CALCUL DES FLUX SOUTERRAINS ECHANGES ENTRE LE CANAL ALBERT, LA MEUSE ET SA PLAINE ALLUVIALE, DE MONSIN A LANAYE

par

A. DASSARGUES

(11 figures et 4 tableaux)

ABSTRACT.- The alluvial aquifer of the Meuse River downwards to Liège, has been studied in details with the support of the Public Works Ministry (Administration of the Hydraulic Ways) (Lox et al., 1990).

At the end of the study an estimation, by numerical computations, of the water flows not measured by the water surface gauging system, provides the informations on the main fluxes occurring in the alluvial gravel deposits, from the Albert Canal to the Meuse River or passing round the dam-lock systems.

Hydrogeological studies with pumping wells, piezometers, and many electrical soundings have provided the values of the main hydrodynamic parameters. Moreover, they have synthesised the whole set of the available data: layers geometry, external sink and source stresses, boundary conditions, piezometric levels,...

A numerical model using Finite Element Method has been built in function of all these data. Four non-horizontal layers have been discretized totaling 2356 brick elements.

The aquifer heterogeneity is taken into account by the introduction of more than 15 different hydraulic conductivity values and all the solicitation and influences imposed to the aquifer are considered.

After the calibration, the computed fluxes at each node provide the quantitative answer concerning the different flows occurring in the alluvial aquifer.

RESUME.- La nappe alluviale de la Meuse en aval de Liège a été étudiée en détail grâce au support financier du Ministère des Travaux Publics (Administration des voies hydrauliques) (Lox et al., 1990).

L'étude fournit une estimation des débits non mesurés dans les jaugeages de surface, par des simulations numériques des écoulements ayant lieu dans les graviers de la plaine alluviale, transitant depuis le Canal Albert vers le fleuve, ou contournant les barrages-écluses.

Des études hydrogéologiques, assorties de puits de pompage, de nombreux pièzomètres et de très nombreux essais électriques, ont permis une détermination fort précise des principaux paramètres hydrogéologiques. De plus, ces études ont également permis de faire la synthèse de l'ensemble des données disponibles dans la vallée de la Meuse à l'aval de Liège : géométrie des couches, sollicitations extérieures, conditions aux frontières, niveaux piezométriques....

Un modèle numérique utilisant la méthode des éléments finis est discrétisé en fonction de toutes ces données. Il comporte 4 couches (non-horizontales) d'éléments, pour un total de 2356 éléments.

L'hétérogénéité de la nappe est prise en compte par l'introduction de plus de 15 valeurs différentes de perméabilité et toutes les sollicitations et influences sont considérées.

Après calibration du modèle, les flux sont trouvés en tous les points du domaine étudié, permettant de quantifier et localiser très précisément les différentes infiltrations, venues d'eau, contournements d'ouvrages d'art, etc...

2. Laboratoires de Géologie de l'Ingénieur, d'Hydrogéologie et de Prospection géophysique (L.G.I.H.), Université de Liège.
I.- CADRE HYDROGÉOLOGIQUE, SYNTHÈSE DES DONNÉES

1.- GÉOLOGIE REGIONALE

En aval de Liège (fig. 1), le substratum de la vallée de la Meuse et de ses versants est constitué par des formations du Primaire.

De part et d’autre de la structure anticline, les terrains houillers sus-jacents, composés de schis- tes, psammites et grès du Namurien, inclinent vers quelques degrés vers le Nord et vers le Sud.

Après le plissement Hercynien, l’ensemble fut pénéplané et recouvert au Crétacé supérieur par la Smectite de Herve, épaisse généralement de 10 à 20 mètres, puis des craies et tufteaux du Campanien et du Maastrichtien. Ces formations affleurent au Nord de Visé, en rive gauche de la Meuse, et se prolongent jusqu’à Maastricht.

De la vaste transgression tertiaire qui suivit ne subsistent que des lambeaux de sables oligocènes (Tongrien) conservés dans les aires de dissolution des craies et des tufteaux.

Au Quaternaire, la Meuse a entaillé son substratum, laissant subsister une dizaine de niveaux de terrasses. Son cours actuel, orienté sensiblement Sud-Nord dans cette région, comprend une importante plaine alluviale, large de 500 à 2500 mètres et comportant 10 à 15 mètres de dépôts meubles, composés de limons fluviatiles et de graviers à matrice sableuse ou silteuse plus ou moins abondante.

2.- GÉOLOGIE ET HYDROGÉOLOGIE DE LA PLAIN ALLEUVIALE

Sur base des données recueillies (environ 1500 points: forages, puits, piézomètres, CPT, sondages sismiques et électriques), ont été établies (Lox et al., 1990):
- une carte reprenant les zones des différentes résistivités apparentes des alluvions grave-
 leuses de la Meuse (fig. 2);
- deux cartes piézométriques; la figure 3 présente la situation de référence du 10 juillet 1989;
- 53 coupes géologiques transversales de la plaine alluviale, réparties entre Monsin et Lanaye.

Sur base de ces documents, on a pu définir avec précision la géologie de la plaine alluviale (Dassargues & Lox, 1991):
- en aval de Lanaye, la craie du Maastrichtien inférieur (Crétacé) constitue le substratum sous
 les dépôts alluviaux et affleure sur le versant Ouest de la vallée. Les craies du Maastrichtien
 et du Campanien, à pendage de quelques % vers le Nord-Est, constituent un aquifère puissant
 (Dassargues et al., 1989) surmontant la Smectite de Herve.

Les alluvions de la Meuse comprennent à la base des graviers roulés à matrice silto-
 sableuse surmontés de limons fluviatiles. L’ensemble est souvent recouvert de remblais divers
 pouvant atteindre plus de 7 m.

L’épaisseur des graviers est comprise entre 5 et 10 m; la teneur en matrice limono-sableuse
 varie fortement suivant les endroits, avec de fréquents lit sableux et lentilles d’argile.

Les limons fluviatiles, plus ou moins argileux ou
 sableux suivant les endroits, ont une épaisseur
 comprise entre 2 et 6 m. Ils se chargent de petits
cailleux roulés vers le bas.
- en remontant vers l’amont, le substratum crayeux est progressivement remplacé d’abord par la Smectite de Herve, ensuite par les phytanites et schistes du Houiller. Dans certaines zones, ces phytanites sont fortement bréchifiées, par effondrement dans des poches karstiques affectant les calcaires viséens sous-jacents. Leur perméabilité est alors de 10^{-6} à 10^{-5}m/sec et la nappe des calcaires est parfois artésienne de plusieurs mètres, par rapport à la nappe alluviale.

Le sommet du Houiller est altéré sur quelques mètres et a un pendage Nord. Sa surface présente de nombreuses irrégularités locales dues à des surcreusement par le fleuve.

Les schistes et grès du Houiller jouent plutôt le rôle d’écran à la circulation des eaux souterraines.

- plus au Sud, les calcaires viséens affleurent sur le versant Est de la vallée entre Visé et Hermalle. Après Hermalle, les schistes houillers constituent à nouveau l’entièreté du substratum de la plaine alluviale (fig. 4).

La couche de graviers comprise entre le bed rock houiller pratiquement imperméable et les
limons fluviatiles peu perméables, renferme une nappe aquifère s'étendant sur l'ensemble de la plaine alluviale. Elle est alimentée par l'impluvium direct, par l'eau de ruissellement des coteaux, par les nappes des versants et enfin par le canal Albert et la Meuse.

L'épaisseur des dépôts graveux varie entre 10 et 5 mètres, suivant que l'on se trouve sur d'anciens îlots de graviers ou au droit de chenaux anastomosés. Les variations de faciès sont nombreuses et engendrent des zones de circulation préférentielle. La perméabilité des graviers varie entre 5.10^{-3} et 1.10^{-1}m/sec suivant leur granulométrie et leur teneur en matrice sablo-sileuse.

L'ensemble des études hydrogéologiques relatives à la nappe alluviale de la Meuse à l'aval de Liège permet donc l'élaboration d'un modèle mathématique d'écoulement régional très précis.

3.- AMENAGEMENTS HYDRAULIQUES

Il reste à préciser les aménagements de la plaine alluviale qui sont susceptibles de modifier l'écoulement naturel dans la nappe.

Les principaux ouvrages sont :

- **le Canal Albert**, dont le niveau de flottaison est calé à la cote 60 par le barrage de Monsin. Le fond du canal, à la cote +55 m, repose dans les alluvions tantôt limoneuses, tantôt sablo-graveuses. Le niveau de la nappe alluviale atteint le fond du canal entre Monsin et Cheratte, puis décroche progressivement pour se situer 7,50 m plus bas à Lanaye. De ce fait, entre Monsin et la tranche de Caster, le Canal subit des pertes à travers le dispositif d'étalement du fond, pertes parfois accrues par les récents travaux de mise au gabarit 9000 tonnes.

- **les murs de quai et les drains le long de la Meuse**. A l'aval de Liège, la Meuse est canalisée jusqu'au barrage de Lixhe, à l'aval duquel sa section redevient naturelle. En rive gauche, un drain existe depuis Hermalle-sous-Argenteau (cote +51,92) jusqu'en aval du barrage de Lixhe (cote +46,20). En rive droite, il s'étend de Richelle (cote +53) jusqu'à l'aval du barrage de Lixhe (cote +48,00). Les murs de quai et les drains influencent probablement les relations nappe alluviale-fleuve, modifiant les gradients pièzométriques et les débits de transfert.

- **les barrages** sur la Meuse, avec les niveaux de flottaison théorique suivants :
 - **barrage-écluses de Monsin** :
 - niveau de flottaison amont : 60,00
 - niveau de flottaison aval : 54,70
 - **barrage-écluses d'Hermales-sous-Argenteau (en cours de démolition)** :
 - niveau de flottaison amont : 54,70
 - niveau de flottaison aval : 54,00
 - **barrage de Lixhe** :
 - niveau de flottaison amont : 54,00
 - niveau de flottaison aval : 46,00

Les dénivellés ainsi créés entre bief amont et bief aval engendrent des écoulements importants via la nappe alluviale.
II.- DETERMINATION DES PERMEABILITES

Une série de sondages électriques a permis d'étudier les résistivités de la formation graveleuse, résistivités fonction de la teneur en éléments sablo-silexieux influençant la perméabilité.

1.- ANCIENNE CORRELATION

A partir de toutes les données relatives aux alluvions de la Meuse, Monjoie et al. (1987) et Haddouchi (1987) ont montré l'existence probable d'une corrélation satisfaisante entre les résistivités électriques apparentes des graviers saturés (mesurées par sondages électriques) et la valeur des perméabilités.

La corrélation résistivité apparente - perméabilité obtenue est reprise au tableau 1.

<table>
<thead>
<tr>
<th>Zone</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistivité apparente en ohm.m</td>
<td>< 100</td>
<td>100 - 150</td>
<td>150 - 250</td>
<td>250 - 350</td>
<td>> 350</td>
</tr>
<tr>
<td>Perméabilité en m/sec</td>
<td>5 - 10^-2</td>
<td>6 - 7.10^-3</td>
<td>7 - 8.10^-3</td>
<td>8 - 10^-3</td>
<td>> 10^-3</td>
</tr>
</tbody>
</table>

Tab. 1.- Corrélation résistivité-perméabilité obtenue pour les graviers de la plaine alluviale de la Meuse dans la région liégeoisienne.

Sur base de cette corrélation, des valeurs de perméabilité des graviers sont choisies dans toute la plaine alluviale à partir de la carte d'isorésistivité (fig. 2).

2.- NOUVELLE CORRELATION

Dans le cas étudié, le jeu de données relatif à la plaine alluviale se situant en aval de Liège, consiste en 22 valeurs du coefficient de perméabilité (K) mesurées par essais de pompage, et environ 220 valeurs de résistivité apparente (\(\rho A\)) mesurées par sondages électriques (dispositif Schlumberger).

Sur base de ces données, une nouvelle corrélation a été calculée.

Les perméabilités mesurées aux puits de pompage et aux piézomètres, sont mises en rapport avec les résistivités apparentes (\(\rho A\)) des graviers saturés. Celles-ci sont mesurées lors de sondages électriques réalisés à proximité immédiate. Le diagramme (log K, \(\rho A\)) de la figure 5 reprend l'ensemble de ces points en écartant toutes les valeurs de \(\rho A\) supérieures à 325 ohm.m car elles correspondent probablement à des graviers non saturés ou partiellement saturés (une valeur moyenne de K ou de \(\rho A\) est prise lorsque la précision des essais de pompage ou des sondages électriques définissait un intervalle de variation).

On constate (fig. 5) que le «nuage» de points obtenu, a plus tendance à décrire une courbe parabolique qu'une droite et d'autre part, pour une valeur de \(\rho A\), la perméabilité K est conue à un facteur près de 1 à 2.5, qui est normal au vu de la précision habituelle des résultats interprétés des essais de pompage (mesures, hypothèses, hétérogénéité,...).

C'est la détermination de la perméabilité et de son intervalle de variation à partir d'une résistivité qui est intéressante. Nous rechercherons donc la parabole de régression de log K sur \(\rho A\) par les moindres carrés.

L'équation de la parabole est la suivante :

\[
\log K = a + b \cdot (\rho A) + c \cdot (\rho A)^2
\]

La parabole de régression calculée (fig. 6) peut s'écrire :

\[
(\log K) = -4.797409 + 0.02104219 \cdot (\rho A) - 3.37441.10^{-4} \cdot (\rho A)^2
\]

avec \(\rho A \leq 300\) ohm.m.

Le coefficient de corrélation parabolique est :

\[
r = 0.88 \text{ avec } r^2 = 0.7744 = \frac{\text{Ecart expliqué}}{\text{Ecart total}}
\]
Si on cherche à quantifier l’écart moyen par rapport à cette parabole, on peut définir celui-ci par :

$$\log \Delta = \frac{\Sigma \left[(\log K) - (\log K_{\text{régression}}) \right]}{n}$$

Dans notre cas, on trouve :

$$\log \Delta = 6.4912 \times 10^{-2}$$

On peut donc écrire que :

$$\log K - \log \Delta < \log K < \log K + \log \Delta$$

ou

$$\frac{K}{\Delta} < K < K \cdot \Delta$$

avec, dans notre cas : $\Delta = 1.1612$

Appliquer cet écart (moyen) de manière «aveugle», amènerait une approximation très grossière de la réalité. Il est donc peu souhaitable d’intégrer cette variance constante dans le calcul. Une autre possibilité consiste à déterminer les paraboles «extrema» enveloppant les valeurs extrêmes constatées dans les mesures.

Pour ce faire, nous prenons les hypothèses suivantes :
- les paraboles «extrema» ont la même courbure que la parabole de régression;
- elle passent toutes par un point minimum

$$K = 1.10^{-2} \text{m/s}$$
$$\rho_A = 102 \text{ ohm.m}$$

- la parabole «maximum» passe par

$$K = 2.5 \times 10^{-2}$$
$$\rho_A = 225$$

- la parabole «minimum» passe par

$$K = 2.10^{-2}$$
$$\rho_A = 280$$

La première hypothèse (même courbure) impose que

$$c = -3.37441 \times 10^{-3}$$

partout. En effet, les dérivées secondes des équations des 3 paraboles doivent être égales et valent (2.c). Il reste a et b comme inconnues, déterminées par les 2 points de passage obligés. On obtient :

$$(\log K) = -4.933694 + 0.0224 \times (\rho_A) - 3.37441 \times 10^{-3} \times (\rho_A)^3$$

pour la parabole «minimum» (située au-dessus de la parabole de régression, figure 6).

Pour chaque valeur de ρ_A mesurée, on peut donc obtenir 3 valeurs de perméabilité :

- K_{min} = perméabilité obtenue avec la parabole «minimum»
- K_{mean} = perméabilité «moyenne» obtenue avec la parabole de régression
- K_{max} = perméabilité obtenue avec la parabole de régression «maximum».

Remarque

Dans la zone étudiée, on a reprise systématiquement toutes les valeurs de résistivités apparentes (ρ_A) des graviers saturés, mesurées par les nombreux sondages électriques. Des corrections importantes ont parfois dû être appliquées à certaines valeurs mentionnées dans le rapport MTP/901 (Lox et al., 1990) lorsque ces dernières englobaient, dans un même horizon, les graviers hors nappe et les graviers saturés.

Cette distinction est cependant, dans la réalité, moins évidente que supposé car les graviers hors nappe peuvent être, en certains endroits, très humides par capillarité et surtout par infiltration. D’autre part, les corrections qui ont été apportées (en une vingtaine de points de mesure de ρ_A) ont été réalisées en tenant compte des effets des principes d’«équivalence» et de «suppression» lors de l’interprétation des sondages électriques en milieu stratifié horizontal.

Les perméabilités obtenues par les différentes paraboles sont ajoutées chaque fois aux 22 valeurs connues formant ainsi 3 jeux de données correspondant aux K_{min}, K_{mean} et K_{max}.

La carte des perméabilités K_{mean} est reprise à la figure 7.

3. - SYNTHÈSE DES DONNÉES RELATIVES À LA PERMÉABILITÉ

En résumé, les jeux de données relatifs à la perméabilité, sont les suivants :

a) ancienne corrélation
b) nouvelle corrélation

$$K_{\text{mean}}$$

K_{min}, K_{max} (paraboles de régression extrema)

Chacun de ces jeux de données est introduit dans le modèle déterministe 3D utilisant les éléments finis. Les valeurs de K corréllées sont introduites dans les 2 couches inférieures du modèle représentant dans leur majeure partie les graviers de la plaine alluviale.
III.- SIMULATIONS PAR ELEMENTS FINIS

1.- MODELISATIONS

Les principes fondamentaux des modélisations mathématiques en hydrogéologie ont été repris précédemment par l'auteur (Dassargues, 1991a).

La méthode d'intégration numérique utilisée ici, est la méthode des Éléments Finis permettant une grande souplesse géométrique pour tenir compte de toutes les hétérogénéités de l'aquifère étudié.

2.- CARACTERISTIQUES DU CODE «LAGAMINE»

3.- MODELISATION DE LA SURFACE LIBRE

Jusqu'à ce jour, les programmes d'éléments finis visant à modéliser des nappes aquifères à surface libre, travaillaient généralement avec un maillage variable, limité à la zone saturée du milieu poreux. A chaque pas de la simulation, la nouvelle hauteur piézométrique calculée provoquait un remaillement automatique de la zone saturée. Ce système est précis, mais extrêmement lourd et gros consommateur de temps ordinateur. Vu les dimensions de la nappe alluviale de la Meuse, il était rigoureusement impossible d'envisager ce procédé.

La méthode utilisée, exceptionnelle de par son originalité (Dassargues et al., 1988, Dassargues, 1991c), se base sur la technique «enthalpique» de modélisation des changements de phase en conduction thermique et fait passer le milieu poreux de l'état non saturé à l'état saturé à pression constante nulle. Elle permet de simuler les nappes libres en régime transitoire avec un maillage fixe.

4.- GEOMETRIE, CONDITIONS INITIALES ET CONDITIONS AUX FRONTIERES

Le modèle compte 589 éléments «briques» par couche d'éléments et 671 noeuds par couche de noeuds. Il couvre une superficie de 30 km² correspondant à l'entièreté de la plaine alluviale de la Meuse entre Monsin et Lanaye (frontière hollande). On obtient donc une structure de 2356 éléments et 3355 noeuds.

Le maillage (dont la représentation horizontale est la même pour les couches successives) tient compte des données des piézomètres et forages donnant des informations sur la lithologie ou l'hydrogéologie.

Le modèle a été discrétisé en se basant sur toutes les données géométriques disponibles, relatives à la nature du substratum, des versants et des différents terrains en présence dans la plaine alluviale.
Les paramètres ont été introduits en distinguant des matériaux, les éléments d’un même matériau étant affectés des mêmes paramètres.

La répartition des différents matériaux en fonction des 4 couches d’éléments est la suivante :

- la **couché 1** est composée d’éléments représentant les graviers à l’exception de la zone de la tranchée de Caster où ce sont des craies et de la zone de Visé où ce sont des calcaires

- la **couché 2** est également composée d’éléments représentant les graviers à l’exception de la zone de la tranchée de Caster (craies : mat. 5), de la zone de l’écluse de Lanay (limons : mat. 2), de la Meuse et certaines gravières (eau : mat. 8), de certaines gravières remblayées (mat. 6) et de limons plus graveux près de Lanay (mat. 4)

- la **couché 3** est composée d’éléments représentant les remblais à l’exception de la zone de la tranchée de Caster (craies : mat. 5), de la zone en amont de l’écluse de Lanay (limons graveux mat. 4), de gravières remblayées (mat. 6), de la Meuse et des gravières (eau : mat. 8) et de quelques zones de remblais (mat. 3)

- la **couché 4** est composée d’éléments représentant les remblais à l’exception de la zone de la tranchée de Caster (craies : mat. 5), de certaines zones de colluvium (mat. 9), de gravières remblayées (mat. 6), de la Meuse et des gravières (eau : mat. 8) et d’un élément de colluvium (mat. 2) situé en amont de l’écluse de Lanay.

Sans tenir compte des résultats des corrélations entre les coefficients de perméabilité et les résistivités électriques apparentes, les caractéristiques hydrogéologiques introduites dans le modèle, au départ de la calibration, sont les suivantes :

Première approche

<table>
<thead>
<tr>
<th>mat.</th>
<th>matériau</th>
<th>K (m/s)</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>graviers...</td>
<td>8.10^-3</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>limons......</td>
<td>5.10^-7</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>remblais.....</td>
<td>5.10^-6</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>limons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>graveux.....</td>
<td>1.10^-4</td>
<td>0.07</td>
</tr>
<tr>
<td>5</td>
<td>craies....</td>
<td>1.10^-4</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>remblai de...</td>
<td>1.10^-4</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>spécial*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>eau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>colluvium....</td>
<td>1.10^-7</td>
<td>0.04</td>
</tr>
<tr>
<td>10</td>
<td>calcaire.....</td>
<td>1.10^-4</td>
<td>0.08</td>
</tr>
</tbody>
</table>

(*) Le matériau «spécial» est utilisé pour des éléments qui n’interviennent en aucune façon dans le calcul, dans des zones comme les gravières au-dessus du niveau de l’eau...

Les coefficients d’emmagasinement n’interviennent pas dans le calcul car la simulation sera menée en mode quasi-permanent.

La piézométrie mesurée de référence, correspond à la campagne de mesures du 10 juillet 1989, prise également comme piézométrie initiale.

La discrétisation temporelle est réalisée avec des pas de temps croissants et la piézométrie calculée après 40 ans est comparée à la piézométrie mesurée. Durant ce temps, les sollicitations sont permanentes.

Les conditions aux frontières sont les suivantes :

a) **frontières extérieures latérales**

Au vu du contexte géologique et hydrogéologique, des conditions de potentiels imposés ont été choisies aux frontières extérieures du modèle. Ce type de condition implique que des flux entrants ou sortants sont permis en chaque nœud de la frontière.

Dans les zones de versant où la perméabilité est faible, dans la smectite, dans les schistes comme dans le colluvium de pied de versant, ces flux seront faibles. Par contre, les bordures affectées de perméabilités élevées, comme dans les craies et les calcaires fracturés, ces flux peuvent être très importants.

b) **frontières intérieures : les berges de la Meuse**

Lorsque les berges n’ont pas été imperméabilisées, il est évident qu’il s’agit de frontières où le potentiel est imposé au niveau de la Meuse.

Par contre, dans la partie située immédiatement en amont du barrage de Lixhe, la Meuse est canalisée et un drain reprend les écoulements éventuels en provenance de la nappe alluviale. Dans ce dernier cas, des frontières imperméables ont été choisies avec néanmoins des débits sortant de la nappe, correspondant aux débits effectivement collectés par les drains : 0.158 m³/s en rive droite et 0.385 m³/s en rive gauche. Ces débits imposés ont été répartis sur tous les nœuds concernés représentant le drain.

c) **frontière à la base du modèle**

Vu le contexte géologique, des frontières imperméables ont été choisies à la base du modèle en raison du caractère imperméable de la smectite de Herve, des schistes du Houiller et des phalanites saines. Cependant, pour les zones de la plaine alluviale situées au droit du bed rock crayeux ou calcaire, des conditions à potentiel imposé ont été choisies. De plus au droit des poches de dissolution dans les phalanites, des flux entrants répartis ont été imposés, correspondant aux flux réels dus à la pression supérieure de la nappe contenue dans les phalanites altérées.
d) venues d’eau et pompages

Les principales venues d’eau sont dues à la mauvaise étanchéité du fond et des berges du Canal Albert et ont été estimées lors des études réalisées par les LGIH (Monjoie et al., 1987). En première approximation, ces flux sont répartis sur les nœuds bordant la représentation du canal. Sur base du rapport MTP/971, quatre zones sont distinguées :
- zone de Hermalle: 0.2 à 0.3 10^{-3} m3/s par m de longueur du canal;
- zone de Lixhe: 0.45 à 0.73 10^{-3} m3/s par m de longueur de canal;
- zone de Nivelle: 0.08 à 0.17 10^{-3} m3/s par m de longueur de canal;
- zone de Lanayé: 0.12 à 0.23 10^{-3} m3/s par m de longueur de canal.

Lors de la calibration du modèle, certaines de ces valeurs ont été modifiées.

D’autres venues d’eau sont prises en compte, notamment dans les versants en bordure de la plaine alluviale.

Dans chaque cas, des flux entrants sont imposés aux nœuds concernés.

Certs pompages sont effectués dans la nappe alluviale et les plus importants sont ceux du démergément de la plaine alluviale situés à Herstal et Wandre. Les pompages significatifs (>0.004 m3/s) sont pris en compte par imposition d’un débit sortant aux nœuds concernés ou les plus proches.

Une infiltration uniforme, due à la partie des précipitations qui n’est pas évaporée ni ruisselée, est imposée sur l’ensemble de la couche supérieure du modèle. Sa valeur est de 300 mm d’eau par an, soit 9.5×10^{-3} m3/s par m2.

5.- SIMULATIONS

Les changements de perméabilités effectués lors de la calibration sont résumés au tableau 2.

La calibration est tout d’abord recherchée en introduisant le jeu de perméabilités obtenu par l’application de l’ancienne corrélation, car celle-ci présente l’avantage de ne morceler le domaine qu’en 26 matériaux de perméabilités différentes. Ces valeurs sont introduites à partir du passage 8, ensuite la calibration est poursuivie par changements successifs de ces valeurs et éventuellement de la répartition des matériaux jusqu’à obtenir une piézométrie calculée similaire à la piézométrie mesurée.

Au 23ème passage, on peut remarquer (fig. 8) que la piézométrie calculée est concordante avec la piézométrie mesurée (fig. 3) avec un écart moyen de l’ordre de 10 à 15 cm sur l’ensemble du

<table>
<thead>
<tr>
<th>No passage de calibration</th>
<th>Meuse 09 K(m/s)</th>
<th>Meuse 13 K(m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat. 1 : graviers</td>
<td>7.5 10^{-3}</td>
<td>1.5 10^{-3}</td>
</tr>
<tr>
<td>Mat. 2 : limons</td>
<td>5.10 10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 3 : sable</td>
<td>1.10 10^{-6}</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 4 : limons graviers</td>
<td>3.10 10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 5 : calcaires</td>
<td>1.10 10^{-6}</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 6 : roche</td>
<td>3.10 10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 7 : eau</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 9 : sable</td>
<td>1.10 10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>Mat. 10 : calcaires</td>
<td>3.10 10^{-3}</td>
<td>6.10 10^{-3}</td>
</tr>
<tr>
<td>Mat. 11 : graviers</td>
<td>6.10 10^{-2}</td>
<td>1.2 10^{-3}</td>
</tr>
<tr>
<td>Mat. 12 : graviers</td>
<td>6.5 10^{-2}</td>
<td>1.3 10^{-2}</td>
</tr>
<tr>
<td>Mat. 13 : graviers</td>
<td>7.10 10^{-2}</td>
<td>1.4 10^{-2}</td>
</tr>
<tr>
<td>Mat. 14 : graviers</td>
<td>8.10 10^{-2}</td>
<td>2.10 10^{-2}</td>
</tr>
<tr>
<td>Mat. 15 : graviers</td>
<td>9.10 10^{-2}</td>
<td>4.5 10^{-2}</td>
</tr>
<tr>
<td>Mat. 16 : graviers</td>
<td>10 10^{-2}</td>
<td>5.10 10^{-2}</td>
</tr>
<tr>
<td>Mat. 19 : graviers</td>
<td>15 10^{-2}</td>
<td>7.5 10^{-2}</td>
</tr>
<tr>
<td>Mat. 25 : graviers</td>
<td>-</td>
<td>9.5 10^{-2}</td>
</tr>
<tr>
<td>Mat. 26 : graviers</td>
<td>-</td>
<td>3.10 10^{-2}</td>
</tr>
</tbody>
</table>

Fig. 8.- Carte piézométrique calculée au 23ème passage
domaine, excepté dans les zones amont, où le manque d'informations piézométriques ne permet pas d'affiner la calibration.

A partir de l'utilisation à postériori (après calibration) des jeux de perméabilités issus de l'application de la corrélation parabolique, des comparaisons avec la situation «calibrée» sont permises.

Cette nouvelle corrélation n'a pas été appliquée avant calibration car elle aurait conduit à une multiplication du nombre de matériaux; ce qui crée des difficultés si les résultats obtenus ne sont pas d'embée fort proches de la piézométrie de référence de la calibration.

Les jeux de données introduits sont K_{mean^1}, K_{max^1} et K_{max^2}.

La carte piézométrique calculée par le modèle d'écoulement avec le jeu de données de K_{mean^1} est reprise à la figure 9 permettant la comparaison avec la piézométrie calibrée.

Pour pouvoir établir des comparaisons, divisons le domaine simulé en quatre zones comme suit:

- zone A : en aval du barrage de Lixhe et jusqu'à l'écluse de Lanaye
- zone B : de Visé jusqu'au barrage de Lixhe
- zone C : de Hermalle jusqu'à Visé
- zone D : de Monsin jusqu'à Vivegnis.

Des gradients très variables sont observés, notamment en rive gauche du barrage de Lixhe.

Par rapport à la piézométrie de référence, on remarque les différences suivantes:

- zone A : trop haute de 0.2 à 0.4 m en rive gauche de la Meuse
- zone B : trop haute de 0.4 à 1.0 m en rive gauche, parfois trop basse de 0.2 à 0.4 m au droit de la Meuse
- zone C : trop haute, parfois de 1 m en rive gauche.

Bien que ces résultats montrent que la calibration devrait être poursuivie pour atteindre une piézométrie du type de celle obtenue au 23ème passage, on peut sans conteste affirmer que l'utilisation de la corrélation parabolique permet d'arriver d'embée à des résultats très satisfaisants (peu éloignés de la calibration).

6.- FLUX CALCULES

Les résultats du modèle au 23ème passage peuvent être analysés. La répartition finale (correspondant à la calibration) des différentes couches du modèle, montrant une hétérogénéité assez importante des perméabilités des graviers.

Une carte des flux à la base du modèle (fig. 10) permet de visualiser très nettement les directions et l'importance relative de tous les flux calculés dans la zone modélisée.

Les résultats chiffrés que le modèle permet d'obtenir, sont repris au tableau 3, la localisation

Tableau 3.- Débits échangés aux différentes frontières du modèle (passage 23, calibré)

<table>
<thead>
<tr>
<th>zone d'échanges</th>
<th>Débits entrants</th>
<th>Débits sortants</th>
<th>Bilan [m³/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.254</td>
<td>-0.094</td>
<td>0.240</td>
</tr>
<tr>
<td>B</td>
<td>0.013</td>
<td>-0.133</td>
<td>-0.120</td>
</tr>
<tr>
<td>C</td>
<td>0.344</td>
<td>-0.093</td>
<td>0.341</td>
</tr>
<tr>
<td>D</td>
<td>0.370</td>
<td>-0.187</td>
<td>0.313</td>
</tr>
<tr>
<td>E</td>
<td>0.245</td>
<td>-0.214</td>
<td>0.031</td>
</tr>
<tr>
<td>F</td>
<td>6.545</td>
<td>-5.212</td>
<td>1.333</td>
</tr>
<tr>
<td>G</td>
<td>0.244</td>
<td>-1.100</td>
<td>-0.583</td>
</tr>
<tr>
<td>H</td>
<td>0.274</td>
<td>-0.446</td>
<td>-0.181</td>
</tr>
<tr>
<td>I</td>
<td>-0.135</td>
<td>-0.133</td>
<td>-0.133</td>
</tr>
<tr>
<td>J</td>
<td>0.092</td>
<td>-0.231</td>
<td>-0.139</td>
</tr>
<tr>
<td>K</td>
<td>0.015</td>
<td>-0.095</td>
<td>-0.080</td>
</tr>
<tr>
<td>L</td>
<td>0.017</td>
<td>-0.095</td>
<td>-0.078</td>
</tr>
<tr>
<td>M</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>N</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>O</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>P</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>Q</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>R</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>S</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>T</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>U</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>V</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>W</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>X</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>Y</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
<tr>
<td>Z</td>
<td>0.025</td>
<td>-0.095</td>
<td>-0.070</td>
</tr>
</tbody>
</table>

Fig. 9.- Piézométrie calculée avec K_{mean^1} par rapport à la piézométrie de référence
Fig. 10. - Carte des flux calculés à la base du modèle

Fig. 11. - Localisation des différentes zones d'échanges
des différentes zones d'échanges est reprise à la figure 11.

On constate que la nappe alluviale est alimentée de 2.75 m3/s par ses versants, dont 1.32 m3/s par ceux en contact avec les craies et les calcaires et à peu près l'équivalent (1.43 m3/s) par l'ensemble de ses autres versants.

L'alimentation majeure est en provenance des fuites du canal Albert et se chiffre à 2.69 m3/s.

L'alimentation de la Meuse par l'eau de la nappe alluviale est calculée à 5.22 m3/s pour l'ensemble de la zone modélisée et pour les conditions de piézométrie de référence utilisée (juillet 1989). Une alimentation plus importante est vraisemblablement à prévoir dans le cas de piézométries relatives à des mois moins secs.

Pour le passage utilisant le jeu des K_{mean} issu de la corrélation parabolique (passage non calibré), les débits échangés dans les différentes zones localisées précédemment (fig. 11) sont résumés au tableau 4.

On constate que pour cette situation non calibrée sur la piézométrie mesurée, mais se servant de façon optimale des mesures de perméabilité et de résistivité électrique des alluvions graveleuses, les débits calculés sont un peu différents de la situation calibrée. La nappe alluviale s'alimente d'environ 2.12 m3/s par ses versants, dont 1.18 m3/s par ceux en contact avec les craies et les calcaires et le reste (0.94 m3/s) par l'ensemble de ses autres versants.

L'alimentation de la Meuse par l'eau de la nappe alluviale est calculée à 4.72 m3/s.

Des simulations réalisées avec les jeux de valeur K_{min} et K_{max} issus de la corrélation parabolique, n'apportent guère plus d'informations car les résultats sont encore plus éloignés de la piézométrie de référence que pour K_{mean}.

IV.- CONCLUSIONS GENERALES

L'étude hydrogéologique a permis :

- la détermination des paramètres hydrodynamiques à introduire dans le modèle
- la collecte et la synthèse de nombreuses mesures relatives à la géométrie des couches, aux sollicitations extérieures du système, aux conditions aux frontières et aux niveaux piézométriques de référence.

Sur base de la carte d'iso-résistivité des alluvions et des corrélations résistivité-perméabilité, des approximations du champ de perméabilité le plus probable dans la zone étudiée ont pu être introduites dans le modèle. Les essais de pompages et les piézomètres réalisés ont permis de compléter le jeu de données disponibles et de prouver la valeur élevée des transmissivités dans les graviers de la plaine alluviale de la Meuse. De plus la composition chimique des eaux pompées confirme que l'alimentation de la nappe alluviale par les versants est importante.

Le modèle a été discrétisé en se basant sur toutes les données géométriques disponibles, relatives à la nature du substratum, des versants et des différents terrains en présence dans la plaine alluviale. Il comporte quatre couches d'éléments pour un total de 2.356 éléments.

Les paramètres ont été introduits en distinguant des matériaux, les éléments d'un même matériau étant affectés des mêmes paramètres.

Toutes les sollicitations et influences ont été prises en compte : infiltration uniforme, infiltration par les versants, infiltration en provenance du Canal Albert, infiltration par les phantasites altérées, imperméabilité des murs de quai de la Meuse et débits des drains, pompages et venues d'eau constatées.

Les cartes piézométriques calculées ont été comparées à la piézométrie mesurée de référence après chaque passage de la phase de calibration. Les données du problème ont été ajustées successivement de manière à minimiser la différence entre les mesures et les résultats calculés.

Au 23ème passage, on a considéré que le modèle reproduisait les conditions du champ mesuré avec un niveau de précision acceptable. On en déduit automatiquement que les flux obtenus dans la zone modélisée et aux frontières de celle-ci sont les plus probables.

On constate que la nappe alluviale est alimentée d'environ 2.75 m3/s par ses versants, dont 1.32 m3/s par ceux en contact avec les craies et les calcaires et 1.43 m3/s par l'ensemble de ses autres versants. L'alimentation majeure est en provenance des fuites du Canal Albert et se chiffre à 2.7 m3/s.

Tableau 4.- Débits échangés aux différentes frontières du modèle (K_{mean} issu de la corrélation parabolique)

<table>
<thead>
<tr>
<th>Zones d'échanges</th>
<th>Débits entrants (m3/s)</th>
<th>Débits sortants (m3/s)</th>
<th>Bilan (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.336</td>
<td>- 0.094</td>
<td>0.242</td>
</tr>
<tr>
<td>B</td>
<td>0.019</td>
<td>- 0.013</td>
<td>0.006</td>
</tr>
<tr>
<td>C</td>
<td>0.125</td>
<td>- 0.006</td>
<td>0.119</td>
</tr>
<tr>
<td>D</td>
<td>0.522</td>
<td>- 0.205</td>
<td>0.317</td>
</tr>
<tr>
<td>E</td>
<td>0.708</td>
<td>- 0.061</td>
<td>0.647</td>
</tr>
<tr>
<td>F</td>
<td>45.954</td>
<td>- 50.574</td>
<td>- 4.618</td>
</tr>
<tr>
<td>G</td>
<td>1.844</td>
<td>- 1.906</td>
<td>- 0.062</td>
</tr>
<tr>
<td>H</td>
<td>0.278</td>
<td>- 0.446</td>
<td>- 0.168</td>
</tr>
<tr>
<td>J</td>
<td>-</td>
<td>0.722</td>
<td>0.722</td>
</tr>
<tr>
<td>K</td>
<td>2.692</td>
<td>-</td>
<td>2.692</td>
</tr>
<tr>
<td>L</td>
<td>0.295</td>
<td>-</td>
<td>0.295</td>
</tr>
<tr>
<td>M</td>
<td>0.271</td>
<td>-</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>53.033</td>
<td>- 53.033</td>
<td>0.000</td>
</tr>
</tbody>
</table>
L'alimentation de la Meuse par l'eau de la nappe alluviale est calculée à 5,22 m³/s pour l'ensemble de la zone modélisée et pour les conditions de piézométrie de référence utilisée (juillet 1989). Une alimentation plus importante est vraisemblablement à prévoir dans le cas de piézométries relatives à des mois moins secs.

Des simulations utilisant un jeu de probabilité issu directement d'une corrélation parabolique liant K à p_2, bien que non calibrées, permettent de confirmer globalement la précision des valeurs citées précédemment.

Sur base du modèle, la quantité d'eau fournie aux Pays-Bas par la Meuse et la plaine alluviale, à ajouter au débit de la Meuse mesuré en amont de la zone modélisée, est de l'ordre de 5,4 m³/s pour les mois d'été. D'autres cas de figures peuvent être calculés sur base du modèle établi.

BIBLIOGRAPHIE

