which
the surfaces are separated by a lubricant the rough-
ness being non influential {11] (Fig. 3a), third, thin iu-
bricated contact in which the surfaces are also sepa-
rated by a lubricant but the roughness is now influ-
ential (Fig. 3b) [12], fourth, boundary lubricated con-
tact in which there are some asperities interactions
(Fig. 3c¢), fifth, mixed lubricated contact which in-
volves both thick film and boundary lubricated con-
tact (Fig. 3d), sixth, solid film lubricated contact.



thin film lubricated contact
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o mean quadratic roughnass

Fig. 3. Typical contact situations with deposited lubricant.

2.2, CONTACT AND FRICTION MODELS

The general model is a contact-friction function of
two sets of parameters : first, material dependent pa-
rameters which inciude builk and surface properties,
impurities, coatings and lubricants properties ;
strengthening dependent parameters which corre-
spond to friction stress vector, contact pressure,
sliding velocity, main plastic flow velocity, effective
plastic strain, effective plastic strain rate and temper-
ature. A first estimate of the friction force due to con-
tact is

Fy=Age M, k

with k the shear yield stress of the part (workpiece),
m. a coefficient equal to 1 for cleaned dry surfaces
and lower than 1 for others (Fig. 5).

contact pressure

contactor

friction stress
{ sliding displacement

Fig. 5. Local contact friction stress at the top of surface asperi-
ties.

The pressure force is

Fo=AgcH=3m; Ay Gy

with H the hardness of the part, and o, the yield
stress. The ratio between friction force and pressure



force is a globai friction coefficient given by

F,o1
"aTE °F

n (2)
with K = 64/2

Let o, the contact pressure and < the friction stress
which are respectively the normal and tangent com-

ponents of o, contact stress vector, u, the relative
tangential displacement of the part at contact occur-
rence. The local formulation which derives directly
from relation (2) is the first order Coulomb’s one

U
T —.-.-qaucn[l—i- withos n<O

t
(3
¢ is a mean and isotropic friction coefficient which
takes into account the non explicated parameters of
the contact-friction situation. The local friction stress
vector would not exceed the local yield stress, even

if the contact pressure increases strongly ; so a more
general expression is

U,
TN

and in a second order form

© =-Min (6(lo -0 ), K}

, A Az Y
T =-Min{$ (logh-0)+9,(lc,ll-0) Kk w
)
with o the threshold normal stress (Fig. 8).
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Fig. 6. Isotropic friction stress functions of contact pressure,

Considering now the effective contact surface in-
stead of the contact pressure, the friction stress is ex-



pressed by the model of Shaw

(6)
o being the ratio A, /A,. When the contact pressure

is not vety influential, the sublayer modei function is
used

ut
T =-mM K—
[l )
generalised by {13}
J, u 3
t=-m — —L with Jy = 7 §:s
VAR

and s the deviatoric stress tensor. When considering
now the surface roughness, the local friction stress is
(14]

Uy
" Migea k —

o
Mieeq IS the local friction coefficient at the top of as-
perities. Then it becomes
Uy
T == m! al oK —.
* Ml
(8)

Fig. 7 gives the form of the function (8) for a standard
initial profile of asperities.

local
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Fig. 7. Isotropic friction stress function of contact pressure with
eftective contact surface.

With thick film lubricating contact, the friction stress is
given by

U
T=-7 8 —
[ty
‘ (9)
with e film thickness, n viscosity.
With a visco-plastic contact, the model is
vl u,
1T =- -—F\/m
v
o (10)

in which B is the characteristical friction stress, v, the
sliding velocity, m, the visco-plastic friction coeffi-
cient.

The above relations (3,4,5,6,7,8) become approxi-
mate for anisotropic behaviour, the sliding displace-
ment vector direction is then different to the stress
vector one. For instance, anisotropic formulation of
equation (3) is

with Q the friction tensor [15].



In most friction-contact occurrences, interactions be-
tween part (workpiece) and contactor {die) grow with
contact time and so far, some supplementary wear-
degradations of the surfaces are unavoidable. As for
simple contact-friction situations, wear situations are
various, Four main types ¢an be presented : first, ad-
hesive wear with local cold welding of asperities and
generation of debris at the interface, second, abra-
sive wear with removal of material contactor by hard
asperities or particles present into the candidate sur-
faces, third fatigue wear related to cyclic local stress
and fourth chemical wear with material loss due to
tribochemical reactions. The models are not at the
moment as developed than those for contact-friction.
However, it has been shown that the volume loss of
material may be modeiled by [16]

lio |
Qw =K, H U

with K, the mean adhesive-abrasive wear character-
istic and H the hardness.

2.2, TYPICAL CONTACT-FRICTION TESTS

The aim of the tests is to determine realistic surface
constitutive equations, related coefficients and char-
acteristics. This means that strenghtening-depen-
dent parameters are to be exactly defined. The se-
cure approach would be full-scale tests but in most
cases, measure devices are very expensive and on
the other hand, the test analysis is limited to the par-
ticular case {17]. So, the more promising approach is
to design a simulation scale test which is able to re-
produce some of the most important strenghtening-
dependent parameters values,

This is obtained with three tests which are effective
for a large range of contact-friction problems : tests
with bulk plastic deformation, test with localised plas-
tic deformation, test with surface plastic deformation.
During the tests, global measures, mainly loads,
forces, displacements and eventually temperatures
are the most effective.

Upsetting of cylinders is the typical simulation-scale
test which involves bulk plastic deformation. The de-
formation of the cylinder depends on bulk constitu-
tive equation and on surface one. So, from the mea-
sures of upsetting load, cylinder height and bar-
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relling profiles, analyses of contact-friction between
upsetting dies and cylinders are performed [18,19].
As example, Fig. 8 shows the evolution of the bar-
relling factor, the ratio between the equatorial diame-
ter and the contact surface diameter, when isotropic
elasto-plastic bulk constitutive equation and plastic
isotropic surface constitutive equation from (7) is
considered.

isotropic
sublayer friction
coefficient
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Fig. 8. Upsetting test of cylinders with 1.5 initial height- diameter
ratio : abaque for determination of isotropic sublayer friction coef-
ficient.

For the test achievement, it is essential to reproduce
exactly the full scale contact-friction material-depen-
dent parameters. For instance, the test has been
used to find the isotropic sublayer coefficient at the
extrusion punch top-workpiece interface. The upset-
ting dies were manufactured in the same conditions
than punch ones : heat treated M44 steel, 64 HRC
final hardness, 0.4 um roughness. The specimen
was a 10 mm diameter 15 mm height cylinder in a

globularized 1018 steel on which a 4g.m2 phos-
phate coating and stearate were deposited. From
Fig. 8, the mean sublayer friction coefficient reaches
0.08 (extremums 0-0.16) when the bulk equivalent

strain is 1.1, the equivalent strain rate 1 s!, the mean

sliding velocity 0.25 mm.s! {(extremums 0-0.5) and
the mean sliding displacement 3 mm (extremums 0-
6 mm).
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In the indentation-translation test, localised plastic
deformation is obtained by the translation of an in-
denter in the main tangential direction which corre-
sponds to the local plastic flow direction in the fuil-
scale problem (Fig. 9) [20]. The normal lcad and the
tangential force are measured during the test. Fig. 10
gives an graph for the determination of the sublayer
friction coefficient of equation (7).

indenter  siiging displacement U, indanter
guide guide

-]

indenter

the seatingAength

seating width o'

indenter
symmaetry
lane

part

h Y

Fig. 9. indentation-transiation tests : experimental device.

Ft indenter angle m
—_— o= 10°
p'o 0.30
0 seating width 0.20
0.5 L 1+pcotga 0.10
0.05
{(mm) 0.01

041

normalized tangential force

p
indenter penetration ratio i
L 1 L i
0.04 g.08 g.12 0.16

Fig. 10. Indentation-translation tests : graph for the determina-
tion of isotropic friction sublayer coefficients.

As example of the indentation-translation test, let
choice the determination of the sublayer contact-fric-
tion coefficient during the cold drawing of heavy
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1018 steel bars with heat treated D4 steel tools. Two
sequences are involved in this problem. The dies
roughness is 0.4 um and phosphate stearate coat-
ings are effective on the specimen surface (the spec-
imen is here a portion of the full scale workpiece).
With an indenter penetration of 0.35 mm which re-
produces the essential process-dependent parame-
ters during two successive indentations-transiations,
the sublayer contact-friction coefficient ranges from
0.09 in the first sequence to 0.17 in the second se-
quence, the siiding velocity being equal to 20 mm
per second.

In the bench tests, light surface plastic deformation is
achieved and mainly the third deposited body is in-
fluential here. [n the device shown on Fig. 11, a
small indenter presses on a cylindrical specimen
which rotates as long as necessary to go to pickup
{21]. The normal load is kept constant during the test
and so, the friction tangential force is proportional to
the result of local stress vectors. The global friction
coefficient is given by relation (2).

E R

7
zoom of the
contact zone

—
f—

specimen

Fig. 11. Bench tests : experimental device.

Fig. 12 shows typical results for 1020 annealed steel
@60 mm cylindrical specimen with phosphate coat-
ing and stearate. The test gives the evolution of the
global contact-friction coefficient during time contact.
The coated surfaces deteriorate first slowly and then
quickly at pickup occurrence.
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Fig. 12. Bench tests : global friction coefficient versus siiding
disptacement for two phosphating treatments,

3. NUMERICAL MODELLING OF CONTACT

Models of unilateral contact and friction problems
have been achieved within the finite element frame-
work of the LAGAMINE code developed in the MSM
Department of the “Université de Liége” since 1982.
This code is dedicated to the non linear analysis of
large inelastic strains in solids. The bulk, elasto-pias-
tic and elasto-visco-plastic, constitutive laws have an
incremental form and the loading is done step by
step.

3.1. MATHEMATICAL MODELS OF FRICTION LAW

The contact constitutive law is related to elasto-plas-
tic formalisms proposed in {4, 22] and analysed in re-

gard to thermodynamic principies in [23]. Let
o.={C,,T,,%,} the contact stress vector and

g:={€,.£,.6,} the contact strain. A gap (loss of contact)
between contactor and part implies null contact
stress o,={0,0,0}. In the stress space, let consider a
virtual elastic field bounded by a yield surface.
Elasticity corresponds to sticking contact : real rigid
and sticking contact occurrence is rather difficult to
implement in a conventional finite element code and
the elastic formulation is a penalised one for rigid
and sticking contact. From a geometrical point of
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view, elasticity of contact involves a small interpene-
tration of part and contactor. Thus, the contact elastic
constitutive law is expressed by

. [K,00
0'0= 0 K‘O ec=CeEc
0 0 K

with K, and K; the contact penalty factors which are
choosen as large as possibie to limit interpenetra-
tion, the upper bounds depend on convergence
degradation. Therefore, it is unrealistic to search any
physical meaning for the above penalty factors.

For instance, the contact-friction yield surface related
to equation (3) is expressed by

2 2
me €£+12°¢0‘n

and other contact-friction yield surfaces are as easy
to introduce in the finite element framework.
Irreversible contact strains correspond to the sliding
displacements. In most mechanical problems, the
normal irreversible displacement is rather weak, I.e.
dilatancy equals almost zero. So, the associated
flow rule applies as well but it is necessary to define
a flow surface ggsuch as

2 2
=T +1.
=7 +7,

The contact strain rates are
E‘.c = A —

80‘0

The last parameter to be defined is the hardening
one which depends on the evolution of surface as-
perities, of the lubrication regime and of the wear oc-
currence. The lack of secure experiments leads to
consider non hardening contact laws, that means

’ 0
¢=0 and -q—.’mo.

oA

The plasticity coefficient A is obtained

from the consistency condition f=0
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and the tangential constitutive tensor relating stress
rates and strain rates is given by
. . . ] agF
o, =K,e_=Cie_-ACi —.
o (o] i o i
’ G i acci

The above equations are time integrated.

The yield surface of two-dimensional and axisym-
metric problems is represented in the stress spacs
by a straight line and therefore the constitutive rela-
tion is tinear sither for elastic behaviour or for elasto-
plastic one. The same integration scheme is conve-
nient for both cases, the yield surface normal being
unique. Three-dimensional problems involve a coni-
cal yield surface and a refined integration scheme is
necessary : the time step is divided in some sub-in-
crements in which a two-step generalised mid-point
integration scheme is used {24, 25, 26].

The other important point is to ensure incremental
objectivity when contact and part moves without de-
formation {27]. As shown in Fig. 13 with a constant
velocity of the nodes, the normal contact strain is
changing during the step.

beginning

step

Fig. 13. Rigid motion of part and contactor during a time step : in-
cremental objectivity analysis.

The objectivity is verified in changing the value of the
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normal strain component as
dp-dg
elm &
with d,, dg, the penetration respectively at the begin-
ning and the end of the time step dt.

3.2. FINITE ELEMENT DERIVATIONS

Modelling of unilateral contact involves special ele-
ments based on a mixed variational principle. Let
consider first an isotropic and elastic part which
takes the sticking contact with a high rigidity contac-
tor.

Local coordinates at each geometric point of a
smooth contact surface A, are expressed in a

84.8,.85 base vectors reference axis (Fig. 14). At a
point S of surface A, og is the Cauchy stress tensor

in the part, o, the contact stress vector, ug the part
displacement vector and ug the contactor displace-

ment vector whose components are expressed in the
local g4.8,,.85reference axss :

T T
Og ={03”-0321,0331} boo, = {optat)

T . .
Ug =lUg r Us, 0 Usy b i Up = (e U g b
and
g, = Ys g,

£ v

0
N\ 4

Fig. 14. Local base and global base vectors.

For points on surfaces Ay, Ar and in volume V,
stresses o, strains g, displacements u, surface trac-
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tion vectors T and body forces F are expressed in the
global £, .E,.E; reference axes :

o' = {044, 029,933,03: 043,042}

€' = (&, €20, €33, 2 €3, 2 €43, 2 E15)
uT = {Uy,UpUg} s T = (T, T, To} i Fl = {F,.FaFy}

I {au du, du, auz}
W T i o, T b e
le sz axz bxl

T
Gn - n- c}t;nj

g,.,0 G,
J iz’ ;3)

T
ac-(ac bc}

172 P53
in which p=n, 5 is the outer normal to Ay or to Ay
and al = a/aX;.
Using the constitutive matrix K, for sticking contact,
the contact strain energy density W, and the comple-
mentary energy W, are given by

1T
Wc(ec) = _E e K, g

c ¢ e

. T 1 T -1
W, (e) = o, e,W,= Py o, K¢ O

Functionals I, and II_ which differ in verifying or not
the compatibility equation lead to the finite element
discretization. Functional [1,"is expressed by

*

I, =J oZ{(uS -ug) - W, 1dA
Ac

+J{W(u)-FTu]dV-JA TTudA

v A (1)

where W(u} is the strain energy density in the part.
The independent figlds are u and o, since ug is the
restriction of u on A,. The stationarity condition

8I1, =0 gives the compatibility equation
-1

uS=UF=Kc O'c=£c OnAc (12)

and the equilibrium equations are
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G, +0g=00nA;;00+F=00nV;o,=TonAs (13)
For comparison with a more usual formuliation, if the
compatibility equation (12) is a priori satisfied, the
following functional

HG=J chA+JM(u) “FTulav J T udA

Ac v AT
is obtained in which the only independent field is u.
The stationarity condition for I, gives the second
equilibrium equation of set (12).
The stiffness matrix of two contact finite elements is
computed from functionals IT," and I1,.
Compatible elements are used for the part volume
discretisation and
u=NU;e=8U
in which U are the nodal displacements, N the inter-
polation functions and B their derivatives.
The contact surface is discretized into finite elements
the nodes of which coincide with those of underlying
part eiements. Hence, one has
Ug = Nc Uc
where U, are the nodal displacements of the contact
eiement and N,
N.=AN
is the restriction of N on A,, A being a matrix the
components of which are only 1 and 0. Finally the
stress o, in the contact element is discretized by
o, =Pq
where q are contact stress discretization parameters
and P the corresponding interpolation functions.
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Let

MC=J PTN,dA; X.=| P'K}PdA
Ac “Ac

Ve=| P'UgdA : Kg=|B'CBdV
JAC dv

.
Fe= |{NTFdV+ | N'TdA

v AT

ke =MIXIM, O =MIX] Ve
K=Kg+ATk, A F=Fg+A'f

The discretized form of compatibility condition is
M, Ug-X.q-Vg=0

from which the contact stress discretization parame-
ters are computed '

q=X, (MU - Vg) . (14)
The discretized equilibrium equations are

KU=F.

It is seen that k. is the stiffness matrix of the mixed

contact element and f," the corresponding nodal

force vector.
For comparison, a compatible contact element de-

rived from functional I, would have the following
stiffness matrix and nodal force vector

T T
kc=J‘ N K. N, dA ; fc=J N¢ K, Ug dA.
Ac Ac

Let consider a two-dimensional mixed element in
which the displacement field is parabolic and the
stress field linear (Fig. 15). Then

N,O N, 0 NyO
"[o N, O N, 0 Na]’

5 [P10 Pao]
L0 PO P,
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T t,1,,2,2,.3 T
U= {U, U, U3 U U U3 g = {py T Pyt

Iv [ uz I "
Ny=—G(1-¢), Ny =1 -5, Ny =—E& (1+§),
2 2

P X (1-G), P : (1+5)
= — -'q, = —— -+
Y 3 2 S
X
&:—-1 t C=+1 i
1 2 3 >
2a
“ .

Fig. 15, Reference mixed contact element.

The calcuiation of k" and f,” is straightforward and is

omitted for conciseness. More interesting is the re-
sult deduced from (14) :

1 1 2,3
p12Kp —(2Ux+2ux'ux)'qu

1 3 2 ]
p3=Kp — (2 Ux+2Ux-Ux)-qu .
L3 : (15)
From this relation, it can be shown that that mixed el-

ement is equivalent to an underintegrated compati-
ble element with parabolic displacement field devel-

oped from I1,. For this objective, points & such that
p(&) = Kp [ux(g) b qu]
with
PE) =py +Py+p3 Py,

1 2 3
are searched. It is easily verified that relation (186) is

satisfied for & = + 143 which are the coordinates of
the two Gauss points of the underintegrated parabol-
ic element. Hence at these points, the contact pres-
sure is exactly given by (15). This proves the equiva-
lence of this mixed element with the underintegrated
compatible parabolic contact element.

if the part is now submitted to large inelastic strains,
the above developments are extended with the use
of the corotational formulation. In the part, at each in-

(16)
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tegration peint, the Cauchy stresses are referred to a
local frame rotating with the material particle.

On the contact surface, the local frame rotates with
the corresponding surface element. In this frame, the
incremental contact law with sliding and friction be-
comes non linear and non symmetrical

*

GC = KC Ec.

Hence, it can be shown that the foilowing variational
equation generalises the infinitasimal approach :

T T T
J{d de-F &J]dV-[ T SudA
v Ay

T
+J ccﬁuSdA+J [us-uF-ac]TSGCdA=0

Ae Ao (17)
where
t t

echK;T a, dt, us-uF=J[uS«uF]dt.
0 0

in (17) the integrals are taken over the current con-
figuration of the part. The fact that the contact area A,
is a priori unknown is not a special problem because
of the step by step solution in non linear analysis : at
each step a simple search algarithm is used to deter-
mine the current contact area [28]. The development
of mixed finite elements based on (17) closely fol-
lows the presented method and will not be detailed
here. It is worth mentioning that one can aiso take
advantage of the equivalence of underintegrated
compatible elements in a context of large inelastic
strains.

3.3. EXAMPLES

As first example, let consider a crank head com-
posed of an aluminium tube deformed by a strong
magnetic field to stick the steel insert (Fig. 16).
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Fig. 16. Crank am : general view, meridian cross section, zoom
of the head zone.

The aim of the analysis is to predict the traction resis-
tance of the head. Geometry and loading are ax-
isymmetric, so that only the meridian cross section is
modelled. The discretization consists in 54 axisym-
metric eight nodes isoparametric elements. The alu-
minium constitutive law for the aluminium tube is
alasto-piastic with isotropic hardening. In order to
obtain pradiction of the traction resistance on the

sate side, friction coefficient ¢ was assumed to be
zero. Fig. 17 shows the predicted evoiution of the ge-
ometry of the tube near the stesl insert. The tube
convolutions are scaling progressively the insert
humps.

Fig. 17. Crank head finite element model, LAGAMINE code
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computation : deformed mesh at 3 and 5% relative aluminium
tube/steel insert displacemant,

The computed values of the traction force versus
axial displacement are presented on Fig. 18.

fraction force

) \
16 -
8 f—
relative axial displacement
(%)
25 5.0
| ,

Fig. 18. Crank head traction resistanca, LAGAMINE code com-
putation : traction force versus relative displacement of the aku-
minium tube on the steal insert.

A second attractive exampie is the contact modelling
of the drop-forging of a steel hub at 1150°C The ini- ,
tial shape shape of the forged part (preform) and the
contours of the rigid dies ara given on Fig. 19.

-
-4
L4

=1 1
- |4

Fig. 19. Drop-forging of a steel hub, LAGAMINE code computa-
tion : initlal finite element mesh,
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High strain rates and large variations of the contact
area are effective in this problem. A bulk slasto-
visco-plastic constitutive equation and a surface
Coulomb constitutive equation (3) are used. The fric-
tion coefficient ¢ is equai to 0.3.

Since the strains are very large, the initial finite ele-
ment mesh is submitted to important distortions dur-
ing the simulation so that it is necessary to perform
four full remesh designs to obtain the final shape of
the hub. The computed final shape of the hub and
Von Mises equivalent strass distribution are shown
on Fig. 20,

Fig. 20. Drop-forging of a steei hub, LAGAMINE code computa-
tion : (a) final state, (b) Von Mises equivalent stress.

The third example is the completely three-dimen-
sional problem involved in rail rolling. In the case
presented here the rail has no symmetry and it is
meodeiled by 180 isoparametric elements (20 nodes .
solids, see Fig. 21). ,
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rail

roll

Fig. 21, Rall rolling : three-gimensional scharme of the problem.

The material Is elasto-visco-plastic ; the parameters
are determined according to rolling temperature and
stoal grade. The rolls are assumed to be rigid and

the friction coefficient ¢ is equai to 0.3.The aim of the
simulation was to determine the effect of a given
rolling pass on a defect aexisting in the rail before the
pass (Fig. 22). The final computed shape after the
roiling pass shows that this defect is not eliminated
(Fig. 23).

=TT B
1

delect

Fig. 22. Rail rolling : roll shape compared to the rollers before
roflers processing.
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defect

Fig. 23. Rail rolling, LAGAMINE code computation : rail after
rollers processing.

CONCLUSION

The secure modelling of contact-friction and wear
between contactors (dies) and parts (workpieces) is
essential for mechanical problems analyses mainly
in the case of large strain occurrences.

Typical interfaces without and with a third body are
described : dry contacts, thick and thin film lubricat-
ed contacts, boundary lubricated contacts, mixed [u-
bricated contacts and solid film lubricated contacts.

A set of contact-friction constitutive equations is then
given in the form of friction stress vector function re-
lated to material and strengthening dependent pa-
rameters of the contact problem : effective contact
surface, bulk yield stress, third body viscosity, contact
pressure, sliding velocity.

Three typical simulation-scale tests, cylinder upset-
ting, indentation-transiation and bench tests, are dis-
cussed for the determination of contact-friction equa-
tions and the related cosfficients and characteristics.
Practical results are given for isotropic plastic con-
tact-friction squation in the form of graphes and typi-
cal values and curves,

Finite element madelling of unilateral contact with
friction is then achieved in using a complete constitu-
tive law for contact which includes unilateral condi-
tions and sticking-sliding condition. A penalty ap-
proach is used and a typical application is given for
the isotropic friction equation of Coulomb. Contact fi-
nite elements are based on a mixed variationai prin-
ciple for infinitesimal strain occurrences and then ex-
tended to inelastic large strain, large displacement
and rotation problems. The formulation is shown to
be equivalent to the cinematically admissible ele-
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ment with Gauss underintegration,

Three typical finite element models are presented,
axial loading of a crank head assembly, drop-forging
of hubs and rail rolling, and the LAGAMINE code
computations in the non linear finite element frame-
work with unilateral contact and friction conditions
are found to be quite sfficient.
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