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Abstract

This thesis presents investigations on the interplay of coherence and
many-body effects in the quasi one-dimensional transport of Bose—
Einstein condensates (BEC) through scattering potentials. Such config-
urations can be realized with guided atom lasers that provide a coher-
ent atomic beam. An exact theoretical description of the dynamics is out
of reach due to the presence atom-atom interactions. Different levels of
approximations are nevertheless possible with their strengths and weak-
nesses. The mean-field approximation, where the dynamics of the BEC is
governed by the Gross—Pitaevskii equation, is most commonly used in the
field of ultracold atoms.

In this thesis the truncated Wigner method is used to go beyond the
standard Gross—Pitaevskii description. This method is adapted in order
to study the scattering of Bose-Einstein condensates in one-dimensional
waveguides where atom-atom interactions and external potentials are
nonvanishing only in a finite region of space. In this case, the truncated
Wigner method is combined with the smooth exterior complex scaling
method and incorporates quantum noise that originate from the vacuum
fluctuations in the waveguide. Inelastic scattering is shown to play a major
role in the resonant transport of BEC through a symmetric double poten-
tial barrier effectively forming an atomic quantum dot. Indeed, fully reso-
nant transmission is prohibited and incoherent atoms as well as collective
oscillations are detected in the transmitted beam. It is also shown that in-
elastic scattering destroys Anderson localization in the case of transport
through disordered potentials. The classical (incoherent) ohmic transmis-
sion is recovered for finite atom-atom interactions.

The validity of the truncated Wigner method is then assessed using the
semiclassical van Vleck-Gutzwiller propagator in the Fock space of the
many-body system. It is shown that the truncated Wigner method cor-
responds to the so-called diagonal approximation, and it is possible to
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identify the leading correction to the truncated Wigner results, which is
provided by the so-called coherent backscattering (CBS) contribution. Co-
herent basckattering in Fock space is a genuine quantum many-body ef-
fect that lies beyond the reach of any mean-field approach. For the case of
closed Bose-Hubbard models, the relevance of CBS is confirmed by nu-
merically comparing the (classical) truncated Wigner evolution probabil-
ities to the exact quantum probabilities in Bose-Hubbard models: While
a CBS-induced enhancement of the return probability to the initial state is
clearly seen in the exact quantum simulations of the bosonic many-body
system, this enhancement is absent in the classical calculations. The mag-
nitude and dependence of the CBS contribution on gauge fields, which
break time-reversal invariance, is numerically confirmed. For the case of
disordered open systems, it can be shown that this contribution as well as
next-to leading order contributions vanish thereby confirming the validity
of the truncated Wigner method.

Résumé

Cette these présente les investigations réalisées sur la relation entre les
effets a plusieurs corps et la coherence lors de phénomenes de transport
quasi-unidimensionels de condensats de Bose—Einstein (CBE) a travers
divers potentiels de diffusion. De telles configurations peuvent étre réal-
isées avec des lasers a atomes qui créent des faisceaux coherents de
matiére. Une description exacte de la dynamique a plusieurs corps est
hors de portée a cause des interactions entre atomes. Malgré tout, dif-
férents niveaux d’approximation sont possibles, chacun possédant leurs
forces et faiblesses. L'approximation en champ moyen, ot la dynamique
du CBE est régie par 'équation de Gross—Pitaevskii, est la plus utilisée
dans le domaine des atomes ultrafroids.

Dans cette these, la méthode de Wigner tronquée, qui est une amélioration
de la description fournie par 1'équation de Gross—Pitaevskii, est utilisée.
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Cette méthode est adaptée pour 1'étude de la diffusion de condensats de
Bose-Einstein dans des guides d’ondes unidimensionels ou les interac-
tions entre atomes et les potentiels extérieurs ont un support fini. Dans ce
cas, la méthode de Wigner tronquée est combinée avec la méthode de di-
latation complexe extérieure lissée (smooth exterior complex scaling) et avec
du bruit quantique, provenant des fluctuations quantiques dans le guide
d’onde. Les effets, non négligeables, des collisions inélastiques sont mis en
évidence lors du transport résonnant d"un CBE a travers une double bar-
riere de potentiel symétrique formant un point quantique. En effet, une
transmission résonnante parfaite est prohibée et des atomes incoherents
ainsi que des oscillations collectives sont détectées dans le faisceau atom-
ique transmis. Il est aussi démontré que la diffusion inélastique est re-
sponsable de la destruction de la localisation d’Anderson dans le cas du
transport a travers des potentiels désordonnés. Une transmission ohmique
(incohérente) est retrouvée pour des interactions finies entre atomes.

La validité de la méthode de Wigner tronquée est évaluée en utilisant
le propagateur semiclassique de van Vleck-Gutzwiller dans l’espace de
Fock du sytéeme a plusieurs corps. Il est démontré que la méthode de
Wigner tronquée correspond a I'approximation diagonale et qu’il est pos-
sible d’identifier la correction dominante appellée rétrodiffusion cohérente.
La rétrodiffusion cohérente dans 1’espace de Fock est un effet a plusieurs
corps purement quantique et ne peut étre reproduite par aucune théorie
en champ moyen. L'analyse numérique des probabilités de transitions
quantiques pour des systemes de Bose-Hubbard confirme la présence de
rétrodiffusion cohérente alors qu’elle est absente pour des simulations
utilisant la méthode (classique) de Wigner tronquée. L'amplitude ainsi
que la dépendance vis-a-vis d"'un champ de jauge de la contribution de
rétrodiffusion cohérente est confirmée numériquement. Dans le cas de
systémes ouverts désordonnés, il a été montré que la rétrodiffusion co-
hérente ainsi que les corrections d’ordre supérieur sont inexistantes, con-
firmant la validité de la méthode de Wigner tronquée.
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Introduction

At the end of the 19th century, nearly all experimentally observed phe-
nomena were explained by two fundamental classical theories of physics.
The evolution of a collection of particles could be predicted using New-
ton’s law of motion if the initial positions and momentums were known.
The electromagnetic nature of the world surrounding us could be de-
scribed by waves, or electromagnetic fields, evolving through Maxwell’s
equations. Fortunately, some troubling experimental observations, and
now very well understood effects, such as, e.g. the photoelectric effect and
black-body radiation, tainted this picture.

The development of quantum mechanics in the early 20th century
solved these problems by postulating that particles can be seen as waves
and can be described by their associated wavefunction. The evolution
of the wavefunction ¢(r, t) associated with one particular particle is pro-
vided by the Schrodinger equation and the wavefunction corresponds to
the probability amplitude to find the particle at a particular point r in
space at time f. One can extend this wavefunction picture to a many-body
system composed of N particles by introducing a generalized many-body
wavefunction i(ry, 1y, . . ., ry ) where we dropped the time dependence for
compactness. This many-body wavefunction corresponds to the proba-
bility amplitude to find particle 1 at position ry, particle 2 at position ry,
etc... In the case of identical particles, it is not possible to distinguish one
particle from another. As a consequence, any observable of the system
should remain unchanged under particle (label) exchange. Applying two
exchanges to the same pair (i, j) of particles must leave the wavefunction
unchanged. We can therefore write that the wavefunction must obey

z,b(rl,...,ri,...,r]'...,rN) = :tl,b(l‘l,...,1‘]',...,1‘1',...,1‘1\]) (1)

under particles exchange between particle i and j. This fundamental sep-
aration of particles into those for which the many-body wavefunction is
invariant under particle exchange and those for which the wavefunction



Introduction

changes sign, depends upon a single parameter: their intrinsic spin. This
is the result of the spin-statistics theorem [1]. It has to be noted that in
the context of quantum field theory, the symmetry property expressed by
Eq. (1) follows automatically from the (bosonic or fermionic) quantization
of (e.g. Klein—-Gordon or Dirac) the field.

Particles with half-integer spin are known as fermions. They are anti-
symmetric under particles exchange and therefore correspond to the mi-
nus sign in Eq. (1). The spin-statistic theorem also states that these parti-
cles have to obey the Fermi-Dirac statistics

fep(e) = :

which gives, at thermal equilibrium, the probability that particles are oc-
cupying a single-particle state of energy ¢ for a system at temperature T
with a chemical potential . On the other hand, particles with integer
spin are known as bosons. They are symmetric under particle exchange
and therefore correspond to the plus sign in Eq. (1). These particles obey
the Bose—Einstein distribution

1
fee(e) = kT 1 ®)

)

and will be of interest in this thesis. Both the Fermi-Dirac and Bose—
Einstein distributions are well approximated by the Maxwell-Boltzmann
distribution at high temperatures, so that no differences between the two
type of particles can be spotted. For the case of low temperatures, subtle
differences appear.

In 1925, building on the work of Bose concerning the distributional be-
haviour of photons [2], Einstein formulated the Bose-Einstein distribution
[3, 4]. He noted that for massive particles, as the system’s chemical poten-
tial u approaches the single-particle ground state energy ¢p from below,
the population of that state would increase to a macroscopic value. This
phenomenon is known as Bose-Einstein condensation, while the particles
occupying that state are collectively referred to as a Bose—Einstein conden-
sate (BEC).

On the way towards the experimental realization of a Bose-Einstein con-
densate many experimental difficulties had to be overcome. One impor-
tant step was the demonstration of laser cooling [5], where the temper-
ature of neutral atoms is lowered by employing the Doppler shifts with



laser beams near an atomic resonance. In addition, techniques like evapo-
rative cooling and magneto-optical traps [6] were developed. Nowadays,
temperatures in the nano-Kelvin regime can be obtained. It took 70 years
to achieve, in 1995, the first Bose-Einstein condensate experimentally in
dilute atomic vapor of 8Rb [7], ®Na [8] and "Li [9] providing a macro-
scopic quantum entity of the size of ~um. A simplified representation
of the process of Bose-Einstein condensation is provided in Fig. 1(a). In
Fig. 1(b) is represented the velocity distribution of an atomic Bose gas go-
ing through the Bose-Einstein condensation. Since then, a lot of other
bosonic species where cooled down to Bose-Einstein condensation such
as 'H [10], *He* [11, 12], ®Li [13], “Li [9, 13], #Na [8], ¥K [14], ¥IK [15],
52Cr [16], ¥Rb [17], Rb [7], 8Sr [18], 133Cs [19, 20], 1¢°Dy [21], 12Dy [21],
164Dy [22], 170Yb [23], 18Er [24], 17#YD [25]. It has to be noted that some
condensates were reached using sympathetic cooling [26], thereby form-
ing a mixture with different isotopes or even different species. It has also
to be mentioned that an enormous effort has been undertaken in Liege to
cool iron atoms [27-29] and a cold atomic cloud of iron has been recently
obtained [30].

For the last 20 years, Bose-Einstein condensates and ultracold fermionic
(degenerate) gases have been widely studied since they offer a very high
accuracy and high flexibility in the control of parameters in the experi-
ments. They allow to study new phenomena, but also to address open
questions, which originated in different contexts. For example, it is possi-
ble to mimic condensed matter physics and study the BCS-BEC crossover
with ultracold spin-1/2 fermions. For attractive atom-atom interaction,
the atoms can undergo a BCS transition to a superfluid state of loosely
bound Cooper pairs. On the other hand, for weak repulsive atom-atom
interactions, they can form bosonic molecules leading to a Bose-Einstein
condensate. The beauty is revealed by using Feshbash resonance, allowing
to tune the atomic interaction between a repulsion and attraction [see, e.g.,
Refs. [33, 34] for experimental realizations]. Optical lattices, which are cre-
ated by a standing wave formed by counter propagating laser beams in all
three spatial directions, provide a strong analogy to tight-binding model
in solid-state physics. Such an optical lattice has no defects or disloca-
tions, which are encountered in the solid state context. This setup makes
it for example possible to study the transition between the Mott insula-
tor state and the superfluid state [35, 36]. Ultracold atoms also provide
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Figure 1. (a) Simplified vision of the behaviour of a Bose gas at dif-
ferent temperatures. Due to de Broglie law Aqg = h/p, lowering
the temperature increases the wavelength of the associated matter
wave. Eventually, all the waves will overlap to form a “giant matter
wave” at T = 0 K. [reproduced from [31]] (b) Images of the veloc-
ity distributions of the trapped atoms, on the left frame just before
the appearance of the Bose-Einstein condensate; the center frame,
just after the appearance of the condensate; the right frame, after
further evaporation leaves a sample of nearly pure condensate, re-
produced from [32].

a formidable playground for quantum chemistry. Again the high level of
control and accuracy permits to achieve a chemical reaction from a desired
initial to a desired final quantum state. For example, photoassociation was
used in the Mott insulator phase of an optical lattice to form molecules [37],
formation of three-body Efimov trimer states was observed [38] and also
creation of deeply bound molecules has been reported [39].

Studying transport phenomena using Bose—Einstein condensates is also
an active research field. This is stimulated by its analogy with electronic
mesocopic transport at very low temperature where, for instance, quanti-
zation of conductance according to the Landauer—Biittiker theory [40, 41]
occurs. These conductance steps have recently been experimentally ob-



served [42] with the fermionic °Li atoms. Moreover, mesoscopic transport
processes of electrons lie at the heart of the working principle of logical
electronic devices such as transistors, and their understanding is therefore
crucially relevant for the development of future microprocessors. While
these experiments are in the weakly interacting regime, the next step in
this context would consist in the exploration of interaction-related phe-
nomena that are not present in such weakly interacting transport pro-
cesses. The high degree of flexibility and control that is available in the
context of ultracold atoms allows one to study such many-body phenom-
ena with a fully tunable atom-atom interactions strength and without un-
wanted side effects, which in the solid-state context would be induced by
phonons or magnetic impurities, for example.

From a theoretical point of view, the accurate description of interac-
tion phenomena in the transport context represents a formidable task as it
most often amounts to accounting for coherence and many-body correla-
tion within a finite scattering geometry that is connected to noninteracting
but potentially macroscopic source and drain reservoirs, see e.g. Ref. [43]
for the most recent achievement in this direction. Up to now, studies on
transport were undertaken for the quasi-stationary propagation process
of a weakly interacting Bose-Einstein condensate across one- [44-47] or
two-dimensional [48, 49] scattering configurations in the framework of a
guided atom laser, which create a continuous beam of Bose-Einstein con-
densed atoms. These studies were, to a large extent, based on the mean-
field approximation in terms of the nonlinear Gross-Pitaevskii equation
and therefore revealed typical nonlinear transmission features that are
also known from nonlinear optics. Recently, transport in the context of
atom lasers was also described in the framework of the Hartree—Fock-
Bogoliubov approximation [50].

Another path is taken in this thesis in order to go beyond the mean-field
description of transport and thereby allowing for stronger atom-atom in-
teraction. We use the truncated Wigner method which, in the case of trans-
portin an atom laser configuration, amounts to a Monte-Carlo sampling of
the initial quantum state by classical fields and a propagation according
to a slightly modified Gross—Pitaevskii equation. The truncated Wigner
method, which was, by now, only used in closed systems, is generalized
in this thesis to open systems. This was done with the help of Prof. A.
Saenz at the Humboldt University in Berlin. It allowed to uncover the ef-
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fect of interaction on the coherence of the incoming atomic beam formed
by a Bose-Einstein condensate. In particular, for the case of an atomic
quantum dot, collective oscillations and inelastic scattering were detected
which hinders full coherent transport.

In the same way as the mean-field approximation, the truncated Wigner
method is also an approximation. The question of validity therefore
rapidly arose during this work. In particular, we want to consistently iden-
tify the leading corrections to the truncated Wigner method. Together
with the research team of Prof. K. Richter at the University of Regensburg
in Germany, in particular with Thomas Engl and Juan-Diego Urbina, we
were able to study a generic contribution beyond the truncated Wigner
method in closed systems. We used a path integral formulation in the
semiclassical limit to derive the van Vleck-Gutzwiller propagator in Fock
space. This contribution arises due to coherent superposition (and inter-
ferences) in the underlying Fock space and bears the name of coherent
backscattering. Our findings provide a better understanding of many-
body thermalization and also a better understanding of subtle differences
between quantum and classical ergodicity.

Fragmentation of Bose-Einstein condensates were observed during
transport through quasi one-dimensional waveguide potentials engi-
neered by atom chips [51]. This observation was explained by inho-
mogeneities in the atom chip resulting in a disorder potential [52-54]
and stimulated the investigation of Anderson localization [55] with Bose—
Einstein condensates [56-59]. In 2008, Anderson localization with Bose—
Einstein condensates was demonstrated [60, 61]. This observation opened
the possibility to study the effect of interaction on Anderson localization,
which is, by now, a very active field. In particular, the suppression of ex-
pansion of an initially trapped interacting Bose gas was studied [62], as
well as localization of Bogoliubov quasiparticles [63, 64] and also the real-
ization of Bose glass phases [65, 66]. Investigation on the effects of interac-
tions on Anderson localization in the context of transport have also been
undertaken in the mean-field limit [44, 47] as well as with the Hartree—
Fock-Bogoliubov approximation [50]. We describe the transport process
across disorder potentials with the van Vleck-Gutzwiller propagator for
which the truncated Wigner method is the leading order contribution.
There, we find that observables that are averaged over disorder are identi-
cal to the ones obtained by the Gross—Piteavskii equation, even if inelastic



scattering is not taken into account in the latter equation. We confirmed
that the breakdown of Anderson localization is due to incoherent atoms
and that even a very weak interaction can lead to drastic departure from
the noninteracting case. Finally we showed that the next leading correc-
tions, such as, e.g., coherent backscattering, are vanishing. This essentially
means that the truncated Wigner method is accurate for disorder-averaged
single-particle observables.

Thesis overview — Among all the exciting topics in the framework of
transport Bose-Einstein condensates systems, this thesis focuses on study-
ing the effect of many-body interactions in beams of coherent matter
waves.

In Chapter 1, we recall the basics of Bose-Einstein condensation in a trap
and also recall the basics of atom-atom interactions using the Lippman-
Schwinger equation. We then move to the physics behind the creation
of optical lattices for Bose-Einstein condensates. Finally we set the gen-
eral Hamiltonian describing the ultracold bosonic gas and introduce the
well-known mean-field limit described by the nonlinear Gross—-Pitaevskii
equation.

In Chapter 2, we introduce the theory behind the guided atom laser
and briefly describe their experimental realizations. We then directly in-
troduce a novel scattering approach which amounts to transparent bound-
ary conditions rendering the inherently infinite one-dimensional scatter-
ing system to a finite but open one-dimensional system. Since the use of
numerical computations is required for such systems, we then introduce
the smooth exterior complex scaling which is a numerical method that
is more efficient than the scattering approach introduced before. Finally,
we study transmission across a symmetric double barrier modelling an
atomic quantum dot and show the main nonlinear features that we recog-
nize in the transmission spectrum.

In Chapter 3, we formulate quantum mechanics in phase space, which
is well known from quantum optics, and concentrate to a particular phase-
space distribution, namely the Wigner distribution. We then particularize
this method to guided atom laser and show the important role of quantum
fluctuations in the process. This allows us to demonstrate the essential role
of inelastic scattering and collective oscillations in the transport of Bose—
Einstein condensate through an atomic quantum dot.



Introduction

In Chapter 4, we study many-body interferences in Fock space. To do
so, we first introduce the concepts of path integral formalism and propa-
gators. In particular, we show in details the main approximations made
to arrive to a semiclassical description, given by the van Vleck-Gutzwiller
propagator to uncover the presence of a generic contribution going beyond
the (classical) diagonal approximation, namely coherent backscattering, in
a (closed) disordered Bose-Hubbard system.

In Chapter 5, we study transport of Bose-Einstein condensate through
disorder potentials and in particular the Anderson localization phe-
nomenon, which critically relies on interferences and therefore coherence.
We identify, thanks to the truncated Wigner method, that atomic inter-
actions can break Anderson localization due to the generation of inco-
herent atoms. In a last step, we use the van Vleck-Gutzwiller propaga-
tor to show that the diagonal approximation corresponds to the truncated
Wigner method and that no other corrections to the diagonal approxima-
tion survive the disorder average for one-body observables.
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