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Intramolecular vibrational relaxation seen as expansion in phase space.
III. The long-time limit

V. B. Pavlov-Verevkina) and J. C. Lorquetb)

Département de Chimie, Universite´ de Liège, Sart-Tilman (B6), B-4000 Lie`ge 1, Belgium

~Received 14 April 1997; accepted 30 July 1997!

Asymptotic formulas that describe the behavior of the functionN(T) measuring the phase space
volume sampled by a nonstationary wave packet during its time evolution are derived. It is shown
that, in the long-time limit,N(T);T21 when the dynamics is regular, whereasN(T);T22 ln T for
the chaotic case. ©1997 American Institute of Physics.@S0021-9606~97!03641-6#

I. INTRODUCTION

Intramolecular vibrational relaxation is a process of fun-
damental importance in the theory of unimolecular reactions.
The concept of autocorrelation function, derived from the
Fourier time transform of an optical spectrum, has been of
great help in its study1–19

C~ t !5E
2`

1`

I ~E!exp~2 iEt/\!dE, ~1!

whereI (E) is the spectral function, given in principle by

I ~E!5(
n

pnd~E2En!, ~2!

wherepn are the usual Franck–Condon factors. The square
modulus ofC(t) is sometimes called the survival probabil-
ity,

uC~ t !u25(
n,m

pnpm cos~vnkt !, ~3!

with

vnk5~En2Ek!/\. ~4!

These functions have been used by Heller3 to evaluate
the volume in phase space sampled during the evolution of a
nonstationary wave packet up to timeT. Denoting byN(T)
the number of cells sampled as a function of time, the fol-
lowing expression can be derived:6

N~T!215(
k

pk
212S~T!, ~5!

where

S~T!5 (
n51

pn (
k5n11

pk@sin~vnkT/2!/~vnkT/2!#2. ~6!

The functionN(T) is seen to increase from an initial
value of 1 atT50 to a final valueN` given by3,6

N`5S (
k

pk
2D 21

. ~7!

The numberN` can be understood as an effective num-
ber of quantum states that significantly contribute to the
dynamics,3 or as a dynamically weighted number of phase
space cells occupied by the dynamical statistical ensemble6

when it has reached equilibrium. ‘‘Dynamically weighted’’
means that different phase space cells contribute toN` with
weights proportional to the probabilities of finding the sys-
tem in these cells.

Although the entropic measure of phase space has a
firmer theoretical foundation,8,12,20Eqs.~5!–~7! have the ad-
vantage of mathematical simplicity.

Many authors13–19have previously studied the difference
between chaotic and regular quantum systems in the short-
and long-time limits using the survival probability function
averaged over both Hamiltonian ensembles and initial wave
function conditions. Here, we use for the same purpose
Heller’s function N(T). Our aim is to determine the
asymptotic law according to whichN(T) approaches its final
valueN` and to see whether this law depends on the under-
lying classical dynamics reflected in the statistical properties
of the level spacing distributions.21–23

II. REGULAR AND IRREGULAR DYNAMICS

The problem with Eqs.~5!–~7! is that their evaluation
requires a fully resolved spectrum. However, one often
wishes to extract information from a spectrum recorded at a
finite resolution; large energy gaps can be measured while
small intervals remain unresolved.7 This is particularly the
case when the spectrum exhibits a clump structure.8,15,24We
assume that gross features are separated from one another
and that there exists evidence that a fine structure is buried in
them. Therefore, we introduce a double index notation for
the quantum states, i.e., each Franck–Condon factor is de-
notedpNn . The first index (N) denotes the clump while the
second (n) labels the different states concealed in it~Fig. 1!.
Under these circumstances, it is convenient to split the evalu-
ation of the time-dependent terms into two contributions.
Equation~6! is rewritten as follows:

S~T!5S1~T!1S2~T!, ~8!

with

a!Permanent address: Chemistry Department, Moscow State University,
Moscow 119899, Russia.

b!Author to whom correspondence should be addressed. Electronic mail:
U211101@avml.ulg.ac.be; Fax: 32-4-3662933.

6677J. Chem. Phys. 107 (17), 1 November 1997 0021-9606/97/107(17)/6677/4/$10.00 © 1997 American Institute of Physics
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Fri, 04 Sep 2015 14:26:26



S1~T!5 (
N.M

(
n,m

pNnpMm$sin@~ENn2EMm!T/2\#/

@~ENn2EMm!T/2\#%2, ~9!

and

S2~T!5(
N

(
n.k

pNnpNk$sin@~ENn2ENk!T/2\#/

@~ENn2ENk!T/2\#%2. ~10!

The termS1(T) denotes the contribution due to large
spacings and determines the early stages of the relaxation.
This term is of no interest to us because the asymptotic be-
havior of N(T) is determined by small frequencies, i.e., by
the termS2(T).

In order to evaluate the second contributionS2(T), it is
physically more reasonable to use a continuous model for the
spectrum, as in a previous study.7 Discrete summations in
Eq. ~10! are replaced by an integration over the continuous
variablesE andv. To do this, one has to know the density of
states@denotedD(E)# and that of the Franck–Condon fac-
tors @denotedp(E)#. The spectral profile is then given by
I (E)5p(E)D(E). Also needed is the density of spacings
Dv(v,E). The important point is that the latter function ex-
hibits a qualitatively different behavior for regular and ir-
regular spectra. To obtain it, one first has to eliminate the
so-called secular behavior of the density of states by rescal-
ing the energies in order to get a constant average
density.19,21–23Rescaled energiesẼ are usually defined as

Ẽ5G~E!, ~11!

whereG(E) is the dimensionless integrated density of states,

G~E!5E
0

E

D~E!dE ~12!

equal to the total number of states between zero andE. Us-
ing these rescaled energies, one now can define rescaled fre-
quenciesṽ as

ṽ5@G~E1\v!2G~E!#/\. ~13!

From Eqs.~12! and ~13!, it immediately follows that

dṽ/dv5D~E1\v!. ~14!

The statistical properties of these rescaled frequencies
are energy independent and are known to be related to the
character of the underlying classical dynamics. In the regular

case, the distribution functionD ṽ~ṽ! is a constant.7,21–23The
analytical formula forD ṽ(ṽ) in the case of chaotic dynam-
ics is not known, but its qualitative behavior is quite
simple.23 It is equal to zero forṽ50. For small values ofṽ
it is well reproduced by a Wigner distribution for nearest-
neighbor spacings. It tends to a constant value for larger
values ofṽ. Then, the expression forS2(T) writes

S2~T!5E
2`

1`

dE p~E! D~E! E
0

w/\

dv~dṽ/dv!

3D ṽ@ ṽ~v,E!#p~E1\v!@sin~vT/2!/~vT/2!#2

5E
0

w/\

g~v!@sin~vT/2!/~vT/2!#2dv, ~15!

where w is some characteristic spacing smaller than the
minimal width of a clump.

The functiong(v) is defined by

g~v!5E
2`

1`

dE I~E! I ~E1\v!D ṽ@ ṽ~v,E!#. ~16!

In the regular case, it reduces to the spectral autocorre-
lation function introduced by Levine and Kinsey17

g~v!5KE
2`

1`

dE I~E! I ~E1\v!, ~17!

whereK ~which has the dimension of an action! is the con-
stant value ofD ṽ(ṽ).

III. PROPERTIES OF THE FUNCTION g „v…

Since we are interested in small values of the variablev,
it is reasonable to expandg(v) in a Taylor series around
v50. However, this cannot be done right away. In Eq.~2!,
the spectral profileI (E) has been defined as a Dirac comb.
Hence, Eq.~17! contains the product of two distributions and
does not admit a series expansion. To avoid this difficulty,
thed functions have to be replaced by functions with a finite
width ~e.g., by Gaussians!. This amounts to multiplying the
correlation functionC(t) by a damping function. These new
functions@which are still related via Eq.~1!# can be substi-
tuted into Eq.~17!. This gives17

g~v!5~K/p\!E
0

1`

uC~ t !u2 cos~vt !dt. ~18!

This equation is valid for the regular case only.
The following mathematical properties ofg(v) can be

derived from Eq.~18!:

~a! g(v) is a real, even function, whose Taylor expansion
aroundv50 consists of even powers only which alter-
nate in sign. The absence of odd terms can also be
checked directly by integrating by parts under the un-
derstanding thatI (E) and all of its derivatives vanish at
the integration limits. For example, for the first deriva-
tive

FIG. 1. Two-index notation (Nn) for the quantum states. IndexN denotes
the clump, whereas the second one (n51,2,3,...) labels its fine structure.
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g1[dg/dvuv505K~d/dv!E
2`

1`

I ~E! I ~E1\v! dEuv50

5K\E
2`

1`

I ~E! I 8~E! dE50. ~19!

Then,

S2~T!5 (
n50

~1/n! !~2/T!n11gnE
0

wT/2\

xn~sin x/x!2dx,

~20!

with n restricted to even integers and

gn[dng/dvnuv50 . ~21!

~b! g(v) has a global maximum atv50. The proof is
analogous with that given by Wilkie and Brumer16 in a
similar study. SinceuC(t)u2 is integrable and positive
for all t, one has from Eq.~18!,

~K/p\!E
0

1`

uC~ t !u2@12cos~vt !#dt5g~0!2g~v!>0.

~22!

~c! From the Riemann–Lebesgue lemma, if the peaks are
given a finite width@i.e., if uC(t)u2 is multiplied by a
damping function#, then

lim
v→`

g~v!50. ~23!

~d! The area under the curveg(v) is finite.17 From Eq.
~18!,

E
0

`

g~v!dv5~K/\!uC~0!u25~K/\!. ~24!

In a chaotic situation, the properties of Eq.~16! are less
clear and odd powers ofv can appear in the series expan-
sion. However, since the functionD ṽ(ṽ) vanishes forṽ
50, the first termg(0)5g0 vanishes from the Taylor expan-
sion.

IV. THE LONG-TIME LIMIT

The integrals appearing in Eq.~20! can be calculated
exactly, giving

S2~T!52g0T21$Si~wT/\!1@cos~wT/\!21#/~wT/\!#

12g1T22@ ln~wT/\!1g2Ci~wT/\!#

1g2T23@~wT/\!2sin~wT/\!#1~1/6!

3g3T24@~wT/\!222~wT/\!sin~wT/\!

1222 cos~wT/\!#1••• . ~25!

This function admits an asymptotic expansion,

S2~T!5pg0T2112g1T22 ln~wT/\!1A2T22

1 (
k52

@A2kT
22k1B2kT

22k cos~wT/\!

1C2k21T22k11 sin~wT/\!#1••• , ~26!

with coefficientsAk , Bk , andCk depending onw andgn .

The oscillatory terms in Eq.~26! have probably little
physical significance. They are due to the behavior of the
function (sinx/x)2 which itself results from interference
terms among the phase factors exp(2iEnt/\) of the eigen-
functions used in the expansion of the time-dependent wave
function.6 Thus, they derive from a model spectrum recorded
at infinite resolution, i.e., from a mathematical abstraction. If
the function sin2 x/x2 is averaged over, i.e., if it is replaced by
a Lorentzian decrease (11x2)21, then the oscillatory terms
vanish from Eq.~26!,

S2~T!5pg0T2114g1T22 ln~wT/2\!

1 (
k52

@Ak8T
2k1Bk8T

22k ln T#, ~27!

with coefficientsAk8 andBk8 depending onw andgn .
Although Eqs.~26! and ~27! are valid both for regular

and irregular dynamics, a substantial difference is expected
between the two cases. When the dynamics is regular, the
odd coefficient (g1 ,g3 ,...) are allequal to zero, whereas the
even ones (g0 ,g2 ,...) alternate in sign. By contrast,g0 van-
ishes in the chaotic case because the repulsion between en-
ergy levels precludes zero spacings.

In summary, the following simple formulae can be pro-
posed to describe the spreading in phase space in the long-
time limit. For the regular dynamics, one has

N~T!215@N`#2112pg0T211CT221O~T23!. ~28!

When the dynamics is chaotic, the asymptotic behavior
of N(T) has the form

N~T!215@N`#2114g1T22 ln T1C8T221O~T23!,
~29!

whereC andC8 are some constants depending onw, on the
spectral profile, and on the function expressing the increase
of the density of states as a function of energy.

V. DISCUSSION

If one compares regular with chaotic dynamics, it results
from Eqs.~28! and~29! thatN(T) approaches its final value
faster in the latter case. This result, which agrees with physi-
cal intuition, is related to the phenomenon of level repulsion
in chaotic spectra.21–23 What is much less obvious is the
presence of a logarithmic term in the asymptotic expansion
~29!. The agreement between Eqs.~26! and ~27! gives us
confidence that this term is not an artefact resulting from a
constrained model: the crude averaging procedure used to
derive Eq.~27! profoundly changes the higher terms of the
asymptotic expansion~26! but hardly modifies the logarith-
mic term. The latter can be expected to reflect a fundamental
property of the classical chaotic dynamics in the long-time
limit.

We now wish to comment on the role played by the
distribution of intensities. What has been studied here is an
extrapolation formula based on existing standard models and
predicting ana priori generic behavior. Surely, cases can be
expected where the pattern of the Franck–Condon factors
will correlate with that of the energy spacings to generate
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xceptional ~and interesting! behaviors. However, changing
the spectral profile will modify the shape of the function
g(v), i.e., the relative magnitude of the coefficientsgn in the
Taylor expansion~20!, but will not modify the leading power
in the asymptotic law.

Whether or not it will be easy to discern numerically a
difference between Eqs.~28! and ~29! is a question which
remains to be studied. It may well turn out~and there are
even reasons to believe! that the difference will be conspicu-
ous only at the very end of the relaxation, i.e., when most of
the available phase space has been sampled.

The long-time behavior predicted by Eqs.~28! and ~29!
differs from theT22 asymptotic dependence predicted by
Eqs. ~5! and ~6! for systems with a finite number of states.
This is hardly surprising. Replacing a discrete summation by
an integration over a continuum of states is known to change
the law of evolution, as in the derivation of the Golden Rule
where this procedure changes the time dependence of the
transition probability from a quadratic to a linear law.25
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22E. Haller, H. Köppel, and L. S. Cederbaum, Chem. Phys. Lett.101, 215

~1983!; Th. Zimmermann, L. S. Cederbaum, H. D. Meyer, and H. Ko¨ppel,
J. Phys. Chem.91, 4446~1987!; Th. Zimmermann, L. S. Cederbaum, and
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