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ABSTRACT

Finite element modelling contact with friction in two-dimensional, axisymmetric and
three-dimensional cases are proposed. They take in account large displacements and rotations be-
tween a strained body and a so-called tool or between two strained bodies. The interface be-
haviour is based on a penalty method and on the COULOMB dry friction law, and is developed
using the elasto-plastic formalisms. Due (o the algorithm modularity it seems 10 be easy to intro-
duce other interface behaviours as instance including dilatancy. The time integration of the
generalised contact stresses and the objectivity treatment are discussed, At the end an application
is proposed which could serve as comparison test between algorithms modelling same problems.

INTRODUCTION

This paper is dedicated to the numerical simulation of contact with friction phenomena by the
finite element method. Bodies to be studied are solids in iwo-dimensional, sxisymmetric, or
three-dimensional siate. They arc subjected to very large sirains, large displacements and large
rotations. These peculiaritics are implying a special development of the contact model with
regards to small displacements contact models because the contact condition are quickly evolving
during a loading process.

Typical applications of the developed finite element code are rolling and forging modelling
but it seems to be able to model for example piling or other large strains soil mechanics
problems.
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THE FINITE ELEMENT CODE LAGAMINE

The hereafter presented contact modelling was implemented in the finite element code
LAGAMINE which has been developed for 7 years by the M.S.M. department of the Université
de Ligge [1,2]. The solid finite elements are isoparametric, two-dimensional, axisymmetric or
three-dimensional elements. The edges are of first degree (two nodes by edge) or second degree
{three nodes by edges). The virtual work is numerically integrated by the Gaussian scheme in or-
der to give the nodal forces energetically equivalent to the stresses.

A large number of constitutive laws has been implemented: elastic, elastoplastic and elas-
toviscoplastic VON MISES laws for metals; DRUCKER-PRAGER non-associated law and
CAM-CLAY like law for soils or ductile rocks; fractured rock model; GURSON law for strain
localisation in metals, etc.. Each one uses the CAUCHY siress tensor and the classical JAUMAN
objective derivatives. The numerical integration of stresses is performed with division of the time
step into sub-intervals. In each sub-interval a two step implicit and second order accurate scheme
is used.

CONTACT WITH FRICTION FINITE ELEMENT

The easiest way 1o implement contact model in a classical finite element code is the develop-
ment of a special "contact finite element” as an interface element. This element must be com-
patible with the solid elements. Therefore it is an isoparamefric element with first or second de-
gree edges (figure 1).

Contact implies two bodies, For a large number of applications one of them is quite rigid with
regards to the other (for example tool or rolling cylinder in forming processes, pile in piling
processes, ...). This case witl be first developed. Contact between two strained bodies will be dis-
cussed later. The second and stiffer body will be named hereafter the "tool”. Its boundary i
described segment by segment in a special table (this is the most important change in the
program skeleton for the modelling of the contact phenomena). Each segment (figure 1.) is
defined by two or three nodes and a shape code (designating linear, parabolic or circular segment
or triangle for three-dimensional case). Thanks to the use of nrodes we can shift the tool by shift-
ing its nodes what is very easy in a finite element code. If the tool is strained and is meshed by
finite elements the boundary adaptation is automaticatly done.

Because we are now considering only rigid tools all computations will be made only on one
face of the interface element which is of course the sirained one.
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FIGURE 1, Contact element
STRESSES, STRAINS AND VIRTUAL POWER

Solid equilibrivm is expressed in the current state by the virtual power principal [1] for solids
as well as for contact element and uses the same kind of formulation. The stress tensor becomes
the siress vector and is expressed in a local triad whose unit vectors are normal and tangent to the
element i.e. to the strained body boundary (figure 2.)

O =< Py TR TS >

So defined in a corotational triad the stress vector G is objective. It is not modified by a rigid
rotation,

The stress rate is associated 10 a strain rate £ defined in the same triad. It is the time derivative
of the distance between the two elements faces.

FIGURE 2. Local triad and stress vector,
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FIGURE 3. Distance between element faces.

If A is a point of the solid boundary and B is the point of intersection between the tool bound-
ary and the solid normal ep at A the distance u is expressed in the local triad by

u = R(zf — 24)

It is objective i.e. independent of a rigid rotation of the two bodies togetﬁer. The strain rate

vector is then
du dz?  det dR

L _du o ex” det Al g 4
e= g = RO~ g =20

where the second term is an objectivity correction due to the rigid rotationR Finally the virtual
power developed on the solid boundary is

SW = f oTeds
with ¢
fe = — Réa?

CONSTITUTIVE LAW OF CONTACT WITH FRICTION

The relation between the generalised stress rate G and the generalised strain rate s is depend-
ing on the interface rheology: sutface state, special material in the interface, special behaviour of
one body along the interface,.. This poimt was studied by a large number of authors:
DIETERICH {5,6], GHABOUSSY7], SHAFER[8], CHANDRA and MUKHERJE[9], AL
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KHATTAT[10], NAGTEGAAL AND REBELQ{I1]... For metals in contact, rheology is
depending on cleanliness and finish of surface and on lubricant properties (GODET[12}). For

soils and rocks the rheological problem is perhaps more complex as shown by BOULON[13] and
NOVA[14],

We are supposing here the interface to be thin with regard to the finite elements and body size
as it is done in plasticity rheology when one supposes the metal to be homogeneous and not a
crystal assembly. Therefore the constitutive law is a "mean” law, what is the opposite of the local
concept proposed by ODEN and PIRES [15,16,17].

We will develop hereafter the constitutive law following the elastoplastic formalisms as done
by CURNIER [18,19] and thermodynamically justified by SIDOROFF{20]: slipping is an ire-
versible mechanical phenomenon described as plasticity in metals.

A gap between the two bodies implies null contact stresses :

o=<0,00>

In the stress space, we are supposing an elastic field (which has essentially a numerical mean-
ing) bounded by a plasticity surface. Elasticity implies sticking contact. Real rigid and sticking
contact is difficult to introduce in a classical finite element code. The elastic formalisms is in fact
a penalty of the rigid contact and sticking condition. From a geometrical point of view elasticity
of contact implies a interpenetration of the two bodies in contact. The elastic constitutive law is a
diagenal one :

K, 0 0
=] 0 K, 0 |é

g 0 K,

K, et K, are the penalty coefficients; they must be as large as possible in order to reduce the
penetration of the bodies, but there is a limitation due to the decrease of the numerical conver-
gence, The code user unfortunately is not completely free of choosing these coefficients. There-
fore it seems unprofitable to search a physical meaning to these parameters,

At the present time we have only implemented a COULOMB yield surface (figure 4.):

f=y7d+rh) - ¢p
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FIGURE 4. COULOMB yield surface.

It seems to be easy to introduce in the code an other yield surface as proposed by
NOVA[14}. For example we could use a CAM-CLAY like yield surface:

=75 +73) = ¢p(p +a)

Irreversible strains are the slipping displacements. For metals there isn’t any normal irre-
versible displacement, i.e. no dilatancy occurs. Therefore one can not use the classical associated
normality rule but has to define a flow surface different from the yield one. In order to exclude
dilatancy we use the following flow surface:

g = (v5+ 71)

. fl\ag
©= 0
If one want to model soil or rock interfaces dilatancy must be introduced. When using the
CAM-CLAY like yield surface and an associated flow rule, dilatancy is varying in conneciion
with the contact pressure level,

The last parameter to be defined is the hardening one. But hardening is not easy to experi-
ment and seems to be very small for contact between metallic bodics in a forming processes. It
must of course be related to the wear evolution, but for forming the wear is really small during
each process. For more details the reader could report 10 GODET[12] and DIETERICHIS,6].
Hereafter we are neglecting hardening because of the lack of data, the lack of interest for large
displacement slipping problems and the simplicity of report.

Using the classical consistency condition,

f=0
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.
one obtains easily the value of the scale coefficient A and by a well known development the tan-
gential constitutive C tensor relating the stress and strain rates

o= Ce

i .
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K

STRESS TIME INTEGRATION

For the two-dimensionat and axisymmetric cases, the yield surface is reduced to a straight
line. The constitutive relation is therefore always linear as for ¢lasticity as well for elastoplas-
ticity. The plasticity time integration scheme are all equivalent because the yield surface normal
is sole. At the opposite for the three-dimensional case the yield surface is conical and a refined
integration scheme is needed. We have implemented a division of the time step in some sub-
increments and in each sub-increment we are performing a two step generalised mid-point in-
tegration scheme. This scheme is second order accurate (RICE and TRACEY(2I],
MARQUES{22], CHARLIER{1])

An other point to be discussed in the incremental objectivity: for a finite time step what is
the reply of the time integration scheme under a rigid body rotation (implying of course the two
bodies) 7 As one can see on the figure 5 if constant velocity of the nodal points is supposed
during the step, some strains will appear in the interface for a rigid body rotation. More precisely
no tangential displacement will occurs but some normal displacement. For undilatant interface
{metal contact) this normal displacement will produce reversible stresses returning at the end of
the step to their initial value. But for dilatant material, this could induce some irreversible be-
haviour. Therefore it scems to be better to use a mean normal strain. This mean strain is simply
the variation of the nomal distance from the beginning to the end of the step.

(4" - a*)
dt

£ =
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FIGURE 5. Incremental objectivity problem,
CONTACT FINITE ELEMENT

The contact finite elements will be located on the boundaries of strained body. They are
surfaces for three-dimensional problems and lines for two-dimensional ones. For the kinematical
compatibility these elements are of isoparametric kind with first or second degree interpolation
(figure 6) and the numerical integration of the virtual power uses the Gaussian scheme of first,
second or third order. Therefore everything (stress, strain-rate,..} is computed only at the integra-
tion points, Especially the local triad need to be defined only at these points. Its axes are normal
and tangent to the boundary of the strained body but not to the rigid one because the penalty
technique induces some discrepancy between the contact surfaces.

22

FIGURE 6, Contact finite element geometry.
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The main advantages of the triad expression at the integration points is in addition to the
formulation elegance its uniqueness on the contrary to the nodal triad definition.

At each integration point, after computing the local triad one must determine if there is
any contact and which tool segment is affected. Especially numerical experiments have shown
that some fafse contact can occur, For algorithms robustness it is important to exclude these
false contacts. The figure 7 shows two examples of faise contacts (at points B) which are avoided
by the code. First the normal to the element intersects the 100l segment out of its active range ie.
ocutside of the extreme nodes. The second described case is more complex. We want to describe
the whole tool as one alone boundary. Therefore each integration point candidate to contact has
very large choice of tool segments and its normal could sometimes intersect the boundary at the
opposite of the body.

FIGURE 7. False contact cases.

These false contacts are detected by comparing the two internal normals (one for each
body): their scalar product is negative for true contact:

if e}; ‘ng >0 then contact exist.
if  elng<o then contact do not exist.
After determination of a true contact the strain rate £ is easily computed using the classi-

cal analytical geometry The shape functions describe the element shape as well as the tool shape.
For more details the reader conld refer to [1,4].
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The nodal forces energetically equivalent to the stresses are for the two dimensional case:

Fry = Z{ P + TS N W

dg)‘

d.
Fpy = Z(-}-p Ly 75 Iz) N W

where W are the integration weights, Ny are the shape functions and & is the isoparametric coor-
dinate. For the three-dimensional case one obtains:

Fry
Fio | =3 RTa N -leche,| W
Frs £r

ITERATION MATRIX

For non-lincar problems the NEWTON-RAPHSON iteration technique generally offers
the best convergence rate but not always the lowest CPU time. For the LAGAMINE code a pure
NEWTON-RAPHSON method and a released one are possible. This last possibilty consists in
using the same iteration matrix for some iterations or steps. However it is necessary to be able to
complte the best tangent iteration matrix in the NEWTON-RAPHSON sense which is defined as
the nodal forces derivative:

FHE{ — FHEY + @EH—&:;
uy,
where FHE represents the out-of-balance forces (i.e. the difference between nodal forces F and
imposed forces).

As shown by the complex expression of the nodal forces it is very difficult to compute
analyticaly this matrix. Indeed it would be necessary to take into account the geometrical effect
for the element (what is classical but unsymmetric) and of the tool (what is more complex espe-
ciatly if the contact occurs obliquely with a parabolic or circular segment}. For the constitutive
law one must especially take into account the fime integration scheme which uses sub-
incrementation and a two step scheme in each sub-increment. These last effects can not be com-
puted analytically. CESCOTTO and the authors {23,1] have proposed thercfore to compute an
exact tangent iteration matrix by a numerical perturbation technique. The implied cost is high for
one element but generaly the number of active contact elements is small with regards to the num-
ber of solid elements and the winning of CPU time and of convergence can be important for
highly non-linear problems,
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CONTACT BETWEEN TWO STRAINED BODIES

Contact between two strained bodies including very large displacements and rotations is
difficult to model numerically. Most authors studying this contact have only interest in small dis-
placements problems and represent the interface by a third body which must be meshed. One
point contacts always the same zone of the other body during the whole loading process. When
farge displacements are occurring this assumption is not any more valid. We have modelled this
kind of problems (for example the rooting up of sheet-pile’s claws) simply by considering that
each boundary is candidate to contact the other, ignoring its strains and using the preceding algo-
rithm. Therefore the contact stresses are computed two times (one on each side). The only
modification to include in our element is the taking into account of that double computation of
the same variable: the virtual work is done in two parts, one on each side, the stresses are equal
on each side, and one divides the strain rate by a factor two. So the virtual work is exactly com-
puted, The equality of the stresses on each face is perfectly realised except the penalty precision.
But we don’t introduce the coupling between the faces in the iteration matrix. Each element
matrix is related only to one side of the interface, and in this way the matrix is not any more tan-
gent in the NEWTON-RAPHSON sense.

APPLICATIONS

It is difficuit to develop a application of only contact and friction including large displace-
ments but not plasticity or other special features for the solid, We are only presenting one such
problem in this paper: displacement of a axisymmetric tube on a rigid tool with a variation of
diameter (figure 8), The strained body is supposed to be elastic (E=210000 N/mm?2 , v=0.3). The
leading is done by imposing displacements. Two cases are presented, the first do not include fric-
tion ($=0.0), and in the second the friction coefficient is quite normal for steel (§=0.2). Some
results are presented at the figure 9. The contact siress vectors are represented on the deformed

imposed displacement
N AN AY 1!
AN 1}
AN

[ am e | g ]

%

R = 10 mm
Ros 12 mm

FIGURE 8, Contact test including large displacements.
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mesh for three toad step. Their inclination on the boundary is depending on the friction coeffi- |
cient. A stress concentration appears clearly at the ends of the contact line, especially when slip
is free. Some penetration appears between the strained body and the tool, This is the result of
penalty method and it could be reduced by increasing the penalty coefficients,

CONCLUSIONS

Finite elements specialised in the modetling of contact with friction phenomena have
been developed. Their mean features are the isoparameiric formulation and the integration of
generalised stresses at the Gaussian integration points, the ability of taking in account very large
displacements and rotations between a strained body and a too! or between two strained bodies ...
They have been implemented in the finite element code LAGAMINE which has been applied io
many industrial forming processes. An axisymmetric example was presented which shows some
of these properties and could be the base of comparison between different contact algorithms.

FIGURE 9. Deformed mesh and stress vectors
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