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Abstract

We generalize the concept of conserving, Φ-derivable, approximations to rel-

ativistic field theories. Treating the interaction field as a dynamical degree

of freedom, we derive the thermodynamic potential in terms of fully dressed

propagators, an approach which allows us to resolve the entropy of a relativis-

tic plasma into contributions from its interacting elementary excitations. We

illustrate the derivation for a hot relativistic system governed by electromag-

netic interactions.

∗It is a pleasure to dedicate this paper to Leo Kadanoff on his sixtieth birthday. Immediately after
Leo and I received our Ph.D.’s from Harvard in 1960, we began working together at the Institute
for Theoretical Physics in Copenhagen (now the Niels Bohr Institute) on the problem of how
to construct self-consistent approximations to two-particle propagators that preserved the basic
conservation laws. Our solution to the problem was written up in the paper Conservation laws
and correlation functions1, and the concept generalized to deriving self-consistent approximations
from a functional, Φ, of the single particle Green’s function in Ref.2. I hope that Leo enjoys
revisiting these early ideas, which may prove useful in understanding modern problems of the
thermodynamics and transport properties of systems with long-ranged gauge fields. – Gordon
Baym
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I. INTRODUCTION

The motivations for studying relativistic plasmas are numerous. Nuclear matter at very

high densities is expected, from the asymptotic freedom of QCD, to be in the form of a

plasma of deconfined quarks and gluons [3]. Such plasmas were present in the early universe

and may exist in the cores of neutron stars; current experiments aim to produce and study

them in collisions of ultrarelativistic nuclei [4]. Electromagnetic plasmas are also of interest

as Abelian models of quark-gluon plasmas. In addition, problems of relativistic plasmas are

closely related to current issues in condensed matter theory. In gauge fields models of high

Tc superconductors and of the fractional quantum Hall effect [5], the magnetic component of

the interaction plays a fundamental role; this component is suppressed in normal metals by a

factor (vF/c)
2 (where vF is the Fermi velocity), but is important in both strongly correlated

systems and relativistic gases.

The thermodynamics and quasiparticle modes of relativistic plasmas have been the sub-

ject of much earlier work. In order to understand the equation of state of interacting rela-

tivistic plasmas, the thermodynamic potential has been calculated up to the first six orders

of perturbation theory in the coupling constant [6–8]. Studies of the plasma microscopic

properties have also revealed the existence of well-defined quasiparticle excitations and col-

lective modes [9,10]. In particular, the fermionic spectrum has certain remarkable features

not encountered in non-relativistic plasmas: the spectrum has a gap at zero momentum,

and splits into two branches at small momenta [10].

Many physical quantities of relativistic plasmas are infrared divergent when evaluated

in perturbation theory, as a consequence of the lack of static screening of magnetic inter-

actions. Taking into account dynamical screening of such interactions at long wavelengths

(the anomalous skin effect [11]), equivalent to including effects of Landau damping in the

photon polarization operator, eliminates the divergences in transport coefficients [12] and in

the rate of energy loss of fast particles [13]. Polarization effects also modify the interaction

between low energy quasiparticle modes. The “Hard Thermal Loop” expansion scheme,
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proposed by Braaten and Pisarski [14], handles the effects of the medium diagrammatically

by introducing vertex and self-energy corrections at small four-momentum. This description

can also be cast in terms of kinetic equations [15].

Even after taking into account corrections from medium effects, difficulties still remain.

Due to a lack of static screening in the magnetic component of gauge interactions, the

fermion quasiparticle damping rate at finite temperatures is still divergent in perturbation

theory. Blaizot and Iancu have shown that [16] in QED at finite temperatures, including

multiple scattering à la Bloch-Nordsieck in the vacuum leads to well-defined, divergence-

free, quasiparticle modes. This structure of the fermion propagator also appears in gauge

field models of the fractional quantum Hall effect [17]. However, it is not clear whether

the infrared structure in the fermion spectrum actually affects physical observables such as

transport coefficients and the specific heat [18]. Even quantities that are well-controlled

order by order in perturbation theory can cause difficulties. The (asymptotic) expansion

of the thermodynamical potential converges very slowly, which has lead to suggestions to

reorganize the perturbation expansion in terms of dressed fermion states rather than those

of a free interacting gas [19].

Our aim here is to give a general framework for analyzing the effects of different char-

acteristics of the fermion spectrum, the presence of a gap and the infrared structure, on

thermodynamic quantities. Our analysis is based on Φ-derivable conserving approxima-

tions, first introduced [2,20] in the context of quantum transport theories. Among various

applications, their use in the study of liquid 3He has allowed one to interpret the T 3 log T

term in the low temperature specific heat in terms of repeated scattering of particle-hole

pairs [21,22]. The technique has been extended to Bose condensed systems in Refs. [23].

A generalization of the conserving approximation techniques to relativistic plasmas at zero

temperature provided a controlled expansion of the ground state energy of electromagnetic

and quark plasmas up to order g4 [7]. In this latter work, the free energy is given as a func-

tional of the fully dressed fermion and boson propagators as well as fully dressed vertices.

In our present analysis, we keep track of both fermion and boson elementary excitations
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and treat both the matter and interaction fields as dynamical quantities. This allows us to

decompose the entropy in the form

s =
∑

σ,p

∫

dωp

2π
σf (ωp)As(ωp, p) +

∑

pol,q

∫

dωq

2π
σb(ωq)Bs(ωq, q) + s′, (1)

where the entropy densities of free fermion and boson gases, σf = −f log f−(1−f) log(1−f)

and σb = −n log n+(1+n) log(1+n) are here weighted by the spectral densities As and Bs

of the interacting system.

In this paper, we develop Φ-derivable approximations for a hot relativistic QED plasma, a

gas of electrons and positrons in a thermal bath of photons at temperature T , where T ≫ m,

although we expect the approach to be valid also for non-Abelian theories including QCD.

For simplicity, we set the electron mass, m, to zero. We then illustrate the technique by

computing the entropy within the one-loop approximation, and comment briefly on the

general structure of the entropy spectral densities As and Bs.

II. THE THERMODYNAMIC POTENTIAL

We first review Φ-derivable approximations in non-relativistic field theories [2]. The

thermodynamical potential of a non-relativistic Fermi system can be written as a functional

of the fully dressed fermion propagator G as,

βΩ = Φ[G] + tr ΣG− tr log(−G). (2)

Here β = 1/T and the symbol tr denotes a trace over spins and coordinates. In four-

dimensional notation,

trX ≡
∑

σ,σ′

∫

−iβ

0
d1X(1, 1+), (3)

where 1 is shorthand for the coordinates (t1, r1), while 1+ indicates that the time variable

in the second argument of X is t1 + i0+. The functional Φ[G] is defined as the sum of

all skeleton graphs contributing to the diagrammatic expansion of the potential Ω, where
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all lines are fully dressed propagators, G, instead of bare ones, G0. In contrast with the

familiar diagrammatic expansion of a scattering diagram in the vacuum, the expansion for

Φ[G] contains a symmetry factor 1/n for each diagram with n fermion lines. Upon variation

of G, the functional Φ[G] satisfies the relation

δΦ[G] = tr ΣδG, (4)

where Σ is the electron self-energy. Pictorially, this relation means that removing one of

the n fermion lines in a given Φ-diagram produces a self-energy diagram with n− 1 fermion

lines. Since there are n ways of removing a line, no symmetry factor appears on the right

side of Eq. (4). The self-energy Σ is here a functional of the fully dressed propagator G,

and it satisfies Dyson’s equation G−1 = G−1
0 −Σ, where the bare propagator G0 is given by

G−1
0 = δσ,σ′(ωn − p2/2m) for a non-relativistic system of fermions.

The principle behind conserving approximations is the following: one selects a particular

subset of diagrams for the functional, Φa[G], from which one deduces an approximate self-

energy functional Σa ≡ δΦa[G]/δG. Dyson’s equation provides then a self-consistent relation

for the approximate propagatorGa. As shown in [2], the approximation forG leads to current

densities and an energy-momentum tensor that obey the continuity equations expressing

charge, particle number, energy and momentum conservation. The basic ingredient of the

approximation scheme of Eq. (2) which enforces conservation laws is the stationarity property

of Ω, δΩ = 0, upon a variation of G that keeps G0 constant, as can easily be checked from

Eqs. (2) and (4).

We now generalize this approach to relativistic field theories, illustrating the method for

electromagnetism, where the Lagrangian is

L = ψ̄(i/∂ − e/A)ψ −
1

4
F µνFµν . (5)

In QED, the free energy β Ω is given in terms of the fully dressed electron and photon

propagators G and D, by

β Ω = Φ[G,D] − Tr ΣG+ Tr log(−γ0G) +
1

2
Tr ΠD −

1

2
Tr log(−D) ≡W [G,D]. (6)
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Here, the functional Φ[G,D] is the sum of all the skeleton diagrams of the thermodynamic

potential, expressed in terms of fully dressed G and D instead of the bare electron and

photon propagators, G0 and D0. Under a simultaneous variation of the propagators G and

D,

δΦ[G,D] = Tr ΣδG−
1

2
Tr ΠδD, (7)

as one easily sees by removing an electron line or a photon line in a given diagram contribut-

ing to Φ. The electron self-energy Σ[G,D] and the polarization operator Π[G,D] are here

functionals of G and D and satisfy Dyson’s equations

G−1 = G−1
0 − Σ, (8)

D−1 = D−1
0 − Π. (9)

To prove that the functional W [G,D] in Eq. (6) is identical to the thermodynamic

potential βΩ of an electromagnetic plasma, we scale the coupling by a parameter λ in the

interaction Lagrangian,

Lint = −λeψ̄ /Aψ. (10)

We work in Coulomb gauge. In the non-interacting limit, λ→ 0, both Σ and Π vanish, and

we recover the result for a gas of free electrons and photons

βΩ0 = W [G0, D0] = Tr log(−γ0G0) − Tr log(−D0,T ), (11)

where only transverse polarizations (subscript T ) appear in the photon contribution [24].

To prove that β Ω = W [G,D] it suffices to show that

β
∂Ωλ

∂λ
=
∂W

∂λ
[Gλ, Dλ], (12)

for arbitrary λ.

Consider first the quantity β∂Ωλ/∂λ. From the definition of the thermodynamical po-

tential,
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Ωλ ≡ −T log tr [exp (−β (Hλ − µQ))] (13)

(where Q is the charge operator, the Hamiltonian is Hλ = H0 −
∫

d3xLint, and tr denotes a

sum over all the quantum states of the system,) we find

β
∂Ωλ

∂λ
=
β

λ
〈Hint〉 = −

β

λ

∫

d3x 〈Lint〉. (14)

Here, 〈X〉 denotes the thermal average tr [exp(−β(Hλ − µQ))X]/tr [exp(−β(Hλ − µQ))].

We evaluate next ∂W [Gλ, Dλ]/∂λ. A given diagram contributing to Φ[Gλ, Dλ] depends on

λ implicitly through the electron and photon propagators, Gλ and Dλ, but also explicitly

through the coupling λe, Eq. (10). However, the terms arising from the dependence on λe

through Gλ and Dλ cancel in the partial derivative, since W [G,D] is stationary under a

variation of G and D. From the definition of Φ[G,D], the variation of W is

δW [G,D] = TrΣδG−
1

2
Tr ΠδD − Tr δ(ΣG) +

1

2
Tr δ(ΠD) + Tr δ(log(−γ0G))

−
1

2
Tr δ(log(−D)). (15)

Using δ log(−γ0G) = −GδG−1 and Dyson’s equation, δG−1 = −δΣ, as well as similar

relations for the photon propagators, we find that

δW [G,D] = 0, (16)

under a variation that does not affect G0, D0, or the coupling constant, λe. Therefore, in

the derivative of W with respect to λ only the explicit dependence in the coupling constant

contributes, and we find

∂W

∂λ
[Gλ, Dλ] =

∂Φ

∂λ
[Gλ, Dλ]

∣

∣

∣

∣

∣

G,D

, (17)

where the derivative on the right side is taken at fixed G and D.

Next, to compute the right side of Eq. (17), we use the invariance properties of Φ. As

each vertex of a given Φ-diagram is connected to two electron lines and one photon line, the

functional Φ remains constant under the scaling transformations
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Φ[Gλ, Dλ] = Φ[s−fGλ, s
bDλ; sλ], f = 1 + b/2, (18)

Φ[Gλ, Dλ] = Φ[s−f̄Gλ, s
b̄Dλ;λ], f̄ = b̄/2, (19)

where the third arguments of Φ on the right sides are the scaling factors of the coupling

constant. Taking the derivative of Eq. (18) with respect to s, one finds

λ
∂Φ

∂(sλ)

∣

∣

∣

∣

∣

G,D

− fs−f−1Tr
δΦ

δG
Gλ + bsb−1Tr

δΦ

δD
Dλ = 0, (20)

which, for s = 1, gives

λ
∂Φ

∂λ

∣

∣

∣

∣

∣

G,D

= f Tr ΣλGλ +
b

2
Tr ΠλDλ = f Tr ΣλGλ + (f − 1) TrΠλDλ. (21)

Similarly, the derivative of Eq. (19) with respect to s gives

Tr ΣλGλ + Tr ΠλDλ = 0. (22)

Therefore, Eqs. (22), (21) and (17) give

∂W

∂λ
[Gλ, Dλ] =

1

λ
TrΣλGλ. (23)

To complete the proof, we relate ∂Tr Σλ Σλ/∂λ to 〈Hint〉, starting with the equation of

motion for the time-ordered fermion propagator Gλ(1, 1
′) ≡ −i〈Tψ(1)ψ̄(1′)〉, which, from

the Lagrangian, Eq. (5), is

i/∂1Gλ(1, 1
′) + iλe〈T /A(1)ψ(1)ψ̄(1′)〉 = δ(1 − 1′). (24)

Comparing to Dyson’s equation in real space,

∫

d1̄G−1
0 (1, 1̄)Gλ(1̄, 1

′) −
∫

d1̄ Σλ(1, 1̄)Gλ(1̄, 1
′) = δ(1 − 1′), (25)

we identify

Tr ΣλGλ ≡
∫

d1
∫

d1̄ Σλ(1, 1̄)Gλ(1̄, 1
+) = iλe

∫

−iβ

0
d1〈ψ̄(1)/A(1)ψ(1)〉

= βλe
∫

dr1〈ψ̄(r1, 0)/A(r1, 0)ψ(r1, 0)〉 = β〈Hint〉. (26)

Therefore,

β
∂W

∂λ
=

1

λ
Tr ΣλGλ =

β

λ
〈Hint〉 = β

∂Ω

∂λ
, (27)

which completes the proof.
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III. THE ENTROPY

We now turn to the derivation of the entropy of the plasma in terms of the fully dressed

propagators G and D, which is given by the derivative

S = −
∂Ω

∂T

∣

∣

∣

∣

∣

V, µ

= −
∂

∂T
(TW [G,D])

∣

∣

∣

∣

∣

V, µ

, (28)

at constant volume V and chemical potential µ. We work in frequency-momentum space,

where the electron and boson propagators have the spectral representations

G(ωn,p) =
∫ dωp

2π

A(ωp,p)

ωn − ωp

, (29)

DT (ωn,q) =
∫

dωq

2π

BT (ωq,q)

ωn − ωq

, (30)

DL(ωn,q) =
1

q2
+
∫ dωq

2π

BL(ωq,q)

ωn − ωq

, (31)

where the subscripts L and T denote longitudinal and transverse polarizations. The Mat-

subara frequencies are ωn = iπ(2n+1)T +µ for electrons and ωn = 2iπnT for photons. The

functional W [G,D] depends therefore on the temperature through the spectral functions A

and B, through the complex frequencies ωn, as well as through factors T at the vertices [25].

Because W [G,D] is stationary under a simultaneous variation of the propagators G and D,

Eq. (16), it is also stationary under variations of A and B that ignore the other temperature

dependences. Thus, the contribution to the entropy coming from the temperature deriva-

tives of the spectral densities alone vanishes. In the following, we therefore evaluate every

derivative with respect to the temperature at constant A and B.

We start from the expression of the thermodynamical potential β Ω = W [G,D], Eq. (6).

Evaluating the frequency sum by standard contour integration techniques [25], we find

Ω = TΦ[G,D] +
∑

p

∫ dωp

π
f(ωp) tr Im

[

ΣG+ log(−γ0G
−1)

]

+
∑

q

−
∫

dωq

2π
n(ωq)

∑

l=L,T

gl Im
[

Πl Dl + log(−D−1
l )

]

, (32)

where f(ωp) = (exp(β(ωp−µ))+1)−1, and n(ωq) = (exp(βωq)−1)−1 are the Fermi and Bose

occupation factors, tr is a trace over spinor indices, the degeneracy factors gl are gL = 1 for
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longitudinal modes and gT = 2 for transverse ones. Here, Im [F ], means Im [F (ω + i0+)].

The integration over ωq is a principal value integral, since in deforming the contour integral

onto the real axis, one needs to go around the (Bose) frequency ωn=0 = 0. Differentiating

Eq. (32) with respect to T at constant A and B, we decompose the entropy into a sum of

three terms,

S = −
∂Ω

∂T

∣

∣

∣

∣

∣

µ,V,A,B

= Sf + Sb + S ′, (33)

where

Sf ≡ −
∑

p

∫

dωp

π

∂f

∂T
tr
(

ImΣ ReG+ Im log(−γ0G
−1)

)

, (34)

Sb ≡ −
∑

q,l

gl −
∫ dωq

2π

∂n

∂T

(

ImΠl ReDl + Im log(−D−1
l )

)

, (35)

S ′ ≡ −
∂(TΦ)

∂T

∣

∣

∣

∣

∣

A,B

−
∑

p

∫

dωp

π

∂f

∂T
tr (ImGReΣ)

−
∑

q,l

gl −
∫ dωq

2π

∂n

∂T
ImDl ReΠl. (36)

In this decomposition, the terms Sf and Sb are the contributions from the electron and

photon elementary modes, while S ′ is a correction term arising from the interactions.

We illustrate the derivation in the one–loop approximation, which corresponds to taking

the diagram Φ depicted in Fig. 1, and the self-energy diagrams of Fig. 2. Applying the usual

Feynman rules, and carrying the sum over frequencies, we find

TΦ =
e2

16π3V

∑

p,q,l

gl

∫

dωpdωp′dωqPlBl(ωq, q)
nf (1 − f ′) − (1 + n) (1 − f) f ′

ωp + ωq − ωp′
+ TΦHF,

(37)

Σ(z, p) =
e2

4π2V

∑

q,l

gl

∫

dωqdωp′Sl(ωp′, p
′)Bl(ωq, q)

(1 − f ′)n+ f ′ (1 + n)

z + ωq − ωp′
+ ΣHF, (38)

Πl(z, q) =
e2

4π2V

∑

p

∫

dωpdωp′Pl

f (1 − f ′) − f (1 − f ′)

z + ωp − ωp′
, (39)

where f ≡ f(ωp), f
′ ≡ f(ωp′) and n ≡ n(ωq), z is complex, p′ = p + q, and the matrix

elements Pl and Sl are given by
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PL(ωp, p;ωp′, p
′) ≡ tr

[

γ0A(ωp, p)γ
0A(ωp′, p

′)
]

, (40)

PT (ωp, p;ωp, p
′) ≡

1

2
(δij − q̂iq̂j) tr

[

γiA(ωp, p)γ
jA(ωp′, p

′)
]

, (41)

SL(ωp′, p
′) ≡ γ0A(ωp′, p

′)γ0, (42)

ST (ωp′, p
′) ≡

1

2
(δij − q̂iq̂j) γ

iA(ωp′, p
′)γj . (43)

The terms ΦHF and ΣHF in Eqs. (37) and (38) arise from the static term 1/q2 in the photon

propagator of Eq. (31),

TΦHF = −
e2

8π2V

∑

p,p′

∫

dωpdωp′ tr
[

γ0A(ωp, p)γ
0A(ωp′, p

′)
] ff ′

q2
, (44)

ΣHF = −
e2

2πV

∑

p′

∫

dωp′ γ
0A(ωp′, p

′)γ0 f
′

q2
. (45)

In the one-loop approximation S ′ in fact vanishes. (A similar result was observed in the

SPA approximation in liquid 3He by Riedel [22].) To see how the various terms in Eq. (36)

cancel, we first note that the same combination of matrix elements appears in each term of

S ′. Since Im[G(ωp + i0+)] = −A(ωp, p)/2 and Im[Dl(ωp + i0+)] = −Bl(ωq, q)/2,

S ′ = −
e2

8π2V

∑

p,p′

∫

dωpdωp′ tr
[

γ0A(ωp, p)γ
0A(ωp′, p

′)
] SHF

q2

+
e2

16π3V

∑

p,q,l

gl −
∫

dωpdωp′dωq Pl(ωp, p;ωp′, p
′)Bl(ωq, q)

S

ωp + ωq − ωp′
, (46)

where the S and SHF denote combinations of statistical factors and their T derivatives.

Using Eqs. (37) through (45), symmetrizing the contributions of Re ΣHF and Re Σ by the

transformation (ωp,p) ↔(ωp′,p
′), (ωq,q) ↔(−ωq,−q), and using the fact that the spectral

functions Bl are odd functions of their arguments, we have

SHF = −∂ {ff ′} /∂T + f ′∂f/∂T + f∂f ′/∂T = 0, (47)

S = −∂ {nf(1 − f ′) − (1 + n)(1 − f)f ′} /∂T + (f(1 − f ′) − f ′(1 − f)) ∂n/∂T

+ (n(1 − f ′) + (1 + n)f ′) ∂f/∂T + (nf + (1 + n)(1 − f)) ∂f ′/∂T = 0. (48)

Thus the correction term S ′ vanishes in the one-loop approximation.

This cancelation takes place only in the lowest order diagram for Φ. A general analysis

of Φ diagrams in the context of non-relativistic normal Fermi liquids [21] shows that the
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contributions to S ′ come only from those graphs that have at least two vanishing energy

denominators. These terms correspond graphically to the set of diagrams that can be cut in

three and only three different pieces when one removes a set of fermion lines. Generalizing

this analysis to the diagrams representing the functional Φ[G,D], we see that there is only

one possible cut in the diagram of Fig. 1 and it generates the vanishing denominator

ωq + ωp − ωp′. The simplest diagram that contributes to S ′ is shown in Fig. 3, where we

have drawn a set of cuts that give two vanishing energy denominators.

IV. INTERPRETATION OF THE ENTROPY FORMULA

A. Exchange and correlation entropy

When the two electron lines in Fig. 1 are replaced by bare propagators and the photon

line is replaced by a dressed propagator in the RPA approximation, i.e., with the lowest order

bubble diagram insertions, we recover the set of diagrams that contribute to the exchange

and correlation terms considered by Akhiezer and Peletminskǐı [6]. It is instructive to see

how the expression of the entropy that we have derived, Eqs. (34), (35) and (36), generates

these exchange and correlation terms correctly when expanded in the first few powers of the

coupling constant e. We start with the exchange entropy [6],

Ss ≡
1

2

∂

∂T

(

T Tr Π(2)D0

)

=
∑

q

−
∫ dωq

2π

∂

∂T

(

n Im Π(2)D0

)

, (49)

where Π(2) is the photon self–energy of Fig. 2 with two bare electron propagators. [In this

section, we do not write the sum over polarization states explicitely.] Expanding Eqs. (34)

and (35) to first order in e2, we find

S(2) =
∑

p

∫

dωp

π

∂f

∂T
tr ImG0 ReΣ[D0] +

∑

q

−
∫

dωq

2π

∂n

∂T
ImD0 Re Π(2). (50)

Then expanding Eq. (36) for S ′ = 0 to order e2, we recognize that the right side of Eq. (50)

is S(2) = −∂(TΦ(2))/∂T , which from the identity Φ(2) = (−1/2)TrΠ(2)D0 becomes S(2) =

(1/2)∂(T Tr Π(2)D0)/∂T = Ss.
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The sum of the exchange and the correlation terms that contribute to the entropy is [6]

Sc + Ss ≡ −
1

2

∂

∂T

(

T Tr log(−1 +D0Π
(2))

)

= −
∑

q

−
∫

dωq

2π

(

∂n

∂T
Im

[

log(−1 +D0Π
(2))

]

− n Im

[

D
∂Π

∂T

(2)
])

, (51)

where D is now the propagator in the RPA approximation, D−1 = D−1
0 − Π(2). Using

arguments similar to those we used to derive the identity S ′ = 0, we can decompose the last

term on the right side into the following terms:

∑

q

−
∫ dωq

2π
n Im

[

D
∂Π

∂T

(2)
]

=
∑

p

∫ dωp

π

∂f

∂T
ImG0 Re Σ[D]

−
∑

q

−
∫

dωq

2π

∂n

∂T
Im Π(2) ReD. (52)

The two terms on the right side correspond respectively to Sf expanded to linear order in

Σ[D], and to the first term in Sb. Adding the first term on the right side of Eq. (51), we have

therefore shown that our expression for S = Sf +Sb gives the correct correlation term in the

entropy when one uses bare electrons and the RPA photon propagator in Eqs. (34)-(36).

B. Decomposition in elementary excitation modes

The formulae we obtained for the entropy terms Sf , Eq. (34), and Sb, Eq. (35), allow us

to perform a spectral analysis by decomposing Sf and Sb into integrals over the elementary

excitations of the matter field and the electromagnetic field. We closely follow the derivation

that was carried out by Carneiro and Pethick for liquid 3He [21]. The key is to transform

the temperature derivatives of the statistical factors f and n into the following expressions

∂f

∂T
= −

∂σf

∂ωp

(ωp), (53)

∂n

∂T
= −

∂σn

∂ωq

(ωq), (54)

where again σf ≡ −f log f − (1 − f) log(1 − f) and σn ≡ −n log n + (1 + n) log(1 + n)

are the entropy contributions from an electron mode of energy ωp and from a photon mode
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of frequency ωq. Integrating Eqs. (34) and (35) by parts, we see that Sf and Sb obey the

spectral representations

Sf =
∑

p

∫

dωp

2π
σf(ωp)As(ωp, p), (55)

Sb =
∑

q

−
∫

∞

0

dωq

2π
σb(ωq)Bs(ωq, q), (56)

where As and Bs are defined by

As(ωp, p) = tr
∂

∂ωp

{ReGΓ + 2Im log(−γ0G)} , (57)

Bs(ωq, q) =
∑

l

gl

∂

∂ωq

{ReDl Ll + 2Im log(−Dl)} , (58)

while Γ(ωp, p) ≡ −2 Im Σ(ωp+i0
+, p) and Ll(ωq, q) ≡ −2 Im Πl(ωq+i0

+, q) are the imaginary

parts of the electron and photon self–energies. In deriving Eq. (56), we have used the fact

that the boson propagator D is an even function of its arguments to reduce the domain of

integration in Eq. (56) to positive frequencies ωq.

The sum over spinor indices (the trace tr ) in Eq. (57) can easily be decomposed into two

contributions, one from electron states with a chirality equal to their helicity (subscript +)

and one from states with opposite helicities and chiralities (subscript −), by writing

G =
γ0 − γ · p̂

2
G+ +

γ0 + γ · p̂

2
G−

Σ =
γ0 − γ · p̂

2
Σ− +

γ0 + γ · p̂

2
Σ+, (59)

which gives

tr ReGΓ = 2 (ReG+ Σ+ + ReG− Σ−) , (60)

where the factor 2 is from the spin sum. Hence, As = 2
∑

±As±.

We now turn to the entropy spectral functions As and Bs. In the one-loop approximation

of Fig. 1, the self-energies Σ and Π of Eqs. (38) and (39) depend on the fully dressed spectral

functions A and B. These functions depend in turn on the self-energies Σ and Π through

Dyson’s equations, Eq. (9). The problem of determining A and B, and the functions As
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and Bs, is therefore a self-consistent one. However, we can make general statements about

their structure on the basis of the following arguments. If the system develops well-defined

excitation modes, we expect the functions A and B to consist of narrow peaks at the locations

of the quasiparticles and collective modes, as well as wide bands of continuum states. The

continuum states that contribute to the spectral function A are composed of particle-photon

states, while those contributing to B are particle-hole and particle-antiparticle states. In

lowest order of perturbation theory, the continua extend over frequency ranges −p < ωp < p

and −q < ωq < q, respectively [9,10]. We expect that in the present self-consistent problem,

interactions only slightly modify these frequency ranges. The quasiparticle modes are at

frequencies well outside the spectrum of continuum states, |ωp| > p and ωq > q.

The structure of the entropy spectral functions As and Bs is qualitatively similar to that

of A and B. The photon spectral function Bs, as we see from its definition, Eq. (58), has a

support over the frequency range of the continuum states contributing to B. It also contains

a contribution from the oscillation modes of the electromagnetic field, i.e., the longitudinal

and transverse plasmon modes, with frequencies ωL(q) and ωT (q) and momentum q, where

ωL,T (q) > q. As we show, the spectral function Bs takes a simple form in the vicinity of

these frequencies

Bs,l(ωq, q) ≃
(ZlLl)

3/2

((ωq − ωl(q))2 + (ZlLl/2)2)2
, (61)

where Zl ≡ ∂ReD−1
l /∂ωq, ZL ≃ ωL/(2q

2) and ZT ≃ 1/(2ωT ). Evaluating the logarithmic

term in Eq. (58), we have for each polarization state l,

2Im log(−Dl) = 2πΘ(−ReD−1
l ) − 2 arctan

Ll

2ReD−1
l

, (62)

where the values of the arc tangent are in the range [−π/2, π/2]. The function Ll/(2ωq) is

the interaction rate of an excitation of frequency ωq. In the vicinity of the modes, ωq ≃

ωL,T (q), Ll/2ωq is perturbatively smaller than the modes frequencies ωL,T (q) [26], and varies

slowly around ωL,T (q). Thus, with ReDl = ReD−1
l /((ReD−1

l )2 + (Ll/2)2), and ReD−1
l ≃

(ωq − ωl(q))/Zl, we can evaluate the right side of Eq. (58) keeping Ll constant, and derive

Eq. (61).
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The spectral functions Bs,l are therefore sharply peaked around the mode frequency ωl.

Comparing to the photon spectral densities Bl, which have a Lorentzian form close to the

poles, Bl ≃ (ZlLl)/((ωq−ωl)
2+(ZlLl/2)2), we see that Bs,l have a stronger peak and smaller

wings. The electron spectral function, As = 2
∑

±As±, has a structure similar to that of Bs:

continuum states contribute at small energies |ωp|<∼p, while As± exhibit a sharp variation

close to the quasiparticle energies ω0±,

As±(ωp, p) ≃
(Z±Γ±)3/2

((ωp − ω0±)2 + (Z±Γ±/2)2)2
, (63)

where Z± is the quasiparticle mode residue. In deriving Eq. (63), we have neglected the

variation of the (one-loop order) interaction rate Γ±, which for energies ωp in the vicinity of

ω0± is ∼ O(e2T log(qD/|ωp − ω0±|)), where qD ∼ eT is the Debye momentum [16].

Both the electron and the photon excitation spectra exhibit collective modes at small

momenta. However, the low energy modes contribute to the total entropy in very different

orders in the coupling constant. The contribution from long wavelength modes of the elec-

tromagnetic field has been calculated by Akhiezer and Peletmniskǐı [6]; the result is that the

sum of plasmon oscillations and continuum modes contributes to the correlation term in the

entropy, of order e3T 3. We can easily understand this order of magnitude by noting that

the contribution to the entropy of all states of energies of order of the plasmon frequency

ωL,T (0) ∼ eT is ∼
∑

q ∝ q3
c , where the momentum cutoff is qc ∼ eT . The small energy

modes in the electron spectrum give a smaller contribution, of order e5T 3. To see this, we

expand to lowest order the difference of Sf from its expression for a non-interacting gas, and

concentrate on the phase space of small energy modes, ωp ∼ eT ,

∆Sf ≃ 2
∑

±

∑

p

∫

dωp

π

∂f

∂T
A0±(ωp, p) ReΣ

(2)
± (ωp, p). (64)

For small energies, ωp ∼ eT , ∂f/∂T is ∼ ωp/(4T
2), and A0±(ωp, p) ReΣ

(2)
± (ωp, p) is

≃ ±2πm2
f δ(ωp ∓ p)/p, where mf is the gap at zero momentum. Thus, ∆Sf ∼ m2

f/T
2∑

p ∼

e2p3
c ∼ e5T 3, for a cutoff momentum pc ∼ eT . The reason why ∆Sf is higher by two orders

in the coupling constant than the contribution to the total entropy from long wavelength
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modes of the electromagnetic field is the following. An expansion in power series of e of the

logarithm term in Bs, Eq. (58), leads to infrared divergences term by term [6]; hence, to

evaluate the correlation term in the entropy, one must include the logarithm as it stands.

However, an expansion of the logarithm term in As, Eq. (57), is divergence-free and results

in a prefactor m2
f/T

2 ∼ e2.

Although the one-loop approximation is mathematically tractable, it has important lim-

itations. To take into account correctly the low energy part of the electron spectrum, which

enters only in order e5T 3, one needs to consider Φ-diagrams of higher orders, such as the one

depicted in Fig. 3, contributing at least in order e4. Also, the diagram of Fig. 1 does not

always provide the correct width for the entropy spectral functions evaluated close to the

quasiparticle modes. For instance, the lifetime of a photon mode of energy ∼ T is limited

by Compton scattering and inverse pair annihilation. The self-consistent approximation of

Fig. 1 includes only the direct terms of these processes, as can be seen by considering an

electron self-energy insertion in one of the fermion lines of the bubble diagram shown in

Fig. 2 and then taking the imaginary part of the corresponding photon self-energy. The

cross terms arise from the imaginary part of the photon self-energy obtained by removing

one photon line in Fig. 3. Finally, in calculating the widths of low energy modes, one also

needs to include vertex corrections, as described by the “Hard Thermal Loop” perturbation

scheme, see Ref. [14].

We conclude by stressing the fact that our analysis of the entropy provides a framework

for studying effects of the infrared structure in the fermion propagator on thermodynamical

quantities. Kim et al. have proposed, in the context of the fractional quantum Hall ef-

fect [18], that one should be careful in calculating thermodynamical quantities by summing

over fermion degrees of freedom, since by doing so, one may encounter infrared divergent

terms. Kim et al. attribute this problem to the fact that the composite fermion propa-

gator is not a gauge invariant quantity and suggest that the thermodynamical quantities

should be calculated instead by summing over boson degrees of freedom only. In the present
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analysis, the dangerous term is the first component of Sf , ∼
∑

p

∫

(dωp/2π)∂f/∂T ReGΓ,

with Γ ∝ e2T log(qD/|ωp − p|), and it does not lead to a divergence, as the principal part

−
∫

dx log |x|/x vanishes. This term is actually finite and is part of the exchange entropy

term, of order e2. On the other hand, for energies ωp in the vicinity of p, both the spec-

tral densities A ≃ Γ/((ωp − p)2 + (Γ/2)2) and As ≃ Γ3/2/((ωp − p)2 + (Γ/2)2)2 vanish as

∼ 1/Γ ∼ log−1 |ωp−p|, as ωp ∼ p. This logarithmic behavior is symptomatic of a breakdown

of perturbation theory. In a future publication we will examine corrections in the free energy

similar to those considered in the calculation of the fermion lifetime in a hot plasma [16].
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FIGURE CAPTIONS

Figure 1: Φ in the one-loop approximation.

Figure 2: a) One-loop electron self-energy. b) One-loop photon self-energy.

Figure 3: Φ-diagram to explicit order e4. The dashed lines illustrate the cuts that give rise

to a non-vanishing term in S ′.
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