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The light-front gauge-invariant energy-momentum tensor
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We provide for the first time a complete parametrization for the matrix elements of the generic
asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing there-
fore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor
also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various
constraints imposed by non-locality, linear and angular momentum conservation. We also derive the
relations with two-parton generalized and transverse-momentum dependent distributions, clarifying
what can be learned from the latter. In particular, we show explicitly that two-parton transverse-
momentum dependent distributions cannot provide any model-independent information about the
parton orbital angular momentum. On the way, we recover the Burkardt sum rule and obtain similar
new sum rules for higher-twist distributions.

PACS numbers: 11.15.-q,12.38.Aw,13.88.+e,13.60.Hb,14.20.Dh

I. INTRODUCTION

Following the canonical procedure based on Noether’s theorem, one ends up with a canonical energy-momentum
tensor which is usually neither symmetric nor gauge invariant. Because of these pathologies, one often abandons
the canonical energy-momentum tensor in favor of the Belinfante-Rosenfeld improved energy-momentum tensor [1–3]
which is both symmetric and gauge invariant. The Belinfante-Rosenfeld tensor differs from the canonical tensor by
a so-called superpotential term which modifies the definition the momentum density but leaves both the total linear
and angular momenta unchanged. It has the peculiar feature that it denies the mere existence of spin density. Indeed,
from the conservation of total angular momentum ∂µJ

µνρ = 0 where Jµνρ = rνT µρ − rρT µν + Sµνρ with T µν the
conserved total energy-momentum tensor and Sµνρ the spin density tensor, one deduces that the antisymmetric part
of the energy-momentum tensor is intimately related to the quark spin density T νρ − T ρν = −∂µS

µνρ. So, in the
Belinfante-Rosenfeld approach, what is usually refered to as “spin” is simply described as a flow of momentum. There
is therefore no clear distinction between spin and orbital angular momentum (OAM) in this approach, just like there
is no clear distinction between energy flow T i0 and momentum density T 0i.
On the other hand, spin is an intrinsic property of a particle defined as one of the two Casimir invariants of the

Poincaré group (the other Casimir invariant being the mass). Contrary to OAM, one cannot change the spin of
a particle by changing the Lorentz frame. Spin and OAM are distinguishable, and so dealing with a symmetric
energy-momentum tensor is not very natural in Particle Physics. Where does this symmetry requirement come from?
It is mainly motivated by General Relativity where gravity couples to a symmetric energy-momentum tensor. It is
however important to notice that General Relativity is a classical theory while spin is fundamentally a quantum
concept. Moreover, the symmetry of the energy-momentum tensor in General Relativity follows from the postulated
absence of space-time torsion. More general theories relax the no-torsion assumption and do not require the energy-
momentum tensor to be symmetric. The gravitational effects of the antisymmetric part of the energy-momentum
tensor are however extremely small and are expected to show up only under extreme conditions, see e.g. [4–6] and ref-
erences therein. Finally, we note that the classical argument in favor of a symmetric energy-momentum tensor based
on dimensional analysis and presented e.g. in section 5.7 of [7], is valid only for the orbital form of angular momentum.

The early papers about the proton spin decomposition [8–10] start with the Belinfante-Rosenfeld tensor, but then
add appropriate superpotential terms to decompose the quark angular momentum into spin and orbital contributions.
According to textbooks [11, 12], no such decomposition is possible for the gauge field angular momentum. Though,
photon spin and OAM are routinely measured in Quantum ElectroDynamics, see e.g. [13] and references therein. In
Quantum ChromoDynamics (QCD), a quantity called ∆G which can be interpreted in the light-front gaugeA0+A3 = 0
as the gluon spin [8] has been measured in polarized deep inelastic and proton-proton scatterings, see [14] for a recent
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TABLE I: Properties of the various forms of the energy-momentum tensor in a gauge theory.

Family Energy-momentum tensor Gauge invariant Local Symmetric

Belinfante-Rosenfeld [1–3] X X X

Kinetic Ji [9] X X −

Wakamatsu [41] X − −

Canonical
Jaffe-Manohar [8] − X −

Chen et al. [15] X − −

analysis. In order to account for these experimental facts, Chen et al. claimed in 2008 that the textbooks were wrong,
and proposed a formal gauge-invariant decomposition of the photon and gluon angular momentum [15]. This triggered
a lot of criticism and an outpouring of theoretical papers, summarized in the recent reviews [16, 17]. The apparent
contradiction with the textbook claim was solved by realizing that the Chen et al. construction is intrinsically non-
local [18–20], whereas textbooks implicitly refered to local quantities only. It has actually been known for quite some
time that gauge invariance can be restored by allowing the quantities to be non-local [21, 22]. Although there are in
principle infinitely many gauge-invariant non-local quantities reducing formally to the same gauge non-invariant local
expression in the appropriate gauge, the experimental conditions ultimately determine which ones are accessible [23].
Parton distributions are typical examples of measurable non-local quantities. Gauge invariance is ensured by

a Wilson line whose path is determine by the factorization theorems [24]. Ji has shown that the kinetic OAM,
which is local and gauge invariant, can be expressed in terms of Generalized Parton Distributions (GPDs) that are
accessible in some exclusive experiments like e.g. Deeply Virtual Compton Scattering [9]. Since the local expression
for the canonical OAM is gauge non-invariant [8], it was thought for a long time that it cannot be measured
and should therefore be considered as unphysical. The situation has changed once it has been realized that the
non-local expression for the canonical OAM, which is gauge invariant, can be expressed in terms of kT -dependent
GPDs, also known as Generalized Transverse-Momentum dependent Distributions (GTMDs) [25–27]. GTMDs
are extremely interesting as they provide the maximal information about the phase-space or Wigner distribution
of quarks and gluons. Unfortunately, apart possibly in the low-x regime, it is not known so far how to access
these GTMDs experimentally [28]. The situation is however not hopeless since GTMDs can be accessed indirectly
using realistic models, see e.g. [25, 29–34]. Another possibility is to compute the GTMDs on the lattice. The
traditional approach is to compute moments of the parton distributions using a tower of gauge-invariant local
operators. Unfortunately, this approach does not allow one to compute ∆G because the latter does not correspond
to any gauge-invariant local operator. However, new strategies have recently been proposed allowing in principle
the computation of matrix element of non-local operators on the lattice, and show already encouraging results [35–40].

Many different forms have been proposed for the energy-momentum tensor in a gauge theory. Their properties
are summarized in Table I. All the forms can be sorted into two families [19, 41, 42] : kinetic (or mechanical) and
canonical. They all give the same total linear momentum, but attribute different momentum densities to the various
constituents. To the best of our knowledge, only the matrix elements of the local energy-momentum tensors have
been discussed in the literature so far. The first complete parametrization of the matrix elements of the symmetric
gauge-invariant local operator (i.e. Belinfante-Rosenfeld tensor) has been given in [9] and further discussed in [43].
The matrix elements of the asymmetric local gauge-invariant operator (i.e. Ji tensor) has first been discussed
in [10], but the correct parametrization in the off-forward case was given in [44]. There has also been a simple
attempt to parametrize in a similar way the matrix elements of the asymmetric local gauge non-invariant operator
(i.e. Jaffe-Manohar tensor), but this led to the absurd conclusion that canonical and kinetic matrix elements are
the same [45]. We will argue in the present paper that the failure of this attempt can be understood as due to
the absence of an important piece of information in the parametrization of [45]. We will also show explicitly that
two-parton Transverse-Momentum Distributions (TMDs), though sensitive to OAM, cannot provide any quantitative
model-independent information about the OAM.

The paper is organized as follows. In section II, we decompose the QCD energy-momentum and generalized angular
momentum tensors into quark and gluon contributions, and compare the various forms found in the literature. In
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section III, we provide for the first time the parametrization of the generic non-local light-front gauge-invariant energy-
momentum tensor and discuss various constraints in section IV. In section V, we derive the relations between the scalar
functions appearing in this parametrization and derive the relations with the two-parton generalized and transverse-
momentum dependent distributions, obtaining on the way new sum rules. Finally, we gather our conclusions in
section VI. Some details about the parametrization are given in Appendix A

II. THE GAUGE-INVARIANT LINEAR AND ANGULAR MOMENTUM TENSORS

In order to deal most conveniently with the various gauge-invariant decompositions proposed in the literature, we
consider the following five gauge-invariant energy-momentum tensors

T µν
1 (r) = ψ(r)γµ i

2

↔

Dνψ(r),

T µν
2 (r) = −2Tr[Gµα(r)Gν

α(r)] + gµν 1
2Tr

[

Gαβ(r)Gαβ(r)
]

,

T µν
3 (r) = −ψ(r)γµgAν

phys(r)ψ(r),

T µν
4 (r) = 1

4 ǫ
µναβ∂α

[

ψ(r)γβγ5ψ(r)
]

,

T µν
5 (r) = −2∂αTr

[

Gµα(r)Aν
phys(r)

]

,

(1)

where ǫ0123 = +1 and i
2

↔

Dµ = i
2

↔

∂µ + gAµ is the hermitian covariant derivative with
↔

∂µ =
→

∂µ −
←

∂µ. Similarly, we
consider the following seven gauge-invariant generalized angular momentum tensors

Lµνρ
a (r) = rνT µρ

a (r) − rρT µν
a (r), a = 1, · · · , 5,

Sµνρ
1 (r) = 1

2 ǫ
µνρσ ψ(r)γσγ5ψ(r),

Sµνρ
2 (r) = −2Tr

[

Gµ[ν(r)A
ρ]
phys(r)

]

,

(2)

where x[µyν] = xµyν − xνyµ. The standard expressions for the Belinfante-Rosenfeld, Ji, Wakamatsu and Chen et al.

decompositions1 are then obtained by combining these contributions according to Tables II and III, and using the
following identities based on the QCD equations of motion

ψ(r)γ[µi
↔

Dν]ψ(r) = −ǫµναβ∂α
[

ψ(r)γβγ5ψ(r)
]

,

2
[

DαG
αβ(r)

]c

c′
= −g ψc′(r)γ

βψc(r),
(3)

where c, c′ are color indices in the fundamental representation and Dµ = ∂µ − ig[Aµ, ] is the adjoint covariant

derivative. In particular, because of the first identity in Eq. (3), we can write T µν
4 (r) = − 1

2 T
[µν]
1 (r) and therefore

discard the tensor T µν
4 (r) in the following discussions. Note that the tensors T

[µν]
1 (r), T µν

5 (r), Lµνρ
4 (r)− Sµνρ

1 (r) and

Lµνρ
5 (r) + Sµνρ

2 (r) have the form of a superpotential ∂αf
[αµ]···(r) [8]. Assuming as usual that surface terms vanish,

this means that we have

∂µT
[µν]
1 (r) = 0,

∫

d3r T
[nν]
1 (r) = 0,

∂µT
µν
5 (r) = 0,

∫

d3r T nν
5 (r) = 0,

T
[νρ]
1 (r) = −∂µS

µνρ
1 (r),

∫

d3r Lnνρ
4 (r) =

∫

d3r Snνρ
1 (r),

T
[νρ]
5 (r) = −∂µS

µνρ
2 (r),

∫

d3r Lnνρ
5 (r) = −

∫

d3r Snνρ
2 (r),

(4)

1 We used the original covariant form of Ref. [42] and not the one in Ref. [16] which differs only by how one separates the pure-boost
terms into quark and gluon contributions.
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TABLE II: Expressions for the Belinfante-Rosenfeld, Ji, Wakamatsu and Chen et al. forms energy momentum tensors for quarks and
gluons.

Belinfante-Rosenfeld Ji Wakamatsu (gik) Chen et al. (gic)

T
µν
q (r) T

µν
1

(r) + T
µν
4

(r) T
µν
1

(r) T
µν
1

(r) T
µν
1

(r) + T
µν
3

(r)

T
µν
G (r) T

µν
2

(r) T
µν
2

(r) T
µν
2

(r) + T
µν
5

(r) T
µν
2

(r)− T
µν
3

(r) + T
µν
5

(r)

TABLE III: Expressions for the Belinfante-Rosenfeld, Ji, Wakamatsu and Chen et al. forms of the generalized spin and orbital angular
momentum tensors for quarks and gluons.

Belinfante-Rosenfeld Ji Wakamatsu (gik) Chen et al. (gic)

S
µνρ
q (r) 0 S

µνρ
1

(r) S
µνρ
1

(r) S
µνρ
1

(r)

L
µνρ
q (r) L

µνρ
1

(r) + L
µνρ
4

(r) L
µνρ
1

(r) L
µνρ
1

(r) L
µνρ
1

(r) + L
µνρ
3

(r)

S
µνρ
G (r) 0 0 S

µνρ
2

(r) S
µνρ
2

(r)

L
µνρ
G (r) L

µνρ
2

(r) L
µνρ
2

(r) L
µνρ
2

(r) + L
µνρ
5

(r) L
µνρ
2

(r)− L
µνρ
3

(r) + L
µνρ
5

(r)

where n is a timelike or lightlike four-vector and d3r = ǫαβγδ n
α drβ ∧ drγ ∧ drδ is the volume element. This ensures

that the quark and gluon linear and angular momenta are the same in the three kinetic decompositions
∫

d3r T nν
Bel,a(r) =

∫

d3r T nν
Ji,a(r) =

∫

d3r T nν
Wak,a(r), a = q,G,

∫

d3r Jnνρ
Bel,a(r) =

∫

d3r Jnνρ
Ji,a (r) =

∫

d3r Jnνρ
Wak,a(r), a = q,G,

(5)

where Jµνρ(r) = Sµνρ(r) + Lµνρ(r).

The Wakamatsu and Chen et al. decompositions require the introduction of a pure-gauge field

Apure
µ (r) ≡ i

g W(r)∂µW
−1(r), (6)

where W(r) (called Upure(r) in [19]) is some phase factor transforming as W(r) 7→ U(r)W(r) under gauge transfor-
mations. The “physical” gluon field is then defined as

Aphys
µ (r) ≡ Aµ(r) −Apure

µ (r). (7)

In the gauge where W(r) = 1, the Chen et al. decomposition takes the same mathematical form as the Jaffe-Manohar
decomposition, and can therefore be considered as a gauge-invariant extension of the latter [16, 19, 46, 47]. The
phase factor W(r) is non-locally related to the field strength and is in principle not unique [16, 19]. The original
Wakamatsu [41] and Chen et al. [15] decompositions correspond to a particular choice of the phase factor which makes
the physical field transverse in a given Lorentz frame. Leaving the phase factor unspecified allows us to consider at
once two whole classes of decompositions differing simply by the precise form of the non-local phase factor. In order
to stress this point, we will follow from now on the terminology of Ref. [16] and refer to the Wakamatsu and Chen et

al. decompositions as the gauge-invariant kinetic (gik) and canonical (gic) decompositions, respectively. For a given
phase factor, the difference between the gauge-invariant kinetic and canonical decompositions lies in the separation
of total linear and orbital angular momentum into quark and gluon contributions. This difference corresponds to

T µν
3 (r) = T µν

gic,q(r) − T µν
gik,q(r) = −

[

T µν
gic,G(r)− T µν

gik,G(r)
]

,

Mµνρ
3 (r) =Mµνρ

gic,q(r) −Mµνρ
gik,q(r) = −

[

Mµνρ
gic,G(r)−Mµνρ

gik,G(r)
]

,
(8)

which are called potential linear and angular momentum tensors [41, 42], respectively.
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III. PARAMETRIZATION

In practice, since we want to relate the matrix elements of the gauge-invariant energy-momentum tensor to measur-
able parton distributions, we choose the non-local phase factor W(r) to be a Wilson line Wn(r, r0) connecting a fixed
reference point r0 (usually taken at infinity) to the point of interest r. According to the factorization theorems [24],
these Wilson lines run essentially in a straight line along the light-front (LF) direction given by a lightlike four-vector
n to the intermediate point rn = r±∞n, and then in the transverse direction to r0. In some sense, these Wilson lines
can be viewed as a background gluon field generated by the hard part of the scattering. The Wilson line associated
with the first part of the path

Wn(r, rn) = P
[

e−ig
∫

±∞

0
n·A(r+λn) dλ

]

(9)

is responsible for making the LF gauge n ·A = 0 special, since this is the gauge where Wn(r, rn) = 1. The transverse
Wilson line Wn(rn, r0) is associated with the residual gauge freedom and can be set to 1 using appropriate boundary
conditions for the gauge field [20, 27]. Our gauge-invariant canonical energy-momentum tensor will then be physically
equivalent to the Jaffe-Manohar tensor considered in the LF gauge n ·A = 0 with appropriate boundary conditions.
We will consider in the following the generic LF gauge-invariant energy-momentum tensor of which the Belinfante-

Rosenfeld, Ji, gauge-invariant kinetic and canonical energy-momentum tensors represent particular cases. The matrix
elements of the generic LF gauge-invariant energy-momentum tensor depends in principle on n. This dependence
was overlooked in [45], leading to absurd conclusions. Since any rescaled lightlike four-vector αn specifies the same
LF Wilson line, the matrix elements of the generic LF gauge-invariant energy-momentum tensor actually depends,
beside the average target momentum P = (p′ + p)/2 and the momentum transfer ∆ = p′ − p, also on the following
four-vector

N =
M2 n

P · n
(10)

with M the target mass, and on the parameter η = ±1 indicating whether the LF Wilson lines are future-pointing
(η = +1) or past-pointing (η = −1). Note that, contrary to n, the lightlike four-vector N has the same dimension
and transformation properties under space-time symmetries as the momentum variables. Since P · ∆ = 0 and
M2 = P ·N = P 2 +∆2/4, the scalar functions parametrizing the matrix elements of the generic LF gauge-invariant
energy-momentum tensor are functions of the two scalar variables ξ = −(∆ · N)/2(P · N) and t = ∆2. Choosing
the standard form for the lightlike four-vector n = (1, 0, 0,−1) leads to the usual expression ξ = −∆+/2P+ with
a± = a0 ± a3. Because these scalar functions also depend on the parameter η, they are complex-valued just like the
GTMDs [28, 48].

Using the techniques from the Appendix A of Ref. [28], we find that the matrix elements of the generic LF gauge-
invariant energy-momentum tensor for a spin-1/2 target can be parametrized as

〈p′, S′|T µν
a (0)|p, S〉 = u(p′, S′)Γµν

a (P,∆, N ; η)u(p, S), (11)

where S and S′ are the initial and final target polarization four-vectors satisfying p·S = p′·S′ = 0 and S2 = S′2 = −M2,
and Γµν

a stands for

Γµν
a =MgµνAa

1 +
PµP ν

M
Aa

2 +
∆µ∆ν

M
Aa

3 +
Pµiσν∆

2M
Aa

4 +
P νiσµ∆

2M
Aa

5

+
NµNν

M
Ba

1 +
PµNν

M
Ba

2 +
P νNµ

M
Ba

3 +
Nµiσν∆

2M
Ba

4 +
Nνiσµ∆

2M
Ba

5 +
∆µiσνN

2M
Ba

6 +
∆νiσµN

2M
Ba

7

+

[

MgµνBa
8 +

PµP ν

M
Ba

9 +
∆µ∆ν

M
Ba

10 +
NµNν

M
Ba

11 +
PµNν

M
Ba

12 +
P νNµ

M
Ba

13

]

iσN∆

2M2

+
Pµ∆ν

M
Ba

14 +
P ν∆µ

M
Ba

15 +
∆µNν

M
Ba

16 +
∆νNµ

M
Ba

17 +
M

2
iσµν Ba

18 +
∆νiσµ∆

2M
Ba

19

+
PµiσνN

2M
Ba

20 +
P ν iσµN

2M
Ba

21 +
NµiσνN

2M
Ba

22 +
Nν iσµN

2M
Ba

23

+

[

Pµ∆ν

M
Ba

24 +
P ν∆µ

M
Ba

25 +
∆µNν

M
Ba

26 +
∆νNµ

M
Ba

27

]

iσN∆

2M2
.

(12)

For convenience, we used the notation iσµb ≡ iσµαbα. The factors of i have been chosen such that the real part of
the scalar functions is η-even and the imaginary part is η-odd

Xa
j (ξ, t; η) = Xe,a

j (ξ, t) + iη Xo,a
j (ξ, t) (13)
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as a consequence of naive time-reversal symmetry. Hermiticity then implies that the real part of Ba
j with j ≥ 14 is

ξ-odd and the imaginary part is ξ-even. For the other functions, the real part is ξ-even and the imaginary part is
ξ-odd.
We have found that the parametrization of the matrix elements of the generic LF gauge-invariant energy-momentum

tensor for a spin-1/2 target involves 32 complex-valued scalar functions. This number can be obtained from a simple
counting. The generic energy-momentum tensor T µν

a has 4× 4 = 16 components. The target state polarizations ±S
and ±S′ bring another factor of 2 × 2 = 4, but parity symmetry reduces the number of independent polarization
configurations by a factor 2, leading to a total of 32 independent complex-valued amplitudes 〈p′, S′|T µν

a (0)|p, S〉. These
32 independent amplitudes correspond to 32 independent Dirac structures, a particular set being given by Eq. (12).
Any other Dirac structure like e.g. γµ, iσµP or iǫµνN∆γ5, can be expressed onshell as a linear combination of these
32 structures, see Appendix A of this paper.

IV. CONSTRAINTS

The parametrization (12) is very general and does not take into account several constraints like linear and angular
momentum conservation. We discuss in this section the various constraints and the relation to former works on the
local gauge-invariant energy-momentum tensor.
For latter convenience, we introduce the Sudakov decomposition of a generic four-vector

aµ = (a · n)n̄µ + (a · n̄)nµ + aµT . (14)

together with the transverse Kronecker and Levi-Civita symbols

δµTν = δµν − nµn̄ν − n̄µnν ,

ǫµνT = ǫµναβnαn̄β ,
(15)

where n̄ is the lightlike four-vector satisfying n · n̄ = 1 and such that Pµ
T = 0.

A. Local operators

The energy-momentum tensors T µν
1 (r) and T µν

2 (r) are local. The corresponding matrix elements cannot therefore
depend on N or η. All the scalar functions must then vanish except the five real-valued functions Ae,a

j (0, t) with

a = 1, 2. These are related to the standard (local) energy-momentum form factors (FFs) [9, 16, 44] as follows

Aq(t) = Ae,1
2 (0, t), AG(t) = Ae,2

2 (0, t),

Bq(t) = Ae,1
4 (0, t) +Ae,1

5 (0, t)−Ae,1
2 (0, t), BG(t) = Ae,2

4 (0, t) +Ae,2
5 (0, t)−Ae,2

2 (0, t),

Cq(t) = Ae,1
3 (0, t), CG(t) = Ae,2

3 (0, t),

C̄q(t) = Ae,1
1 (0, t) + t

M2 A
e,1
3 (0, t), C̄G(t) = Ae,2

1 (0, t) + t
M2 A

e,2
3 (0, t),

Dq(t) = Ae,1
4 (0, t)−Ae,1

5 (0, t), 0 = Ae,2
4 (0, t)−Ae,2

5 (0, t).

(16)

The first four form factors parametrize the symmetric part of the local gauge-invariant energy-momentum tensor,
whereas the last one parametrizes its antisymmetric part. Since T µν

2 (r) is symmetric, we have Ae,2
4 (0, t) = Ae,2

5 (0, t).

B. Light-front constraints

From our choice of the phase factor (9) it follows that Aphys ·N = 0 [18, 20], leading to

T µN
3 (r) = T µN

5 (r) = 0. (17)
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Contracting our generic parametrization (12) with Nν , we find the relations

Aa
1(ξ, t) +Ba

3 (ξ, t)− 2ξBa
17(ξ, t) = 0,

Aa
2(ξ, t)− 2ξBa

14(ξ, t) = 0,

−2ξAa
3(ξ, t) +Ba

15(ξ, t) = 0,

Aa
4(ξ, t) +Ba

9 (ξ, t)− 2ξBa
24(ξ, t) = 0,

Aa
5(ξ, t)− 2ξBa

19(ξ, t) = 0,

Ba
4 (ξ, t) +Ba

8 (ξ, t) +Ba
13(ξ, t)− 2ξBa

27(ξ, t) = 0,

−2ξBa
7 (ξ, t) +Ba

18(ξ, t) +Ba
21(ξ, t) = 0,

−2ξBa
10(ξ, t) +Ba

25(ξ, t) = 0,

(18)

for a = 3, 5 which we refer to as the LF constraints.

C. Four-momentum conservation

The total energy-momentum tensor T µν(r) = T µν
1 (r) + T µν

2 (r) and the superpotential terms T
[µν]
1 (r) and T µν

5 (r)

are all conserved ∂µT
µν(r) = ∂µT

[µν]
1 (r) = ∂µT

µν
5 (r) = 0. This translates at the level of the matrix elements as

∆µ〈p
′, S′|T µν(0)|p, S〉 = 0,

∆µ〈p
′, S′|T

[µν]
1 (0)|p, S〉 = 0,

∆µ〈p
′, S′|T µν

5 (0)|p, S〉 = 0,

(19)

and implies the following constraints

2
∑

a=1

[

Ae,a
1 (0, t) + t

M2 A
e,a
3 (0, t)

]

=
∑

a=q,G

C̄a(t) = 0,

A5
1(ξ, t) +

t
M2 A

5
3(ξ, t)− 2ξB5

17(ξ, t) = 0,

−2ξB5
1(ξ, t) +

t
M2 B

5
16(ξ, t) = 0,

−2ξB5
3(ξ, t) +

t
M2 B

5
15(ξ, t) = 0,

−2ξB5
4(ξ, t)−B5

18(ξ, t) = 0,
t

M2 B
5
6(ξ, t)− 2ξB5

22(ξ, t) = 0,

−B5
7(ξ, t) +B5

8(ξ, t) +
t

M2 B
5
10(ξ, t)− 2ξB5

27(ξ, t) = 0,

−2ξB5
11(ξ, t)−B5

23(ξ, t) +
t

M2 B
5
26(ξ, t) = 0,

−2ξB5
13(ξ, t)−B5

21(ξ, t) +
t

M2 B
5
25(ξ, t) = 0,

(20)

which are compatible with Eq. (18).

D. Forward limit and momentum

In the forward limit ∆ → 0, the parametrization of the generic LF gauge-invariant energy-momentum tensor reduces
to

〈P, S|T µν
a (0)|P, S〉 = 2M2gµνAe,a

1 + 2PµP νAe,a
2 + 2NµNνBe,a

1 + 2PµNνBe,a
2 + 2P νNµBe,a

3

+ η ǫµνSP Bo,a
18 − η

[

PµǫνST Bo,a
20 + P νǫµST Bo,a

21 +NµǫνST Bo,a
22 +NνǫµST Bo,a

23

]

.
(21)

Since T µν
5 (r) is a total divergence, its matrix elements are proportional to ∆ and therefore vanish in the forward limit,

leading to

Ae,5
1 (0, 0) = Ae,5

2 (0, 0) = 0,

Be,5
1 (0, 0) = Be,5

2 (0, 0) = Be,5
3 (0, 0) = 0,

Bo,5
18 (0, 0) = Bo,5

20 (0, 0) = Bo,5
21 (0, 0) = Bo,5

22 (0, 0) = Bo,5
23 (0, 0) = 0.

(22)
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Moreover, since the tensors T µν
1 (r) and T µν

2 (r) are local, the only non-vanishing scalars Ba
j (0, 0) arise from the

potential term T µν
3 (r). This means in particular that naive T-odd effects in the forward limit are necessarily

associated with the canonical momentum and disappear when summed over all partons.

Contracting now Eq. (21) with 1
2M2 Nµ gives the average four-momentum in the LF form of dynamics

〈pνa〉 ≡
1

2M2
〈P, S|TNν

a (0)|P, S〉 = P νAe,a
2 +Nν(Ae,a

1 +Be,a
2 ) +

η

2
ǫνST (Bo,a

18 −Bo,a
20 ). (23)

In particular, using Eq. (16) we recover the standard expression for the gauge-invariant kinetic four-momentum in
terms of the energy-momentum FFs

〈pνgik,a〉 = P νAa(0) +NνC̄a(0), a = q,G. (24)

Interestingly, the last term in Eq. (23) is naive T-odd and can be interpreted as the spin-dependent contribution to
the momentum arising from initial and/or final-state interactions. Because of the structure ǫνST , this naive T-odd
contribution is transverse and requires a transverse target polarization. As we will see in section VB, this is related to
the Sivers effect [49]. The combination of scalars Ae,a

1 (0, 0)+Be,a
2 (0, 0) contributes only to the energy and is therefore

related to the interaction term in the Hamiltonian. In the forward limit, the LF constraints (18) imply that

Ae,3
2 (0, 0) = 0, (25)

unless Be,3
14 (ξ, t) behaves as 1/ξ near ξ = 0. This suggests that the scalars Ae,1

2 (0, 0) and Ae,2
2 (0, 0), and hence Aq(0)

and AG(0), can be interpreted as the interaction-independent contributions of, respectively, quarks and gluons to
the four-momentum. This is further supported by the observation that Ae,a

2 (0, 0) is the only contribution to the
longitudinal momentum 〈pna〉, which is purely kinematical in LF quantization. In other words, there is no difference
between the longitudinal component of the average kinetic and canonical momenta.
Finally, since the total four-momentum is 〈pν〉 = P ν , we obtain from Eq. (23) the momentum constraints

∑

a=1,2

Ae,1
1 (0, 0) =

∑

a=q,G

C̄a(0) = 0,

∑

a=1,2

Ae,1
2 (0, 0) =

∑

a=q,G

Aa(0) = 1,
(26)

which are consistent with Eq. (20). In particular, the vanishing of the average total transverse momentum, known
as the Burkardt sum rule [50, 51], is trivially taken into account in our parametrization because the potential term

T µν
3 (r), and hence Bo,3

18 (0, 0)−Bo,3
20 (0, 0), drops out of the sum over all partons.

E. Angular momentum

Since we have a complete parametrization of the matrix elements of the generic LF gauge-invariant energy-
momentum tensor, we can easily compute the matrix elements of the corresponding OAM tensor Lµνρ

a (r) given
by Eq. (2). Because of the explicit factors of position r, the matrix elements of the generic LF gauge-invariant OAM
tensor need to be handled with care [16, 44]. Focusing on the longitudinal component of OAM, we find

〈La
L〉 ≡

1

2M2
〈P, S| 12 ǫTαβL

Nαβ
a (0)|P, S〉 =

ǫTαβ

2M2

[

i
∂

∂∆α
〈p′, S′|TNβ

a (0)|p, S〉

]

∆=0

=
S ·N

M2
Ae,a

4 (0, 0). (27)

For a longitudinally polarized target, we have S ·N =M2 and so Ae,a
4 (0, 0) can be interpreted as the average fraction

of target longitudinal angular momentum carried by the OAM associated with the energy-momentum tensor T µν
a (r)

in the LF form of dynamics. We confirm in particular that the integrated OAM does not receive any naive T-odd
contribution [20, 27, 47, 52]. Using Eq. (16), we also recover the standard expressions for the Belinfante and Ji forms
of longitudinal OAM in terms of the energy-momentum FFs [9, 10, 16, 44]

〈Ja
Bel,L〉 = 〈La

Bel,L〉 =
1
2 [Aa(0) +Ba(0)]

S·N
M2 , a = q,G,

〈Lq
Ji,L〉 =

1
2 [Aq(0) +Bq(0) +Dq(0)]

S·N
M2 .

(28)
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Remarkably, thanks to Eq. (4) we can also express the quark and gluon spin contributions in terms of the scalar
functions parametrizing the generic LF gauge-invariant energy-momentum tensor. From the integral relations in
Eq. (4), we find that the quark and gluon longitudinal spin contributions are given by

〈Sq
L〉 ≡

1

2M2
〈P, S| 12 ǫTαβS

Nαβ
1 (0)|P, S〉 = −

1

2

[

Ae,1
4 (0, 0)−Ae,1

5 (0, 0)
] S ·N

M2
,

〈SG
L 〉 ≡

1

2M2
〈P, S| 12 ǫTαβS

Nαβ
2 (0)|P, S〉 = −

S ·N

M2
Ae,5

4 (0, 0).

(29)

where we have used Eq. (3) to express Lµνρ
4 (r) in terms of T µν

1 (r). The scalars − 1
2 [A

e,1
4 (0, 0)−Ae,1

5 (0, 0)] = − 1
2Dq(0)

and −Ae,5
4 (0, 0) can therefore be interpreted as the average fraction of target longitudinal angular momentum carried

by the spin of quarks and gluons, respectively. It is easy to check that the following relations

〈Sa
L〉+ 〈La

gik,L〉 = 〈Ja
Bel,L〉, a = q,G (30)

are satisfied and that the longitudinal component of the potential OAM is given by

〈Lq
gic,L〉 − 〈Lq

gik,L〉 = −
[

〈LG
gic,L〉 − 〈LG

gik,L〉
]

=
S ·N

M2
Ae,3

4 (0, 0). (31)

Note that the differential relations in Eq. (4), which translate at the level of matrix elements as

〈p′, S′|T
[νρ]
1 (0)|p, S〉 = −i∆µ〈p

′, S′|Sµνρ
1 (0)|p, S〉,

〈p′, S′|T
[νρ]
5 (0)|p, S〉 = −i∆µ〈p

′, S′|Sµνρ
2 (0)|p, S〉,

(32)

do not provide additional constraints. Indeed, at O(∆0), they just reduce to the antisymmetric part of the forward
limit (21). At higher orders in ∆, the identification of coefficients between the LHS and the RHS of Eq. (32) are
spoiled by the condition P ·∆ = 0 which follows from the onshell relation for the target (P ± ∆

2 )
2 =M2.

Finally, since the total angular momentum is 1/2, we obtain from Eqs. (27) and (29) the angular momentum
constraints

∑

a=1,2

[Ae,a
4 (0, 0) +Ae,a

5 (0, 0)] =
∑

a=q,G

[Aa(0) +Ba(0)] = 1. (33)

Combined with the momentum constraints (26), this leads to

∑

a=1,2

[Ae,a
4 (0, 0) +Ae,a

5 (0, 0)−Ae,a
2 (0, 0)] =

∑

a=q,G

Ba(0) = 0. (34)

known as the anomalous gravitomagnetic moment sum rule [53, 54].

V. LINK WITH MEASURABLE PARTON DISTRIBUTIONS

Now we are going to see how the scalar functions parametrizing the matrix elements of the generic LF gauge-
invariant energy-momentum tensor are related to GPDs accessed in exclusive scatterings [55] and TMDs accessed in
semi-inclusive scatterings [24]. For convenience, we shall focus in the following on the quark sector. The gluon sector
proceeds analogously.

A. Generalized Parton Distributions

The quark vector GPD correlator is defined as

F
[γµ]
S′S (P, x,∆, N) = (P · n)

∫

dλ

2π
eixλ(P ·n) 〈p′, S′|ψ(−λ

2n)γ
µWn(−

λ
2n,

λ
2n)ψ(

λ
2n)|p, S〉. (35)

Remarkably, its second Mellin moment is related to the matrix elements of the quark LF gauge-invariant energy-
momentum tensor [16, 20, 55]

∫

dxxF
[γµ]
S′S (P, x,∆, N) = 1

M2 〈p
′, S′|T µN

q (0)|p, S〉. (36)
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Note that we do need to specify whether this corresponds to the kinetic or canonical version of the LF gauge-invariant

energy-momentum tensor simply because T µN
gik,q(r) = T µN

gic,q(r) owing to Eq. (17).

Up to twist 4, the quark vector GPD correlator (35) is parametrized as [28]

F
[/n]
S′S(P, x,∆, N) = u(p′, S′)

[

/nHq +
iσn∆

2M
Eq

]

u(p, S),

F
[γµ

T
]

S′S (P, x,∆, N) = u(p′, S′)

[

Miσnα
T

P · n
Hq

2T +
/n∆α

T

2(P · n)
Eq

2T +
∆α

T

M
H̃q

2T − γαT

(

Ẽq
2T − ξEq

2T

)

]

u(p, S),

F
[/̄n]
S′S(P, x,∆, N) =

M2

(P · n)2
u(p′, S′)

[

/nHq
3 +

iσn∆

2M
Eq

3

]

u(p, S).

(37)

From Eq. (36), we then find the relations between the second Mellin moment of vector GPDs and the energy-
momentum FFs in the quark sector

∫

dxxHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t),

∫

dxxEq(x, ξ, t) = Bq(t)− 4ξ2 Cq(t),

∫

dxxHq
2T (x, ξ, t) = 0,

∫

dxxEq
2T (x, ξ, t) = 0,

∫

dxx H̃q
2T (x, ξ, t) = −2ξ Cq(t),

∫

dxx Ẽq
2T (x, ξ, t) = − 1

2 [Aq(t) +Bq(t)−Dq(t)],

∫

dxxHq
3 (x, ξ, t) =

1
2Aq(t) + C̄q(t)− 2ξ2 P 2

M2 Cq(t) +
t

8M2 [Bq(t)− 8Cq(t)−Dq(t)],

∫

dxx [Hq
3 (x, ξ, t) + Eq

3(x, ξ, t)] =
P 2

2M2 Dq(t).

(38)

The relations involving twist-3 GPDs are consistent with those found in Ref. [56] where the parametrization is related
to the one we used as follows

Hq
2T (x, ξ, t) = −2ξ Gq

4(x, ξ, t),

Eq
2T (x, ξ, t) = 2 [Gq

3(x, ξ, t)− ξGq
4(x, ξ, t)],

H̃q
2T (x, ξ, t) =

1
2G

q
1(x, ξ, t),

Hq(x, ξ, t) + Eq(x, ξ, t) + Ẽq
2T (x, ξ, t) = −Gq

2(x, ξ, t) + 2[ξGq
3(x, ξ, t)−Gq

4(x, ξ, t)].

(39)

The explicit relations involving twist-4 GPDs are new but somewhat academical as these functions are much harder
to access experimentally2.
Thanks to Eq. (32), the antisymmetric part of the LF gauge-invariant kinetic energy-momentum tensor can be

related to the local axial-vector correlator

− i
2 ǫ

µν∆α

∫

dxF
[γαγ5]
S′S (P, x,∆, N) = 〈p′, S′|T

[µν]
gik,q(0)|p, S〉. (40)

From the parametrization [55]

∫

dxF
[γµγ5]
S′S (P, x,∆, N) = u(p′, S′)

[

γµγ5G
q
A(t) +

∆µγ5
2M

Gq
P (t)

]

u(p, S), (41)

2 We note in passing a typo in Ref. [16] where a factor 1

2
is missing in front of the Dq(t) energy-momentum FF in the RHS of Eq. (432).
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where Gq
A(t) =

∫

dx H̃q(x, ξ, t) is the axial-vector FF and Gq
P (t) =

∫

dx Ẽq(x, ξ, t) is the induced pseudoscalar FF, it
is easy to show using onshell identities that [10, 16, 44]

Gq
A(t) = −Dq(t). (42)

This is naturally consistent with the observation in section IVE that the scalar − 1
2Dq(0) can be regarded as the quark

spin contribution to the total angular momentum in a longitudinally polarized target.

B. Transverse-Momentum dependent Distributions

The quark vector TMD correlator is defined as3

Φ
[γµ]
S′S (P, x, kT , N ; η) = (P · n)

∫

d(k · n̄)

∫

d4z

(2π)4
eik·z 〈p, S′|ψ(− z

2 )γ
µWn(−

z
2 ,

z
2 )ψ(

z
2 )|p, S〉. (43)

Similarly to the GPD case, the second Mellin moment of this correlator is related to the forward matrix elements of
the quark LF gauge-invariant energy-momentum tensor

∫

dxd2kT xΦ
[γµ]
S′S (P, x, kT , N ; η) = 1

M2 〈p, S
′|T µN

q (0)|p, S〉. (44)

Remarkably, treating with due care the LF Wilson line [16, 20, 27, 57–60], one can similarly show that the second

transverse moment of Φ
[γµ]
S′S is related to the forward matrix elements of the quark LF gauge-invariant canonical

energy-momentum tensor

∫

dxd2kT k
α
T Φ

[γµ]
S′S (P, x, kT , N ; η) = δαTν 〈p, S

′|T µν
gic,q(0)|p, S〉. (45)

That the relation holds for the canonical version of the LF gauge-invariant energy-momentum tensor is determined
by the particular shape (9) of the Wilson line. Working instead with a straight Wilson line connecting directly
the points ± z

2 , the relation (45) would hold for the kinetic version of the LF gauge-invariant energy-momentum
tensor [20, 61, 62]. We stress once again that our choice for the Wilson line (9) was simply motivated by the fact that
factorization theorems require Wilson lines that run essentially along the LF direction n [24].
Up to twist 4, the quark vector TMD correlator (43) is parametrized as [28, 63, 64]

Φ
[/n]
SS(P, x, kT , N ; η) = 2(P · n)

[

f q
1 − η

ǫkS
T

M2 f
⊥q
1T

]

,

Φ
[γµ

T
]

SS (P, x, kT , N ; η) = 2M

[

kµ
T

M f⊥q − η
ǫµS
T

M f q
T − η

(kµ
T kTν−

1
2 δµTνk

2

T ) ǫνS
T

M3 f⊥qT − η
(S·n) ǫµk

T

(P ·n)M f⊥qL

]

,

Φ
[/̄n]
SS(P, x, kT , N ; η) =

2M2

P · n

[

f q
3 − η

ǫkS
T

M2 f
⊥q
3T

]

,

(46)

where we have extracted explicitly the η-dependence. From Eq. (44) and the forward limit ∆ → 0 of the LF
constraints (18), we find the relations between the second Mellin moment of vector TMDs and the energy-momentum
FFs in the quark sector

∫

dxd2kT x f
q
1 (x, k

2
T ) = Aq(0),

∫

dxd2kT x f
q
T (x, k

2
T ) = 0,

∫

dxd2kT x f
q
3 (x, k

2
T ) =

1
2Aq(0) + C̄q(0).

(47)

3 For simplicity, we considered the naive definition of the TMD correlator where the soft factor is not included [24]. This allows one to
treat in a simple way the kT -integrations. A more careful treatment based on the proper definition of TMDs proceeds analogously.
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Together with Eq. (38), these relations are consistent with the fact that the GPD and TMD correlators have the same
collinear forward limit

∫

d2kT Φ
[γµ]
SS (P, x, kT , N ; η) = F

[γµ]
SS (P, x,∆ = 0, N) (48)

which implies

∫

d2kT f
q
1 (x, k

2
T ) = Hq(x, 0, 0),

∫

d2kT f
q
T (x, k

2
T ) = 0 = Hq

2T (x, 0, 0),

∫

d2kT f
q
3 (x, k

2
T ) = Hq

3 (x, 0, 0).

(49)

More interesting are the relations involving the second transverse moment of TMDs. From Eq. (45) and the forward
limit ∆ → 0 of the LF constraints (18), we find

∫

dxd2kT
k2

T

2M2 f
⊥q
1T (x, k2T ) = − 1

2

[

Bo,3
18 (0, 0)−Bo,3

20 (0, 0)
]

,

∫

dxd2kT
k2

T

2M2 f
⊥q(x, k2T ) = C̄q(0) +Ae,3

1 (0, 0),

∫

dxd2kT
k2

T

2M2 f
⊥q
L (x, k2T ) =

1
2B

o,3
18 (0, 0),

∫

dxd2kT
k2

T

2M2 f
⊥q
3T (x, k2T ) =

1
4

[

Bo,3
18 (0, 0) +Bo,3

20 (0, 0) + 2Bo,3
22 (0, 0)

]

.

(50)

Anticipating that similar results hold in the gluon sector, we sum over all partons and obtain the following sum rules

∑

a=q,G

∫

dxd2kT
k2

T

2M2 f
⊥a
1T (x, k2T ) = 0,

∑

a=q,G

∫

dxd2kT
k2

T

2M2 f
⊥a(x, k2T ) = 0,

∑

a=q,G

∫

dxd2kT
k2

T

2M2 f
⊥a
L (x, k2T ) = 0,

∑

a=q,G

∫

dxd2kT
k2

T

2M2 f
⊥a
3T (x, k2T ) = 0.

(51)

The first sum rule is known as the Burkardt sum rule [50, 51] and simply expresses the fact that the total momentum
transverse to the target momentum has to vanish. The other three sum rules are to the best of our knowledge new.
They express the fact that the total flow of transverse momentum has also to vanish. They involve higher-twist TMDs
and are therefore much harder to test experimentally. Nevertheless, it would be very interesting to test them using
phenomenological models, Lattice QCD and perturbative QCD.
As a final remark, we would like to stress that the above results show explicitly that TMDs cannot provide any

information about the scalar Ae,a
4 (0, 0), which means no quantitative model-independent information about the parton

OAM, as anticipated e.g. in [65]

VI. CONCLUSIONS

There has been a prejudice against the canonical form of the quark and gluon energy-momentum tensor, and
consequently of the corresponding linear and orbital angular momenta, due to the fact that it cannot be written
locally in a gauge-invariant way. A gauge-invariant expression can however be obtained by relaxing the locality
requirement in a way that does not harm causality. This indicates that the canonical energy-momentum tensor can
be considered as a physical object and measured experimentally. In particular, it can be accessed via particular
moments of two- and three-parton correlators which are extracted from numerous physical processes.
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In this study, we provided for the first time a complete parametrization for the matrix elements of the generic
asymmetric, non-local and gauge-invariant canonical energy-momentum tensor. We found that a generic canonical
energy-momentum tensor for a spin-1/2 target consists in 32 independent complex amplitudes. We discussed in detail
the various constraints on these amplitudes imposed by non-locality, linear and angular momentum conservation.
This generalizes therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor
also known as the Belinfante-Rosenfeld energy-momentum tensor.
We also showed that some of the amplitudes can be expressed in terms of particular moments of two-parton

generalized and transverse-momentum dependent distributions, and are therefore clearly measurable. In particular,
we proved explicitly that two-parton transverse-momentum dependent distributions cannot provide any quantitative
model-independent information about the parton orbital angular momentum. On the way, we recovered the Burkardt
sum rule, expressing basically conservation of transverse momentum, and derived three new sum rules invvolving
higher-twist distributions. We obtained these results by choosing the non-local phase factors defined by a lightlike
four-vector n, in order to make contact with parton physics and factorization theorems.
We believe the present paper will help clarify the differences between canonical and kinetic energy-momentum

tensors, and their links with parton distributions. We also expect getting more insights into these matters in a near
future coming from explicit results obtained within covariant models, Lattice QCD and perturbative QCD.
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Appendix A: Parametrization

From the discrete space-time symmetries, we find that the Dirac structure Γµν
a associated with the matrix elements

of the generic LF gauge-invariant energy-momentum tensor has to satisfy the following constraints

Γµν
a (P,∆, N ; η) = γ0Γ†µνa (P,−∆, N ; η)γ0 Hermiticity

= γ0Γµ̄ν̄
a (P̄ , ∆̄, N̄ ; η)γ0 Parity

= (−iγ5C)Γ
∗µ̄ν̄
a (P̄ , ∆̄, N̄ ;−η)(−iγ5C) Time-reversal

(A1)

where C is the charge conjugation matrix and b̄ = bµ̄ = (b0,−~b). Using the Gordon identities

u(p′, S′)γµu(p, S) = u(p′, S′)

[

Pµ

M
+
iσµ∆

2M

]

u(p, S),

0 = u(p′, S′)

[

∆µ

2M
+
iσµP

M

]

u(p, S),

(A2)

we can discard the γµ and iσµP structures from the parametrization. Similarly, we can discard the structure ǫµναP γ5
thanks to the following onshell identity

u(p′, S′)
[

2ǫµναPγ5 +∆µσνα +∆νσαµ +∆ασµν
]

u(p, S) = 0, (A3)

Contracting the ǫ identity

gαβǫµνρσ + gαµǫνρσβ + gανǫρσβµ + gαρǫσβµν + gασǫβµνρ = 0 (A4)

with Pβ∆ρNσ gives

Pαǫµν∆N + gα[µǫν]∆NP +∆αǫµνNP −Nαǫµν∆P = 0. (A5)

Contracting further with Nα, Pα and ∆α leads to

(P ·N) ǫµν∆N +N [µǫν]∆NP + (∆ ·N) ǫµνNP = 0,

P 2 ǫµν∆N + P [µǫν]∆NP − (P ·N) ǫµν∆P = 0,

∆[µǫν]∆NP +∆2 ǫµνNP − (∆ ·N) ǫµν∆P = 0.

(A6)



14

Multiplying now by u(p′, S′)γ5u(p, S) and using Eq. (A3), the first two identities allow us to discard the structures
ǫµν∆Nγ5 and ∆[µσν]∆ while the last identity is trivially satisfied. We are then left with the 32 independent structures
given in Eq. (12).
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