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Intramolecular vibrational relaxation seen as expansion in phase space.
[ll. The long-time limit
V. B. Pavlov-Verevkin® and J. C. Lorquet?
Departement de Chimie, UniverSitie Ligge, Sart-Tilman (B6), B-4000 lge 1, Belgium
(Received 14 April 1997; accepted 30 July 1997
Asymptotic formulas that describe the behavior of the functitfif) measuring the phase space
volume sampled by a nonstationary wave packet during its time evolution are derived. It is shown

that, in the long-time limitN(T) ~ T~ when the dynamics is regular, wher@&eT)~T 2 In T for
the chaotic case. €1997 American Institute of Physid$0021-96007)03641-§

I. INTRODUCTION

-1
o o Nw=(2 pi) : (7)
Intramolecular vibrational relaxation is a process of fun- k
damental importance in the theory of unimolecular reactions.  The numbemN., can be understood as an effective num-
The concept of autocorrelation function, derived from theper of quantum states that significantly contribute to the
Fourier time transform of an Opt|Cal Spectl’um, has been annamics’f or as a dynamica”y We|ghted number of pha_se

great help in its study™® space cells occupied by the dynamical statistical ensémble
e when it has reached equilibrium. “Dynamically weighted”
C(t):f | (E)exp(—iEt/#)dE, (1) means that different phase space cells contribute, tavith

weights proportional to the probabilities of finding the sys-
tem in these cells.

Although the entropic measure of phase space has a
firmer theoretical foundatiofi*>?°Egs. (5)—(7) have the ad-

|(E):§n: Pné(E—En), 2 vantage of mathematical simplicity.

Many author$>~*°have previously studied the difference

wherep,, are the usual Franck—Condon factors. The squarbetween chaotic and regular quantum systems in the short-
modulus ofC(t) is sometimes called the survival probabil- and long-time limits using the survival probability function

wherel (E) is the spectral function, given in principle by

ity, averaged over both Hamiltonian ensembles and initial wave
function conditions. Here, we use for the same purpose
C(t)|2= cod wit), 3 Heller's function N(T). Our aim is to determine the
Icl ;n PoPm CoS@nd) ® asymptotic law according to whidd(T) approaches its final

valueN,, and to see whether this law depends on the under-
lying classical dynamics reflected in the statistical properties
. . . . -23
o= (E,—E/. (4) of the level spacing distributiorfs:

with

These fpnctlons have been used b)_/ Hélker evalugte Il REGULAR AND IRREGULAR DYNAMICS
the volume in phase space sampled during the evolution of a

nonstationary wave packet up to tirfie Denoting byN(T) The problem with Egs(5)—(7) is that their evaluation
the number of cells sampled as a function of time, the fol-requires a fully resolved spectrum. However, one often
lowing expression can be derivéd: wishes to extract information from a spectrum recorded at a
finite resolution; large energy gaps can be measured while
N(T) t= 24 29(T), (5) small intervals remain unresolvédrhis is particularly the
( ; Pict 23( case when the spectrum exhibits a clump structdré*we

assume that gross features are separated from one another

and that there exists evidence that a fine structure is buried in

them. Therefore, we introduce a double index notation for
S(T)=2, Pn > PSiNonT/2/(0nT/2)]2.  (6)  the quantum states, i.e., each Franck—Condon factor is de-

n=L kentl notedpy,. The first index N) denotes the clump while the

The functionN(T) is seen to increase from an initial Second () labels the different states concealed ifFitg. 1).

value of 1 atT=0 to a final valueN,. given by*® Under these circumstances, it is convenient to split the evalu-

ation of the time-dependent terms into two contributions.

N ] . Equation(6) is rewritten as follows:
Permanent address: Chemistry Department, Moscow State University,
Moscow 119899, Russia. S(T)=Si(T)+S,(T), (8)
YAuthor to whom correspondence should be addressed. Electronic mail:

U211101@avml.ulg.ac.be; Fax: 32-4-3662933. with

where
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I{E)

case, the distribution functiob (@) is a constant:?*~>*The
analytical formula forD(w) in the case of chaotic dynam-
ics is not known, but its qualitative behavior is quite
simple? It is equal to zero fo=0. For small values o&

E it is well reproduced by a Wigner distribution for nearest-
neighbor spacings. It tends to a constant value for larger

FIG. 1. Two-index notationin) for the quantum states. Indéx denotes ~ values ofw. Then, the expression f@&,(T) writes
the clump, whereas the second ome=(1,2,3,...) labels its fine structure.

to wih
SZ(T)ZLC dE p(E) D(E) fo do(d@/dw)

SUT)= 2 > PrnPmm{SIM (Enn— Enm) T/25]/ XDg[B(w,E)Ip(E+hw)[siNwT/2)/(wT/2)]?

N>M n,m

with
[(Enn—Enm) T/24]}2, 9 =/, d(@)[siN(wT/2)/(«T/2)]’do, (15
and . - .
where w is some characteristic spacing smaller than the
_ . minimal width of a clump.
sz(T)_% n§>:k PPN SINL(Enn = Enid T2 1/ The functiong(w) is defined by
+ o
[(Enn—En /2132 (10 g(w)=J dE I(E) (E+#w)D<[@(w,E)].  (16)

The term S;(T) denotes the contribution due to large
spacings and determines the early stages of the relaxation. In the regular case, it reduces to the spectral autocorre-
This term is of no interest to us because the asymptotic bdation function introduced by Levine and Kinséy
havior of N(T) is determined by small frequencies, i.e., by e
the termS,(T). g(w)sz dE I(E) I(E+hw), (17)

In order to evaluate the second contributiy{T), it is *w
physically more reasonable to use a continuous model for thghereK (which has the dimension of an actjais the con-
spectrum, as in a previous stuiiscrete summations in  stant value oD~ ().
Eqg. (10) are replaced by an integration over the continuous
variablesE andw. To do this, one has to know the density of || PROPERTIES OF THE FUNCTION g(w)
states[denotedD (E)] and that of the Franck—Condon fac-
tors [denotedp(E)]. The spectral profile is then given by
I(E)=p(E)D(E). Also needed is the density of spacings ! i
D,(w,E). The important point is that the latter function ex- w=0. However, 'Fh's cannot be done_rlght away._ln E2),
hibits a qualitatively different behavior for regular and ir- the spectral proflld(I_E) has been defined as a_Dlrgc comb.
regular spectra. To obtain it, one first has to eliminate the1€Nce: EQ(17) contains the product of two distributions and
so-called secular behavior of the density of states by rescafl0eS not admit a series expansion. To avoid this difficulty,

ing the energies in order to get a constant averagéh_e 6 functions have tq be replaced by functiong wit.h a finite
width (e.g., by GaussiansThis amounts to multiplying the

_ correlation functionC(t) by a damping function. These new
E=G(E), (11)  functions[which are still related via Eq.1)] can be substi-

whereG(E) is the dimensionless integrated density of statesEUted into Eq.(17). This gives

Since we are interested in small values of the variable
it is reasonable to expang(w) in a Taylor series around

density!®?-2Rescaled energies are usually defined as

E
= + o0
G(E) fo D(E)dE (12 g(w)=(K/wﬁ)f |C(1)|? coq wt)dt. (18
0
equal to the total number of states between zeroEands-
ing these rescaled energies, one now can define rescaled fre-
guenciess as

This equation is valid for the regular case only.
The following mathematical properties g{w) can be
derived from Eq.(18):

6=[G(E+hw)—-G(E)]/h. 13 (@ g(w) is a real, even function, whose Taylor expansion
From Egs.(12) and(13), it immediately follows that aroundw=0 consists of even powers only which alter-
d@/dw=D(E+hw). (14) nate in sign. The absence of odd terms can also be

checked directly by integrating by parts under the un-

The statistical properties of these rescaled frequencies derstanding that(E) and all of its derivatives vanish at
are energy independent and are known to be related to the the integration limits. For example, for the first deriva-
character of the underlying classical dynamics. In the regular  tive
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+o0 The oscillatory terms in Eq(26) have probably little
91Ed9/dw|w:o=|<(d/dw)ﬁw I(E) (E+%w) dE|,-0 physical significance. They are due to the behavior of the
function (sinx/x)?> which itself results from interference
. terms among the phase factors exjit/4) of the eigen-
:Kﬁf I(E) I(E) dE=0. (19) funct!ong used in the expansion of the time-dependent wave
—o function?’ Thus, they derive from a model spectrum recorded
Then at infinite resolution, i.e., from a mathematical abstraction. If
’ the function si x/x? is averaged over, i.e., if it is replaced by
a Lorentzian decrease §1x?) "1, then the oscillatory terms
vanish from Eq.(26),

Sy(T)=mgoT 1+49,T 2 In(WT/2h)

S,(T)= >, (1! )(2ﬂ)“+1ganT/2hx“(sin x/x)2dx,
n=0 0 (20)
with n restricted to even integers and
g,=d"g/de", o (21) + gz [AL T +B,T % In T], 27

(b) g(w) has a global maximum ab=0. The proof is
analogous with that given by Wilkie and Brum&m a
similar study. SincgC(t)|? is integrable and positive
for all t, one has from Eq(18),

with coefficientsA, andB, depending orw andg,, .

Although Eqgs.(26) and (27) are valid both for regular
and irregular dynamics, a substantial difference is expected
between the two cases. When the dynamics is regular, the

te 2 . odd coefficient §,,93,...) are allequal to zero, whereas the
(K/Wﬁ)JO [COIF1-cogwt)]dt=g(0)~g(w)=0. ooy onesdy,9,,...) alternate in sign. By contragy, van-
(22) ishes in the chaotic case because the repulsion between en-
gray levels precludes zero spacings.

In summary, the following simple formulae can be pro-
posed to describe the spreading in phase space in the long-
time limit. For the regular dynamics, one has

(c) From the Riemann—Lebesgue lemma, if the peaks ar
given a finite width[i.e., if |C(t)|? is multiplied by a
damping functiof then

li =0. 23
lim g(w) @3 N(T) 1=[N.]"+27goT 2+ CT2+0(T73). (29
(d) The area under the curvg(w) is finite!’ From Eq. When the dynamics is chaotic, the asymptotic behavior
(18), of N(T) has the form
o ) N(T) " '=[N.,] 1+4g;T 2InT+C'T 2+ 0O(T 3,
JO 9(w)dw=(K/%)|C(0)|*=(K/h). (24) (29)

whereC andC’ are some constants dependingvenon the
spectral profile, and on the function expressing the increase
of the density of states as a function of energy.

In a chaotic situation, the properties of Ed46) are less
clear and odd powers ab can appear in the series expan-
sion. However, since the functiob;(w) vanishes forw
=0, the first terrg(0) =g, vanishes from the Taylor expan-
sion.

IV. THE LONG-TIME LIMIT If one compares regular with chaotic dynamics, it results
from Egs.(28) and(29) thatN(T) approaches its final value
faster in the latter case. This result, which agrees with physi-
cal intuition, is related to the phenomenon of level repulsion
Sy(T)=2goT HSi(wT/A)+[cogwT/%)—1]/(WT/%)] in chaotic spectrd!~2®> What is much less obvious is the
_ : presence of a logarithmic term in the asymptotic expansion
+2g:T [In(WT/A) +y—Ci(wT/h)] (29). The agreement between Edq&6) and (27) gives us

V. DISCUSSION

The integrals appearing in E¢20) can be calculated
exactly, giving

+ 0, T 3[(WT/h) —sin(wT/A)]+ (1/6) confidence that this term is not an artefact resulting from a
4 ) ) constrained model: the crude averaging procedure used to

XgsT “[(WT/h)"=2(WT/h)sin(wT/h) derive Eq.(27) profoundly changes the higher terms of the

+2-2 cogwT/h)]+-+- . (25) asymptotic expansiof26) but hardly modifies the logarith-

. . ] ] ) mic term. The latter can be expected to reflect a fundamental
This function admits an asymptotic expansion, property of the classical chaotic dynamics in the long-time
Sy(T)=mgoT 1+29,T 2 IN(WT/A) +A,T 2 limit.

We now wish to comment on the role played by the
+> [Ap T~ 2+ B, T2 cogwT/#) distribution of intensities. What hqs _been studied here is an
k=2 extrapolation formula based on existing standard models and

Coktl predicting ana priori generic behavior. Surely, cases can be
+CoaT sin(wT/a)]+ ’ (26) expected where the pattern of the Franck—Condon factors
with coefficientsA,, By, andC, depending orw andg,,. will correlate with that of the energy spacings to generate
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