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Résumé

Dans cette these, nous explorons les propriétés électroniques, dynamiques
et thermoélectriques de différents composés a base de tellure. Nous util-
isons pour ce faire une méthode ab initio telle quimplémentée dans le code
Vienne Ab-initio Simulation Package (VASP) qui fonctionne dans le cadre
de la théorie de la fonctionnelle de la densité (DFT). Pour les propriétés
thermoélectriques, nous utilisons le code Boltztrap qui résout les équations
de transport de Boltzmann (BTE) pour les électrons dans 'approximation
du temps de relaxation constant (CRTA). Ce package nous permet d’obtenir
des valeurs précises du coefficient Seebeck en fonction de la température et de
la concentration des porteurs de charge. Enfin, pour calculer la contribution
du réseau a la conductivité thermique, nous utilisons le code ShengBTE qui
résout le contour ’équation de transport de Boltzmann pour les phonons de
maniere itérative.

Le premier composé a base de tellure que nous étudions est le meilleur
matériau thermoélectrique a température ambiante connu a 'heure actuelle,
le Bi, Tes. Nous obtenons des résultats comparables avec les données expérimentales
pour le coefficient de Seebeck a température et pression ambiantes. Par la
suite, nous décrivons les propriétés électroniques et la performance thermoélectrique
du composé jusqu’a une pression de 5 GPa. Nous reproduisons la tendance
globale du coefficient de Seebeck en fonction de la pression pour deux valeurs
différentes du dopage, cependant nos résultats ne reproduisent pas la petite
amélioration constatée dans les expériences a 1 GPa. Néanmoins, nous confir-
mons la découverte expérimentale d’une transition électronique topologique
(ETT) aux environs de 2 GPa et en expliquons le mécanisme.

Nous présentons ensuite des calculs sur les matériaux a changement de
phase a base de tellure de composition (GeTe),(SbyTes); (avec x = 1, 2, 3).
Nous décrivons en détail les propriétés de différents types d’empilements de
plans d’atomes étant donné que la position exacte des atomes dans la maille
est toujours incertaine a I'’heure actuelle. Nous établissons que ces matériaux



peuvent étre semiconducteurs ou métalliques selon le type d’empilement.
Les structures semiconductrices surestiment systématiquement le coefficient
de Seebeck alors que les empilements métalliques reproduisent les données
expérimentales pour le coefficient de Seebeck et la contribution des phonons a
la conductivité thermique. Dans ces composés, le facteur de mérite thermoélectrique
Z'T peut atteindre un maximum de 0.5 a 600K lorsque le dopage est opti-
misé. Dans le cas de (GeTe)s(SbyTes), le type d’empilement proposé dans
la littérature est instable et nous proposons une structure alternative. Enfin,
nous discutons la différence entre nos calculs et les travaux théoriques publiés
par ailleurs et qui mentionnent I'existence d’un cone de Dirac dans la struc-
ture électronique de (GeTe)y(SbyTes);. Nous expliquons pourquoi ceci n’est
en réalité vérifié que sous certaines conditions de contrainte et avec certaines
approximations de 1’échange-corrélation.



Abstract

In this thesis, we explore the electronic, dynamic and thermoelectric prop-
erties of different tellurium-based compounds. We perform ab-initio calcula-
tions within the Vienna Ab-initio Simulation Package (VASP) that works in
the framework of Density Functional Theory (DFT). For the thermoelectric
properties, we use the Boltztrap code that solves the Boltzmann Transport
Equations (BTE) for electrons within the Constant Relaxation Time Approx-
imation (CRTA). This computational package allows us to obtain accurate
values of the Seebeck coefficient as a function of temperature and carrier con-
centration (this last with the help of the rigid band approximation). While
for the calculation of the lattice contribution to the thermal conductivity, we
use the ShengBTE code that solves the BTE for phonons iteratively.

The first tellurium-based compound that we study is the best room tem-
perature thermoelectric material, BisTes. We obtain results comparable with
experimental data for the Seebeck coefficient at room temperature and pres-
sure. Afterwards, we proceed to explore the evolution of the electronic prop-
erties and the thermoelectric performance under pressures up to 5 GPa. We
reproduce the overall trend of the Seebeck coefficient as a function of pressure
for two different values of doping, however, our results do not reproduce the
small improvement found in experiments close to 1 GPa. Nevertheless, we
support the experimental evidence of an Electronic Topological Transition
(ETT) around 2 GPa and we explain this particular behavior.

We also perform calculations on the tellurium-based phase-change ma-
terials (GeTe),(SbaTes); (with x = 1, 2, 3). We show results for different
stacking configurations since for some compositions, the stacking arrange-
ment of the atoms in the primitive cell is still unsettled. We find that the
change of the atomic arrangement leads to the systems to go from semi-
conductors to metals. We find that the semiconductor arrangements sys-
tematically overestimate the experimental values for the Seebeck coefficient,
whereas the metallic stacking sequences are in very good agreement with the
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experimental data for the Seebeck coefficient and for the lattice contribution
to the thermal conductivity. We show that (GeTe),.(SbyTes); materials could
reach values of ZT=0.5 around 600 K with a proper optimization of S with
respect to the carrier concentration. We also report that in the case of x=3,
the most accepted stacking configuration is dynamically unstable, therefore
we proposed another sequence. Finally, we discuss the discrepancies between
our work and recent theoretical reports that claim the existence of a Dirac-
cone like band structure for (GeTe)s(SboTes);. We explain the conditions
necessary to obtain such electronic topology.



Introduction

In a world with an increasing demand of electricity and with serious environ-
mental problems caused by the combustion of fossil fuels, it is really impor-
tant to find new green sources to produce electricity. Indeed, many research
activities have been devoted to this quest. On the other hand, it is striking
to note that, according to the International Energy Agency (IEA), about one
third of the total electricity produced worldwide is actually wasted during
transportation, as well as in devices, due to the Joule effect. This resistive
heating of the electrical wires can only be suppressed by using supercon-
ductor materials, which are presently limited to very low temperatures and
specific niche applications, such as giant electromagnets.

Another approach is to try to recover the wasted electricity by converting
the produced heat back in electricity. This is achievable and the effect is
called thermoelectricity, the phenomenon of direct transformation of a gra-
dient of temperature into electricity and vice versa. It is not limited to Joule
heat recovery, but can be used to convert any temperature gradient in elec-
tricity.

Despite the potential of the thermoelectric effect, one can notice that the
research in this direction has been totally overshadowed by the research for
new energy sources. For over 30 years tremendous effort was made to increase
the efficiency of thermoelectric devices. However, only small improvement
has been achieved since bismuth telluride, first studied for thermoelectric
applications in 1986 [1], and remains as state-of-art bulk material at room
temperature.

Nevertheless, the efficiency for energy conversion of this compound is lim-
ited to 12 % in its bulk form, which is still insufficient for a wide industrial
application. It is usually accepted that 25 % efficiency is the lower limit for
a thermoelectric material [2]. At present, thermoelectric materials (BisTes,
ShyTes) are often limited to low temperature operation. For instance these
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are commonly used in satellite’s components [3, 4]. Another industry that is
investing in thermoelectrics as a source to recover wasted heat is the auto-
motive industry. A typical gasoline-fueled engine has efficiencies of around
25 %, while the remained is lost in form of waste heat. The average temper-
ature differences in the vehicle exhaust are around 300 K, with the hot side
at temperatures as high as 700 K. Therefore, a different kind of materials is

needed for this application with a decent thermoelectric performance at high
T.

The research for efficient thermoelectric materials has undergone some
regain in activity since the beginning of the 21st century [5]. In partic-
ular, groups have been improving the materials performance by changing
the overall geometry, rather than trying to find better chemical composi-
tion. Multilayers, nanoscale inclusions, skutterudites, clathrates and ceramic
oxides, domain engineering are some of the new directions that have been
investigated.

In this thesis, we will address the problem from a different viewpoint,
starting from the observation that the outstanding thermoelectric properties
of bismuth (but also antimony) telluride are thought to be originating from
its layered structure and from strong spin-orbit interaction. Independently,
tellurium-based compounds have been extensively studied in the last decades
as some of them (mostly in the ternary Ge-Sb-Te diagram) exhibit the so
called phase change properties [6]. These phase-change materials (PCMs)
could be good thermoelectric alternatives since, as well as bismuth telluride
(and SbyTes), PCMs are based on tellurium, possess a layered nature and
have strong spin-orbit interaction with a larger bandgap than BisTes.

Therefore, this thesis is devoted to the investigation of the thermoelectric
properties of these materials. We will quantify the effect of layering (con-
structing various (GeTe),(SbyoTes); structures) on the electronic and phonon
transport properties, but first we will describe in details the effect of modify-
ing the interlayer separation - and bonding - in the prototype BiyTes material.
An easy way to do this is by applying high pressure.

The method of choice to study the electronic properties of solids, in gen-
eral, is Density Functional Theory. In the present work, we use the Vienna
Ab-initio Simulation Package (VASP) [7, 8, 9]. With the help of other codes
that solve the Boltzmann transport equation for electrons within the con-
stant relaxation time approximation, such the BOLTZTRAP code [10], it
is possible to obtain a very important thermoelectric property, the Seebeck
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coefficient. We then use the finite differences together with the real-space
supercell approach to obtain the phonon dynamics of the system. Finally,
we perform calculations that allow us to compute another key property for
thermoelectric applications, namely the lattice contribution to the thermal
conductivity, by using the ShengBTE code [11].

This manuscript is organized as follows:

In Chapter 1, we will describe the concept of thermoelectricity. We will
explain the theory behind the thermoelectric phenomena and introduce the
various quantities that will be useful for the following chapters: the Seebeck
coefficient, the thermal and electrical conductivity and their implications in
the thermoelectric performance.

In Chapter 2, we will give a brief account for Density Functional Theory
(DFT). We will discuss the Born-Oppenheimer approximation, the concept
of the exchange and correlation energy as well as pseudopotentials.

In Chapter 3 we will introduce the Boltzmann transport equations and
the constant relaxation time approximation, as well as its implementation in
the computation package. We will briefly discuss the Boltzmann transport
equation for phonon and its implementation in the ShengBTE code.

In Chapter 4 we will start with the computational details for our cal-
culations in BiyTes as well as for (GeTe),(SheTes); compounds. Then, we
will present our results concerning the evolution of the Seebeck coefficient,
and the electronic properties in bismuth telluride as a function of the hydro-
static pressure. We will discuss in details the relation with the experimental
data, and give a special focus on the reported Electronic Topology Transition.

Finally, Chapter 5 will contain our results for quasi-binary phase-change
materials (GeTe),(SbaTes);. We will describe the structure, electronic and
phonon properties and explore the thermoelectric behavior of materials with
x=1, 2 and 3.
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Chapter

Thermoelectricity

Our modern lifestyle depends on electricity. Nowadays we carry devices that
never should be turned off. In our houses the WiFi modem, as the refrig-
erator, is always on. In the office, we work with computers than remain
working even when we are not there. Factories use machines to create more
machines or electronic equipment. Modern society could not be described
without electricity. On the other side, the energy production to fulfill the
growing demand due to the increase of the global population, comes with a
high economic and environmental cost. According to the International En-
ergy Agency (IEA), two-thirds of the total greenhouse emission gases come
from the energy generation. The environmental impact of the combustion of
fossil fuels is reaching alarming levels. Even though, in 2013 the oil market
as global energy source fell; it is still the dominant source of energy in the
world. The oil and coal represent 63 % of the total energy source, while
renewable energies represent just 2 % [12]. Strikingly, more than two-thirds
of the energy generated by burning fossil fuels are lost as waste heat. One
immediately realizes that recovering some of that waste heat to regenerate
electricity could, eventually, reduce the dependency on fossil fuels. This can
be achieved using a thermoelectric device, which works with a gradient of
temperature and captures the transported heat to convert it into electricity.
The opposite effect is also possible, a current that passes through a thermo-
electric refrigerator will produce a temperature difference.

Nowadays, the low efficiency is the biggest drawback of thermoelectric de-
vices, which only reach 30 % of the Carnot efficiency when these are working
between reservoirs of 300 K and 900 K. It is usually accepted that in order to
compete with modern refrigerators or energy generators, the thermoelectric
efficiency should increase by a factor of three. The improvement of ther-
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moelectric efficiency could lead to the recovery of lost energy from sources
that are, nowadays, neglected. A bonfire could become a cell phone charger.
The exhaust of automotive engines, or even the heat generated by friction
in the breaks, will be captured and converted into electricity, which would
increase the efficiency of hybrid cars. Nevertheless, there is still a lot of work
to be done in research to achieve thermoelectric efficiencies that compete
with current energy generators or refrigerators. In this chapter, we provide
basic concepts of thermoelectrics with a special focus set on the limitation
and challenges of thermoelectric devices.

1.1 The Thermoelectric Effect

The thermoelectric phenomenon was first observed by Thomas Johann See-
beck in 1821. He showed that a voltage could be generated by heating a
junction of two different metals (thermocouple). By heating the junction,
electrons and holes travel in opposite directions creating a voltage differ-
ence. The generated voltage is proportional to the temperature difference
(V = SAT), where the proportionality constant is known as the Seebeck
coefficient (S). In 1834, Jean Charles Athanase Peltier showed the reverse
effect. He realized that when a current passes through a thermocouple, a
certain amount of heat could be generated or removed depending on the di-
rection of the current. A current passing through the junction moves the
carriers and also the heat. The direction of the current determines if the
junction is cooled or heated. The Peltier coefficient corresponds to the ratio
between the extracted or generated heat by the electrical current (Il = Q/1,
where I is the Peltier coefficient, QQ is the heat and I is the current). The
fact that the Seebeck and Peltier effects occur just in the thermocouple (the
junction of two different metals at that time) suggest that the mentioned
effects are, somehow, related to the interface but, in fact, they are related to
the bulk properties of the materials involved.

Today we know that electrons are responsible for the electrical current
in the materials. By heating a material in a temperature gradient, we pro-
vide energy to electrons which allows them to travel from the hot side to the
cold side. This constant migration of electrons induces a difference in voltage.
When the generated electric field is strong enough, the movement of electrons
will cease. It was not until 21 years after Peltier’s discovery that William
Thomson (the later Lord Kelvin) identified the relation between the Peltier
and Seebeck effects. He established that the Peltier and Seebeck effects are
connected by thermodynamics. In addition, he determined that the Peltier’s
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Figure 1.1: (a) Schematic representation of a power generator thermocouple. A
and B are two different metals, where the junctions are at different temperatures
Ty and Ty. The gradient in temperature produces a voltage difference between
the free ends of material B. (b) Schematic representation of a thermoelectric re-
frigerator thermocouple. A current I passes through materials A and B causing
the absorption and release of heat Q. (Figure adapted from [13])

coefficient is the Seebeck’s coefficient multiplied by the absolute temperature
(IT = ST). He also predicted another thermoelectric effect that must occur in
a homogeneous material: the so-called Thomson effect occurs in a single ma-
terial exposed to a difference in voltage and a gradient of temperature. In the
Thomson effect, heat is absorbed or produced in a material when a current
flows through it with a gradient of temperature. The heat is proportional to
the electrical current and to the gradient in temperature. The proportion-
ality constant is the so-called Thomson coefficient (d@Q/dt = —&JAT, here
d@), dt and AT are the gradient of heat, time and temperature, respectively;
J is the current density and finally ¢ is the Thomson coefficient) [13].

Now, we will focus on the relation between Seebeck and Peltier effects.
We will consider the thermocouple in figure 1.1a. The material B is split
in two parts, both of which having a free end while the other end joins the
material A. A voltmeter can be connected between the two free ends of the
material B. By heating the material A, it is possible to create a gradient
of temperature between the two junctions. With this, we can calculate the
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differential Seebeck coefficient of the thermocouple:

V \%
= . 1.1
(Thot - Tcold) AT ( )

Sap =

Sap can be either positive or negative depending of the direction of the flow
of carriers. In the previous case, if the generated voltage induces the elec-
trical current to travel from the hot side to the cold side, then the Seebeck
coefficient will be positive, and negative otherwise. Similarly, we can define
the Peltier coefficient (figure 1.1b). Instead of heating the material A, we in-
duce a current between the two free ends of the material B, this will produce
an electric current flowing through the thermocouple. Assuming that the di-
rection of the current is clockwise, the Peltier coefficient will be positive if the
junction where the current enters the material A heats up, and the junction
where the current leave the material A gets cooler. As we mentioned, the
emitted or extracted heat is proportional to the current that flow through
the junctions, and the proportionality constant is the Peltier coefficient.

According to Goldsmid [13], the Seebeck coefficient can be easily mea-
sured and thanks to one of the Kelvin relations, it is possible express the
Peltier coefficient as a function of the Seebeck coefficient:

Mg = SapT. (1.2)

The coefficients described in equation 1.2 correspond to differential coeffi-
cients; this means the coefficient of the thermocouple and not that of a single
material. The absolute Seebeck coefficient can be determined if one of the
materials in the thermocouple has zero S. According with Prof. David Emin,
the Seebeck coefficient measures the entropy transported by a charge while
it moves, divided by the carriers charge [14]. With this concept of the See-
beck coefficient, one can understand that the use of superconductors as the
second material allows to measure absolute values of S for the first material.
It is reasonable to assign zero absolute Seebeck coefficients to superconduc-
tors since the differential Seebeck coefficient of any pair of superconductors
is zero. Nevertheless, there is not a material that remains in the supercon-
ductor state at room temperature or beyond. For this reason, S can be only
be measured at low T.

The Seebeck coefficient, as we mentioned, is material dependent property
that varies with temperature. The relation between the Seebeck and the
Thomson coefficients allows to calculate the Seebeck coefficient at high tem-
peratures. For a single material, the Kelvin relation between the Thomson

4
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Heat flow

Figure 1.2: Thermoelectric device showing how the thermocouples are wired elec-
trically in series and thermally in parallel. (Figure adapted from [5])

and Seebeck coefficients is: s

&E=T T (1.3)
The absolute Seebeck coefficient of a specific material can be measured at low
T by making a thermocouple between this material and a superconductor.
Afterwards, it is possible to use the Kelvin relation to determine the values
of S at high temperature through the measure of the Thomson coefficient.
This method has been used to determine the Seebeck coefficient for different
metals such as lead. We mention lead because this material can be used
as a reference for the determination of S for other materials. Most metals,
like lead, exhibit small values of the Seebeck coefficient (Sp, = —0.8uV/K)
compared with good thermoelectric materials that are, invariably, narrow
bandgap semiconductors such as BisTes (Spi,re, = 200uV/K).

1.2 Thermoelectric efficiency

In 1911 Edmund Altenkirch analyzed the low efficiency problem of thermo-
couples. He realized that the thermoelectric efficiency was directly propor-
tional to the Seebeck coefficient and to the electrical conductivity. On the
other hand, he realized that the thermal conductivity was inversely propor-
tional to the improvement of efficiency. According to Altenkirch observations,
a high Seebeck coefficient necessitates a moderate gradient of temperature to
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obtain a significant difference in voltage (see equation 1.1). Smaller values of
thermal conductivity allow to preserve AT since the heat is not easily trans-
ported through the material and, therefore, the thermoelectric performance
increases. Large values of electrical conductivity, prevent the generation of
Joule heat, which helps to keep a large temperature difference. The Joules
heat is provoked by the collision of moving carriers with the ”static” ions [13].

If we test different materials with the same volume, we will find differences
in the obtained current if we apply a voltage, and heat if we applied a gradient
of temperature. The current (I) that flows through a material with length
L and transversal area A when a voltage difference V is applied can be
determined by the electrical conductivity (o) of such material:

oV A

L Y
similarly, the amount of heat ) that travels through a material depends on
the thermal conductivity (k) and on the temperature gradient (AT):

KAAT
Q=-—F1— (1.5)

I= (1.4)

As shown in equations (1.4) and (1.5), both thermal and electrical conduc-
tivities are material dependent and, as well as the Seebeck coefficient, are
intrinsic properties that vary with temperature. The work of Altenkirch laid
the foundation of what we now know as the thermoelectric figure of merit
(ZT). The performance of a thermoelectric material is measured by ZT which
is defined as: )

27 = %T. (1.6)
The larger the value of ZT, the larger the efficiency of a thermoelectric ma-
terial. Although all practical thermoelectric devices consist of many ther-
mocouples connected thermally in parallel and electrically in series (see fig-
ure 1.2), it is sufficient to consider the behavior of one thermocouple. For a
given thermoelectric device the efficiency (n) is given by the equation:

AT V12T -1
Ty VI+2T + e

The previous equation is given in the form of the Carnot efficiency multiplied
by the figure of merit ("= (T + T¢)/2 in ZT) [5]. In order to increase the
thermoelectric efficiency, the thermoelectric figure of merit of constituting
materials should be as large as possible. In equation (1.7), if ZT is large

(1.7)

6
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Figure 1.3: Efficiency of a thermoelectric device as function of the thermoelectric
figure of merit, at different values of temperature for the cold side of the device.
The plot refers to equation (1.7) with Ty = 300°K.

enough, n ~ AT /Ty which is the efficiency of an ideal thermodynamic ma-
chine also called Carnot efficiency. It has been claimed that in order to
compete with modern energy generators or conventional refrigerators, ZT
values should be as large as 3 or 4. Even though, thermodynamically there
is no upper limit of the figure of merit, the values are presently far from
optimal [15].

As we mentioned, the Seebeck coefficient of the materials should be large
so that the smallest gradient in temperature will lead to a large difference
in voltage. The adjective large is relative; due to the small values of S, it
is usual to express the Seebeck coefficient in units of ©V/K. The electrical
conductivity should be also large to reduce losses due to Joules heating. If
the electrical resistance is large (p = 1/0), larger will be the self-heating of
the material. On the contrary, the thermal conductivity should be small to
maintain the temperature gradient and reduce the heat leaking. The strong
link between the Seebeck coefficient and electrical conductivity illustrates the
complex task which is the enhancement of the thermoelectric performance.
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Figure 1.4: Schematic representation of the Seebeck coefficient (), electrical con-
ductivity (o) and power factor (S%0) as a function of the carrier concentration.
(Figure adapted from [5])

1.3 Thermoelectric materials

Even though the properties in equation (1.7) have been well studied for many
existing materials, it is still difficult to improve the thermoelectric efficiency.
To choose the best possible thermoelectric material, we can start by classify-
ing the compounds into one of the following groups: metals, insulators and
semiconductors. In chapter 3, will explain the theory of transport, but here
we just focus on some generalities to understand the selection of thermoelec-
tric materials.

1.3.1 Metals and insulators

As we mentioned, metals were the first choice as possible thermoelectric
materials [13]. Metals have high electron mobility (u) and, therefore, high
electrical conductivity (¢ = nep where e is the electronic charge). Never-
theless, the electric and thermal conductivity ratio in metals is a constant.
This means that any increase in the electrical conductivity invariably leads
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to an increase of the thermal conductivity. This is given by the Wiedemann-
Franz law: k., = LTo. Where k. is the electronic contribution to the ther-
mal conductivity (k = ke + K, K being the lattice contribution to the to-
tal thermal conductivity) and L is the Lorentz number that for metals is:

L ~ %2(%3)2 = 2.44 x 10*8%. The Wiedemann-Franz law works well for
both metals and highly doped semiconductors close to room temperatures.
As we pointed out, most of the present thermoelectric materials are semicon-
ductors, not metals. Using the equation of the Wiedemann-Franz law with

the thermoelectric figure of merit, we have:

_ 5

T
L7

(1.8)
ﬁ. In metals, unlike in semiconductors, most of the heat is
carried by electrons (k. >> k;) which means that r ~ 1 and ZT ~ S?/L.
In this case, ZT could reach a value of 1 if the Seebeck coefficient reaches
160pV/ K. For metallic systems, the values of S oscillates around 10uV/K
which is much lower than the required value. Insulators, on the other hand,
have an extremely small electrical conductivity. This gives values of ZT as
small as for metals (see figure 1.4).

where r =

1.3.2 Semiconductors

At the beginning of the 20th century, it was found that some materials could
have values of Seebeck coefficient as large as millivolts per Kelvin [2]. Sadly,
these materials also show small values for the ratio of electrical to thermal
conductivity. The reason for this is the large thermal conductivity due to
phonons. However, there are other semiconductors with more modest See-
beck coefficient that possess reasonable thermal conductivities. If the mate-
rial has an excess of electrons, the semiconductor is n-type and the Seebeck
coefficient is negative. On the contrary, when the material is lacking elec-
trons (excess of holes) the semiconductor is p-type and S > 0. As shown in
figure 1.4, semiconductors with large number of carriers are more desirable
for thermoelectric applications.

The so-called power factor (5?0) can be optimized through doping, but
the increase of carriers has the drawback that it increases the electrical con-
tribution to the thermal conductivity. On the other hand, in narrow-band
gap semiconductors more than the 50 % of the heat is carried by phonons,
and reducing this is the real challenge to improve thermoelectric efficiency
[2]. From equation (1.8), we can see that the ideal is to have r = 1 since for
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semiconductors the values of S are considerably larger than in metals.

In essence, the goal is to find a semiconductor with high power factor,
but small lattice thermal conductivity compared with the electronic thermal
conductivity. This leads to the concept of Phonon-Glass-Electron-Cristal
(PGEC). The paradigm PGEC was proposed by Slack in 1995, and suggests
that the best thermoelectric would be such that electrons are weakly scattered
while the heat transported by phonons should be strongly scattered like in
glasses [16].

Property Metals  Semiconductors Insulators
S (uV/K) ~5 ~ 200 ~ 1000
o (Q'em™) ~ 106 ~ 103 ~ 10712
ZT ~9x107* 0.6 ~2x 1071

Table 1.1: Comparison of thermoelectric properties for the three mentioned groups
of materials at 300 K. Table adapted from reference [17].

1.3.3 Thermoelectric compounds

There are many aspects to consider in the election of a thermoelectric mate-
rial. As we mention, metallic systems have large electrical conductivity (since
there are bands crossing the Fermi level) and small lattice contribution to the
thermal conductivity (this because k. >> k;). But they also show very small
values of Seebeck coefficient. Insulators, on the other hand, have very small
electrical conductivity (this because the Fermi level is in the middle of the
band gap). Therefore, the materials of choice are semiconductors for which
both, Seebeck coefficient and electrical conductivity, are strongly linked to
the carrier concentration. When the semiconductor is highly doped, the elec-
tronic thermal conductivity increases due to the large number of free carriers
in the system. Also, a high doping means that the chemical potential is
shifted into the bands, which increase the electrical conductivity. However,
the Seebeck coefficient is reduced when the chemical potential moves away
from the band edge (more details will be given in chapter 3). If the semi-
conductor is slightly doped, the Seebeck coefficient is large due the vicinity
of the electronic gap, but the electrical conductivity decreases rapidly. This
is the paradox of thermoelectricity.

For over 60 years the most-studied materials for thermoelectric applica-
tions have been those alloys with chemical formula X5Y3 where X is either

10
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antimony or bismuth and Y is either tellurium or selenium [18]. These kinds
of materials show extraordinary thermoelectric performance. It has been
claimed that this is due to their layered nature together with the multiple
valleys in their electronic band structure. Therefore, we have chosen in this
work to explore another kind of materials with similar layered nature, but
with tunable electronic properties. Telluride based phase-change materials
(PCMs) exhibit changes in the electrical conductivity of 4 orders of magni-
tude related with the annealing temperature. These abrupt changes in the
electrical properties, their layered nature and the expected small thermal
conductivity due to the large scattering of phonons, lead us to think that
PCMs could be possible good thermoelectric materials.

11



Chapter

Computational Background

In this chapter, we provide a description of the theoretical framework that
we used to perform calculations of the electronic properties. We will not
go deep into mathematical details, and we will limit ourselves to present-
ing the main concepts related with density functional theory (DFT), while
in the next chapter we will introduce Boltzmann transport equations. We
have used these two theories to explore the electronic and dynamical trans-
port under pressure in the binary compound BisTez, and the pseudo-binary
chalcogenides (GeTe),(SboTes); (x = 1, 2, 3). The main reference for this
chapter is the book ”Electronic structure: Basic theory and practical meth-
ods” from Richard M. Martin.[19]

2.1 Density Functional Theory

Any atom, molecule, glass or crystal is made of electrons and ions. Electrons
do not only work as glue in molecules and crystals due to the coulomb inter-
action between their negative charge and the positive charge of the nucleus.
The excitations of these electrons determine electronic and optical properties
in such materials. For this reason, the correct description of the interactions
between the particles in any material is crucial to understand and predict its
properties.

Density functional theory (DFT) is based on the postulate that any prop-
erty of interacting particles can be view as a functional of its ground state
electronic density ng(r). A functional is a function of a function, which in
this case is the electronic density. DF'T was developed to calculate, at modest
computational cost, electronic states of solids which contain a large number

12
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of electrons. The Hamiltonian that describes any solid is:
H(R,x) = Ki(R) + Ko(r) + Vir(R) + Vee(r) + Ver(r, R),  (2.1)

where the kinetic energy of nuclei and electrons are:

K[(R) - _? lea (2-2)
I
h2
K(r) = o V3, (2.3)

and the electron-electron, ion-ion and electron-ion interactions are given by:

712,
Vir(R,R) = (2.4)
; R — Ry’
e 1
Vee(r,r) = §Zm7 (2.5)
i#j
Z
ValeR) = 3 20
il "t

where Z;, M; and R; denote the atomic number, mass and position of the
ions, respectively; e, m and r; are the electric charge, mass and position
of electrons respectively. Any problem in the electronic structure of matter
obeys the Schiodinger equation. Here we will focus on the time-independent
Schrodinger equation?:

HU = EV, (2.7)

where H is the Hamiltonian that describes the nature of the system while
U and E are the wavefunction and energy respectively. For a many-body
system as a glass, crystal or molecule, the exact solution of the equation (2.7)
is impossible due to the large number of particles that interact with each
other. To solve equation (2.7), we need approximations. It is possible to
decouple electrons and ions by taking advantage of their large difference in
mass. This is the so-called adiabatic or Born-Oppenheimer approximation.
In this approximation, we assume that, since electrons move much faster
than ions, these will adapt instantly (adiabatically) to any move of the ions.
This approximation does not only allow us to neglect the kinetic energy of
the ions and solve only the electronic Hamiltonian, but it is also the starting

'For the ground state properties of the materials, the time-independent Schrédinger
equation is sufficient.

13
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point of perturbation theory used to compute electron-phonon interactions.
Within the adiabatic approximation, we have:

HV, = E.\V,, (2.8)

He = Kt Vet Vewr = Ko+ Vee +>_v(ry), (2.9)

where V,; has been replaced by V,,; since we assume that the ions are fixed
and therefore the external potential is independent of R, and only depends
of the position of the electron denoted by r. Hereafter the electron spin
will be denoted by o, then the many-electronic wavefunction is denoted by
V. (x1,Xs,...Xy) where x; = (r;,0;). This wavefunction must be antisym-
metric, which means that:

U(x1,X2,X3,...,Xy) = —V(X2,X1,X3,...,XN)- (2.10)

It must also be normalized:

(\I!e]\Ife>:///.../]\Ife|2dx1dx2dx3...de:1. (2.11)

According to equation (2.8), the electronic energy can be obtained by
the expectation value of the electronic Hamiltonian applied to the electronic
wavefunction:

E. = <\Ile|]:]|\lle> = <\P6|Ke+‘/ee+‘/:2wt|qle>a (212)

or explicity,

—h 2 e? |0 2
E:// [%;\DCV we+5;m+;ywi1 o(ry) | dxy .. dxy,

(2.13)
where the integrals go over all the electrons in the system. We can see in the
equation( 2.13) that even when the kinetic energy of ions is neglected, and
the classical interaction between ions can be easily obtained, the problem
remains unsolvable. In any solid crystal there are more than 10% electrons
and further approximations are needed.

2.1.1 The electronic density

The electronic density is defined as the number of electrons in a given volume
at a specific position in the space denoted by the vector r. In this form the
electronic density is a function of the spatial coordinates x, y and z.

N = /n(r)dr. (2.14)
14
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The relation between the electronic density and the electronic wavefunction
is the following:

n(r) :N/.../|\I/(X1,X2...XN)|2d0'1,dX2...dXN, (2.15)

which gives the probability to find any of the N electrons within the vol-
ume element dr. The normalization condition (eq 2.11) guarantees that the
integral of the electronic density is equal to the total number of electrons
in the system N. In equation (2.15), one of the spatial coordinates (in this
case ry) corresponds to the point in the space where the electronic density is
evaluated.

Equation 2.13 evaluates the energy of a system of interacting electrons
moving through an external potential. This external potential can be written
in terms of the electronic density as:

Vewt = /n(r)v(r)dr. (2.16)

But this is the only term in equation (2.8) than can be written in terms of
the density. For the kinetic energy (K.) term, the derivative of the electronic
wavefunctions makes it impossible to write it in terms of |¥'|%. In the potential
energy (V..), the electronic positions in the denominator make difficult the
integration term by term. With these restrictions, it is not possible to have a
universal energy functional of the density. Since the two elements that remain
in their "original” form are those related to the electrons, it is convenient to
group them in a single term that we will be denoted by F|¥.] = K, + V.,
total energy being:

E, = F[U.] + Ve[u, 1. (2.17)

The objective of the next section is to express the internal electronic energy
in terms of the density (F[W¥.] — F[n]). The internal electronic energy is
independent of the external potential, and so should be the electronic energy
functional of the density.

2.1.2 The Hohenberg and Kohn Theorems

The main idea of DF'T is to describe a many-body interacting system with its
density, instead of with its many-body wavefunction. This is because regard-
less the number of electrons in the system, the density is always dependent
of 3 dimensions, while many-body wavefunction depends on 3N dimensions
where N is the number of electrons in the system. This is the main reason
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why DFT has become the most widely used electronic structure approach for
extended systems.

Modern DFT is born in 1964 with the publication of the paper ”Inho-
mogeneous Electron Gas” by Hohenberg and Kohn [20]. Two theorems were
proposed in this paper. The first Hohenberg-Kohn theorem tells us that the
ground state electronic density determines the external potential (and conse-
quently, the Hamiltonian) of the system within a constant which only sets the
absolute energy value [21]. For a system with non-degenerate ground state,
the fact that the electronic density defines the external potential implies that
two different potentials cannot lead to the same ground state electronic den-
sity. Moreover, the first Hohenberg-Kohn theorem indicates that the ground
state electronic density determines all the ground states properties of a given
system. From a physical point of view, we can say that electrons moving in
an external potential react to any change in this potential to minimize their
energy, and that this reaction is unique.

Since the proof of this theorem is rather simple, here we will show it. This
theorem was proven by reducto ad absurdum argument. Let us assume that
there are two potentials (v,(r) and v,(r)) that differ by more than a constant
and lead to the same ground state electronic density (ng(r)). Therefore, we
will have two different Hamiltonians (ﬁa and [:[b) that have the same ground
state electronic density, but their normalized wavefunctions will be different
(¥, and Up). Then we have:

E, = <\Pa‘ﬁa‘\pb> < <\Ijb’]f[a|qu> (218)
(U | Ho |y = (Wy|Hy [Ty + (Uy| H, — Hy|Wy) (2.19)
E, = E,+ /no(r) [Va(r) — vp(r)]dr. (2.20)

In the similar way for Ej, we have:

E, = Ea+/n0(r)[vb(r)—va(r)]dr. (2.21)

If we add E, + E}, we will have the inequality E, + E, < E, + E,, which is a
clear contradiction. This establishes what we have mentioned before; there
cannot exist two external potentials that differ by more than a constant, that
lead to the same non-degenerate ground state electronic density. Regardless
the importance of this result, which is not trivial, this theorem does not show
how to solve the problem of interacting electrons moving in the potential of
the nuclei.

16
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The second Hohenberg-Kohn theorem is the DFT variational principle.
This theorem states that the minimum in energy is reached only when the
electronic density is the ground state electronic density. Basically, a universal
functional of the energy in terms of the electronic density (E[n(r)]), can be
defined for a given external potential. The electronic density that minimizes
this functional is the ground state electronic density. In other words, we
can assume an electronic density and its related Hamiltonian and wavefunc-
tion. Therefore, it is possible to associate this assumed electronic density to
its corresponding energy, but the energy will only be minimized when the
assumed electronic density is equal to the ground state electronic density.

<\Ilas|ﬁas|‘ljas> - Eas 2 E07 (222)

where Fy and E,, are the energy of the ground state, and the assumed energy
resulting from the assumed electronic density, respectively. The Hohenberg-
Kohn theorems allow us to obtain the ground state energy by minimizing the
energy functional

Eln(r)] = / n(x)o(r)dr + Fln(r)], (2.23)

but the universal functional F'[n(r)] is unknown. This means that, if the
universal functional were known, the ground state density and energy would
be obtained by minimizing the total energy of the system with respect to
variations of the electronic density. Figure 2.1 shows a schematic representa-
tion of the Hohenberg-Kohn formalism. The density functional of the energy
describes the ground state of a given system, and does not provide any in-
formation about exited states.

2.1.3 The Kohn-Sham equation

The Hohenberg-Kohn theorems proves that it is possible to choose any arbi-
trary electronic density, and only one external potential corresponds to this
electronic density. Therefore, the Hamiltonian and all the related properties
will be unique as well. Also, the minimum in energy can be obtained by
the variational principle. This is, basically, the energy minimization through
variations of the electronic density (equation (2.23)).

At this level, DFT remains unapplicable because there is no simplification
at all: the Schrodinger equation must to be solved for a system of interacting
electrons moving in an external potential. The Kohn-Sham ansatz basically
replaces one problem with another [22]. Kohn and Sham proposed a mapping

17



Chapter 2. Computational Background

V(1) <L n(r)

| I

Y({r) —— Y{rY

Figure 2.1: Schematic representation of the Hohenberg-Kohn formalism. Black
arrows represent the usual solution of Schrodinger equation. The red arrow repre-
sents the Hohenberg-Kohn formalism, where the electronic density determines the
external potential.

from the real system, where the particles interact with each other, to another
with Kohn-Sham particles (particles that do not interact each other) moving
through an effective potential. The Hamiltonian of this new system is a
linear combination of the one electron Hamiltonian. We start by dividing
the universal functional F[n(r)] into three parts:

Fln(r)] = Ks[n(r)] + Va[n(r)] + Excn(r)], (2.24)

where Kj¢[n(r)] is the functional of the kinetic energy for the non-interacting
Kohn-Sham particles with electronic density n(r); Vy[n(r)] is the classic
electrostatic potential between electrons (Hartree potential) and E,.[n(r)]
is the so-called exchange-correlation energy, that contains all the missing
information lost during the mapping from the real system. This energy
does not only take care of all the non-classical part of the potential, but
also includes the difference between Ky [n(r)] and the true kinetic energy of
the system with interacting particles. With this, it is possible to solve the
one-electron Schrodinger equation with the help of Kohn-Sham orbitals ;,
and with the restriction that the number of particles in the system is fixed

(n(r) = 32 1il%).
(—%Vz +o(r) + / ;(frz/’dr’ + vxc(r)) 0y = ey, (2.25)

where the exchange-correlation potential is:

S E[n(r)]

Vae = gm0y (2.26)
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We can now define a total effective potential in which the Kohn-Sham par-
ticles are moving. This effective potential is given by the sum of the kinetic
energy of non-interacting particles, the external potential due to the nuclei
and the exchange-correlation potential:

Vesr = v(r) + / |:(_r,2,‘dr’ + Vge(T). (2.27)

Finally, we can write the one-electron Schrodinger equation in the compact
form:

(—%VQ + veff> ;= ey (2.28)

We should note that the effective potential v.s; depends only, but in a
non-local way, on the electronic density n(r). The Kohn-Sham equation can
be solved iteratively. For example, it is possible to construct an effective
potential with equation (2.27), and then to obtain the Kohn-Sham orbitals.
Based on these new orbitals, it is possible to get a new density by:

n(r) = le#, (2.29)

and repeat the process until convergence has been achieved. The Kohn-Sham
ansatz solves the many-body problem completely. In theory, DFT is exact,
but in practice approximations have to be made. These approximations are
made in the exchange-correlation energy.

2.2 The exchange-correlation energy

The main problem of DFT is that the exchange and correlation (xc) en-
ergy functionals are unknown, except for the homogeneous free electron gas.
The exchange-correlation energy takes into account the difference between
the classical and the quantum mechanical electron-electron repulsion, and
the difference between the kinetic energy of the real system, and that of
the Kohn-Sham particles system. The exchange energy refers to the en-
ergy needed to interchange two electrons with the same spin. Electrons
are fermions, therefore, their wavefunctions must be antisymmetric (equa-
tion (2.10)). The correlation energy is related to the fact that the electrons
interact with each other while the Kohn-Sham particles not. One of the
most widely used approximations to the exchange-correlation energy is the
so-called Local Density Approximation (LDA). Under this approximation the
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Figure 2.2: Schematic representation of the Kohn-Sham ansatz. The red arrow
labeled with HK( represent the Hohenberg-Kohn formalism applied to the system
of non-interacting particles. The red arrow labeled with KS represents the con-
nection in both directions between the problem with non-interacting particles and
the problem of interacting particles.

functional depends locally of the density at the place where the density is
evaluated. Then the exchange-correlation energy is assumed to be the same
as in the homogeneous electron gas with that density,

EEPAn(w)) = [ n(x)elem nfe)ar. (2.30)

Even though LDA is a strong approximation that should be valid only for
systems where the density varies slowly, calculations in atoms, molecules and
solids show that LDA works well for many systems. In general, calculations
with LDA produce a chemical bonding that is stronger than in actual sys-
tems. This leads to the underestimation of the lattice parameters for solids
and, therefore, the bulk modulus is overestimated. Another drawback of
LDA is the systematic underestimation of the electronic bandgap with re-
spect to experiments. This is related to the intrinsic nature of DFT and
not to the exchange-correlation energy approximation, given that DFT is a
ground state theory, while the electronic gap depends on excited states.

To improve the results obtained with LDA, other approximations have
been developed. In the popular generalized gradient approximation, or GGA,
the exchange-correlation energy depends not only on the local density but
also on its gradient:

E:EGCGA[n(r)] = /n(r)ehom[n(r), |V|]dr. (2.31)

xc
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With this, the accuracy of the calculation is usually increased. There have
been many approximations developed to reach better accuracy such as revPBE,
RPBE, PBE-WC or PBEsol [23], this last one offering a better representation
of solids and surfaces. The so-called meta-GGA uses up to the second deriva-
tive of the density and/or kinetic energy. The hybrid functionals offers exact
exchange from the Hartree-Fock theory. In this thesis we use the PBEsol
correction for the GGA approximation since is the one that shows better

accuracy with respect to experimental data for pseudo-binary compounds
[24].

2.3 Pseudopotentials

Another way to reduce computational cost in DFT calculations is through
the use of pseudopotentials. The Kohn-Sham wavefunctions used in equa-
tion (2.29) to obtain the electron density are expanded into a convenient
basis set. In crystals with periodic boundary conditions, the KS wavefunc-
tions obey the Bloch theorem and are labeled for the wavevector k and band
index n. In practice, this expansion of the basis set with boundary condi-
tions is done with planewaves. The disadvantage of planewaves is that a large
number of these is required to describe the atomic wavefunctions close to the
nucleus. The wavefunctions of the valence electrons vary rapidly in the region
near to the nucleus, therefore, planewaves with high energies are necessary
to describe these wavefunctions correctly whether low energy planewaves are
sufficient to describe electrons far from the nucleus.

The main goal of the pseudopotential approximation is to replace the
strong Coulomb potential of the nucleus by an effective ionic potential acting
on the valence electrons only. The pseudo wavefunction have no radial nodes
in the core region (see figure 2.3), while the pseudopotential is smoother than
the all-electron potential near to the nucleus but identical after a defined pa-
rameter denoted as r.. The two mentioned properties of pseudopotentials
make it possible to compute KS wavefunctions with a relative small num-
ber of planewaves (the maximal energy limit of the planewaves basis will
be called energy cutoff in the following). The Vienna ab-initio simulation
package (VASP) [7, 8, 9] adopts the planewaves basis set, and the projector-
augmented wave method (PAW) to construct the pseudopotentials [25]. The
PAW approach uses pseudopotential operators but keeps all-electron core
wavefunctions.
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Figure 2.3: Schematic representation of the pseudopotential and the pseudo wave-
function. The real and the pseudopotential match beyond a given cutoff radius r..
Notice that the pseudo wavefunction is nodeless before r. and the pseudopotential
is much weaker than the real potential in the core region.
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Boltzmann Transport Equation

The objective of this thesis is to calculate thermoelectric properties of tel-
lurium based compounds. DFT has been used to obtain the minimum en-
ergy structure and, the ground state energy for each band with index n and
a wavevector k (Fy(n,k)). Boltzmann transport theory, as implemented in
the BOLTZTRAP code [10], uses Ey(n, k) to determine thermoelectric prop-
erties of the compounds. On the other hand, the second- and third-order
interatomic force constants are used to calculate the lattice contribution to
the thermal conductivity, through Boltzmann transport equations (BTE) for
phonons as implemented in the ShengBTE code [11]. BTE provides a method
which is accurate and computationally inexpensive to calculate thermoelec-
tric transport coefficients. Hereafter, we explain some generalities of BTE
and the mentioned codes.

3.1 Boltzmann transport equation (BTE) for
electrons

In general, transport theory aims at describing the flow of carriers due to ex-
ternal fields which lead the system to be out of equilibrium. The Boltzmann
transport equation describes the statistical behavior of a thermodynamic
system away from thermodynamic equilibrium. We start by supposing that
electrons in the conduction bands, and holes in the valence band can be con-
sidered as free carriers. The response of these carriers to an applied electric
field (or a gradient of temperature) depends on the strength of the field.
An electric field (or temperature gradient) induces electrical (or thermal)
currents. The flow of the carriers due to these fields is limited by the scatter-
ing processes between them and with other (quasi)particles. The exchange
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Figure 3.1: Schematic representation the trajectory of a particle with momentum
p; moving in the cartesian axis x. It is assumed that the scattering process is fast
and the particle just changes its momentum and not its position.

of momentum and energy due to these interactions gives finite thermal or
electrical conductivities.

The Boltzmann theory introduces the so-called transport distribution
function to describe an electron system. When the system is in equilib-
rium this distribution function is given by the Fermi function. Outside of
equilibrium, the distribution function depends on the spatial coordinates (r),
the particles momuntum (p) and time (t), characterized by f(r,p,t). This
distribution is the probability to find a particle with at given momentum in a
specific posistion at certain time. Therefore, [ f(r,p,?)dr3dp?®/(2wh)® = N,
where N is the number of particles in the system. The distribution function
f requires semiclassical treatment, since we must specify the momentum and
position for individual particles.

The equation that describes the change of the distribution function with
time is the counterpart of the Schrodinger equation which specifies the change
of the wavefunction with time [26]. The time evolution of the probability
to find a particle with momentum p and position r obeys the Boltzmann
transport equation. Let us assume that the particle is moving with a two-
dimensional trajectory T'[x(t), p,(t)]. Now, in the absence of scattering, the
probability to find the particle in such trajectory is given by fo(z, ps,t), and
this probability remains constant with time (see figure 3.1). If we follow the
occupied state through the characteristic trajectory of the particle, this state
remains occupied in time. We should get the same result if we follow an
unoccupied state, where f remains zero with time. With this, we get the
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transport equation.
df
dt
In other words, the probability to find a particle in a state with position
r+ Ar and with momentum p+ Ap at time ¢+ At is equal to the probability
to find the same particle in the state f(r,p,t):

f(r,p,t) = f(r + Ar,p + Ap, t + At). (3.2)

0. (3.1)

The equations (3.1) and (3.2) neglect the possibility of scattering. If the
particles interact and scatter events occur, we can write in six dimensions
(three spatial and three of momentum) that:

of ofor ofop _of

ot orot opot ot (3:3)

where the term on the right is the change in distribution function due to
collisions. With the use of semiclassical equations:

or
op
o = F (3.5)

we can get:

of __of __of of
ot~ o Y ap YT ar|

coll

According to equation (3.6), there are three main contributions to the change
of the transport distribution function with time. The first term on the right
side refers to electrons moving out of that specific region in space with a
characteristic velocity equal to v. If the distribution function varies in space,
the number of particles entering the region in space will be different from
those particles leaving that region. The second term comes from the fact
that the particles are moving into different momentum states. Similar to the
first term, if the distribution function varies with the momentum, the number
of particles transferred into that specific region of momentum will differ from
the particles that are leaving such region. Finally, the last term includes
the probability that electrons scatter out more rapidly than they scatter in.
The collision term makes the Boltzmann transport equation difficult to solve,
and without it the solution is unphysical. Nevertheless, it is possible to get
the numerical solution through Monte-Carlo simulation. This method allows
treating the collision term in great detail. On the other hand, to obtain an
analytical solution of the BTE, it is necessary to simplify the collision term
drastically [26].

(3.6)
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3.1.1 The Relaxation Time Approximation (RTA)

If the distribution function is in equilibrium, there are no scattering events
and f is unchanged with time. Now, if the distribution function for a single
state/electron is out of equilibrium, we expect that f decays exponentially
to its equilibrium state.

of|  f—f

ot coll T ’
where 7 is the electron relaxation time. Even though the RTA agrees very
well with many experimental data it is still an approximation. Strictly speak-
ing, the relaxation time approximation is justified only when the scattering is
homogeneous. If the distribution function is inhomogeneous (different elec-
tron density at different points), the equilibrium distribution function must
be written in terms of the local density, otherwise we will be introducing
scattering events than instantaneously transfer electrons from one position
to another. Nevertheless, the RTA leads to a good description of many trans-

port properties.

(3.7)

By the combination of equations (3.7) and (3.6), we get the Boltzmann
transport equation with the collision term within the relaxation time approx-
imation. of of of Fog

=Ly L. P 3.8

o or ' dp T (3:8)
Now, if we take the equation (3.8) and we assume spatial uniformity df/0r =
0 and in absence of fields (F = 0) this equation is:

of _ of
where 0f = f — fo . The solution of equation (3.9)
SF(t) =3f(0)e. (3.10)

This equation means that, if the system is out of equilibrium, it will decay
exponentially to equilibrium with a single characteristic time 7. This is a
very reasonable assumption and, as we mentioned, it works for many systems.
Finally, the equation (3.8) can be rewritten in terms of fo and (f — fy):

dfo a(f—fo)Jr%.VJra(f—fo) fo.F+3(f—f0)'F:f—fo'

)
ot T o or o T op op ;

(3.11)

To linearize this equation, further approximations are needed:

L |f = fol << fo,
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2. the gradient of f — f; is much smaller than the gradient of fj,
3. changes in the external fields occurs much slower than 7.

With these considerations, many terms in the equation (3.11) disappear and
the linearized Boltmann transport equation is:

fzfo+7<v~%+g—;-F>. (3.12)
The Boltzmann theory is a powerful tool to obtain transport coefficients of
real materials. Before going into detail with the microscopic model of the
transport properties, we will define some macroscopic properties. For an
isotropic solid, the relation between the electrical current J, the electric field
E and a gradient of temperature AT is given by:

J = oE + (AT, (3.13)

where o is the electrical conductivity and ( = So where S is the Seebeck
coefficient. Here, S is defined as the difference in voltage produced by a
given temperature gradient when the electrical current is zero. Now, for the
microscopic model of transport, in general, the electrical current of carriers

is defined by:
J=¢ Z kak, (314)
k

where e is the charge of the carriers (electrons or holes) and fi is the pop-
ulation associated to the quantum state k (here p = hk). vy is the group
velocity and is given by:

1 0e
= o
The population of the k states is given by the solution of the BTE. The
change in the population depends on the diffusion, the electric (E) and the
magnetic (B) fields, or on the scattering:

e Ofic e fn ] ofc . df
™ o ﬁ<E+szXB)‘a—k+a

Vk

(3.15)

(3.16)

coll

3.2 The BOLTZTRAP Code

The BOLTZTRAP code allows the calculation of semi-classical transport co-
efficients through the use of Fourier expansions to solve Boltzmann equations.
In the absence of fields, the stationary solution of the Boltzmann equation is
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the Fermi distribution function fy(ex). The fact that the population in k£ and
—Fk is the same makes J = 0. In absence of magnetic field and temperature
gradients, it is possible to linearize equation (3.16) within the relaxation time
approximation (equation 3.12), and we obtain the following solution for the
population:

fi = Jolex) + e <—%) TkVk - E. (3.17)

Now that we obtained the population of states thanks to BTE within the
RTA, we substitute equation (3.17) into (3.14) to get:

—€kavk—6f0 Ek ka—i—e Z ( gef >VkaTk-E. (318)

From equation (3.13) it is easy to see that in the absence of a gradient of
temperature, the macroscopic electrical current is J = o - E, therefore:

o =¢ Ek: (—%) ViViTie = Ek: (-%) o(k), (3.19)

where o(k) = e*vivi7i. In the same way as for the density of states, the
energy dependence of the conductivity tensor can be obtained by:

Z(e) = %zk:a(k)%. (3.20)

With this, the transport tensors that depend on the chemical potential (u)
and temperature (7') can be obtained through:

o(Tip) = —/ { af“T ﬂde (3.21)

afu (T§ 6)

S(T: 1) e e

QeTU(T; 1) /
where the electrical conductivity still depends on the relaxation time 7, but
not the Seebeck coefficient. 7 is considered constant (no longer k dependent)
and can be taken out of the integral in equation (3.22). This is known as the
constant relaxation time approximation (CRTA). Here the bands are needed
to perform the calculations, but the BOLTZTRAP code neglects the effect
of temperature in such bands.

The carrier concentration is expressed within the rigid band approxima-
tion, which assumes that the bands are independent of the change in doping,
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and only shifts the chemical potential into the conduction (or valence) bands.
The rigid band approximation is strong, but it often works very well. In fact,
there is a report in which the BOLTZTRAP code has been used to compute
the effect of T1 doping into PbTe [27]. In this report, it has been proved that
the doping of T1 does not change anything in the shape of the bands, and
the improvement in the Seebeck coefficient is due to the mentioned shift of
the chemical potential. On the other hand, another work showed that for
the same compound [28], the BOLTZTRAP code overestimates the values
of S when the system is doped either with Na, K or Ag,Te. However, the
authors suggest that this overestimation is related to the CRTA, and not
to the rigid band approximation. The same work shows remarkable agree-
ment with experiments for the n-type PbTe within CRTA and rigid band
approximation.

3.3 BTE for phonons

The thermal conductivity, noted &, is a key property for thermoelectric appli-
cations. As we mentioned in chapter 1, the Phonon-Glass-Electron-Crystal
is an utopic concept that, in principle, gives optimal thermoelectric perfor-
mance. For this reason, many recent efforts have aimed at decreasing the
thermal conductivity to the glass limit. In the case of non-magnetic semi-
conductors, the principal carriers of heat are the phonons, therefore it is
reasonable to assume that the main contribution to the total thermal con-
ductivity in such materials comes from phonons. The properties of phonons,
such as frequencies or velocities, can be calculated via interatomic force con-
stants (IFCs). For example, at each q point, the phonon frequencies are
computed using the 2nd-order IFCs, and the group velocity of such phonon
is the derivative of the phonon dispersion dw/dq.

Nowadays the calculation of the second-order interatomic force constants
is a very straightforward calculation even for complex systems. It is possible
to compute IFCs via density functional perturbation theory (DFPT) where
the displacement of the atoms is treated as perturbations to the system. An-
other possibility is the so-called finite displacement method. This method
uses real-space supercells where the IFCs are calculated from the forces on
atoms subject to finite displacements [29].

The thermal properties of solids can be obtained by the Boltzmann trans-

port equation for phonons, but the full solution of this equation is compli-
cated and computationally demanding. This is mainly because the relaxation
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time must be calculated, unlike in the case of electrons where the relaxation
time is considered constant. In the electronic case, most of the interesting
phenomena involved in transport occur in the vicinity of the gap (around the
Fermi level), while for phonons, all the modes contribute to the scattering,
therefore increasing the computational cost. We must point out that RTA
differs from CRTA since RTA is the approximation used to solve the BTE,
and CRTA requires that the relaxation time does not change significantly
with the wavevector, so that 7 can be considered a constant.

There have been many efforts to compute accurately lattice thermal con-
ductivity (phonon contribution to the total thermal conductivity) by solving
BTE, especially within the relaxation time approximation [30]. Even though
RTA gives accurate results for bulk systems such as Si [31], Ge [32], dia-
mond [33], MgO [30] and others, the full solution of the Boltzmann transport
equation is needed whenever the phonon processes are more complex. The
ShengBTE [11] is a parameter-free ab-initio code that allows to compute the
lattice thermal conductivity, for bulk solids and nanowires from first princi-
ples through the iterative solution of the Boltzmann transport equation for
phonons.

So far, we had mentioned just the second-order IFCs which correspond
to pure harmonic oscillators. If the solids only have harmonic vibrations, the
lattice thermal conductivity will be infinite, giving perfect heat conduction.
This means that the phonons in the solid do not interact at all (infinitely
large phonon life-times), and they can freely travel through the solid. We
know that this is not true in real systems. The intrinsic thermal resistivity
in semiconductors and insulators arises from the non-harmonic dependence
of the interatomic potential, which causes the interaction between phonons.
[34, 31] If the phonon life-times and the lattice thermal conductivity are
needed, a correct description of these anharmonic oscillations is necessary.
The anharmonic oscillations are characterized by the third-order IFCs.

Similar to what we did in the previous section, we will start from the
definition of the macroscopic heat current. The Fourier law gives the rate of
heat flow Q per unit of area normal to a non-zero gradient of temperature
AT across a solid.

Qi = —ZﬁszTj, (3.23)
J

where r;; is the thermal conductivity tensor. This tensor is calculated in the
ShengBTE code by the solution of the linearized Boltzmann equation. In
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this equation, the distribution function of phonons is denoted by n (this to
avoid confusions with the electronic distribution function f). In the absence
of a temperature gradient or any other thermodynamic force, the phonon
distribution functions obeys the Bose-Einstein statistic (ng(wy), where w is
the angular frequency and A comprises both the phonon branch index and a
wavevector). Two processes could change the phonon distribution function
from its equilibrium state: diffusion due to the gradient of temperature and
the scattering coming from the allowed processes:

dny _ Ona oyl (3.24)
dt ot diff ot coll ’ .
where 3 5
T\ D)
—= =-AT -vy—= 3.25
Dt |y or (3.25)

where v, is the group velocity of the phonon mode A. Now, the collision
term in equation (3.24) depends on the specific scattering process. For single
crystals, the phonons can be scattered due to phonon-phonon interactions or
due to interaction with impurities. To make the calculation more practical,
ny can be expanded to first order in V1. We assume that the norm of VT
is small. Therefore we can approximate ny = ng(wy) — F - ATC?—TO where we
explicitly define a linear dependence on VI'. We define F), as:

Fy = 7)(vy + Ay). (3.26)

Where the only scattering sources allowed are the two- and three-phonon
processes, which result in the linearized BTE. In equation (3.26), 73 is the re-
laxation time of A which is commonly used within the RTA. A, is in units of
velocity and refers to how much the population differs from the RTA. There-
fore, if Ay = 0 the results correspond to those obtained within relaxation
time approximation. Here A, includes the two-phonon processes and the
absorption and emission process of the three-phonon scattering (Fig. 3.2). It
also includes the normal and the "umklapp” processes (Fig. 3.3). For more
details of the form of Ay see the paper of Wu Li and co-workers [11] and
the chapters 4 [35] and 5 [36] of the book ”Length-scale dependent phonon
interactions”.

In the ShengBTE code, the equation (3.26) is solved iteratively starting
from the zero-order or RTA where Ay = 0. The stopping criterion is when
the relative change in the conductivity tensor is less than a configurable
parameter with a default value of 107° [11]. The lattice thermal conductivity
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Figure 3.2: Schematic representation of the three phonon scattering. The left
panel shows the absorption process in which one phonon (q) scatters by absorbing
another mode (q') which yield a third mode (q”). On the right panel is shown
the other scattering process in which a phonon mode (q) decays into two phonon
modes (q') and (q").

tensor under the mentioned approximations is given by the equation:

1
R\ Zno(no -+ 1)(77/(4.))\)2V)\F)\, (327)
A

" kTN
where €2 is the volume of the unit cell and kg is the Boltzmann constant.
The determination of the three-phonon scattering is the most time consuming
calculation, but it is improved with the inclusion of symmetry where only
the q points inside the irreducible Brillouin zone are needed.

Now that the theory behind the code has been introduced, we explain the
workflow of how the lattice thermal conductivity can be obtained using the
ShengBTE code. As we just explained, to compute the lattice thermal con-
ductivity the second and third order interatomic force constants are needed.
First, we must obtain the second order interatomic force constants. These
IFCs allow to get the eigenvalues that lead to the phonon dispersion curves.
Then the phonon group velocities and the Bose-Einstein populations can be
obtained (see equation (3.27)). The need of real-space supercell approach
limits accurate results. Under this approximation the supercell can contain
thousands of atoms which is computationally expensive. Nevertheless, it is
not an impossible task for systems with moderate number of atoms in the
primitive cell. After we get the 2nd-order IFCs, the third order interatomic
force constants should be obtained. These 3rd-order IFCs are used to com-
pute the three-phonon scattering matrix elements, which together with the
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Figure 3.3: Schematic representation of the two types of phonon process. The
left panel shows the normal process in which the direction of the energy flow is
preserved while the right panel shows the "umklapp” process in which the direction
of the energy flow is reversed and the momentum conservation is given by q+q’ =
q” + G where G is a reciprocal lattice vector.

phonon frequencies and populations, lead to the phonon relaxation times.
The real-space supercell approach is also needed. As well as for the 2nd-
order IFCs, the third order force constants decay with the distance between
atoms. Therefore, the supercell should be large enough for the forces be-
tween farthest atoms to diminish to negligible values. In the ShengBTE
code, the farthest neighbor can be selected to reduce the computational cost,
but this parameter should be treated carefully. In some cases, interactions
up to fourth neighbors can be significant [37]. Finally, to compute the lattice
thermal conductivity, the reciprocal space has to be discretized into a grid
of q points, and the lattice thermal conductivity is calculated using equa-
tion (3.27). Figure 3.4 shows the workflow that we follow to obtain the lattice
contribution to the thermal conductivity using the ShengBTE code.
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Figure 3.4: Workflow to obtain the lattice thermal conductivity within the real-
space supercell approach. Purple boxes denoted results obtained, while gray boxes
stand for steps in the calculations. Figure adapted from reference [11]
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BisTes under pressure

Each material possesses a unique combination of properties, and it is our
work to find the compound that shows the properties necessary for specific
applications. The number of possible thinkable materials is huge, and syn-
thesizing new materials to measure such properties is expensive and unwise.
The application of pressure allows the manipulation of a fundamental param-
eter in solids, the interatomic distance. The properties of the materials are
strongly linked to their lattice parameters and, therefore, to the interaction
of the involved elements. In this way, it is possible to follow the evolution
of a given property through the application of pressure. For example, it has
been found that the band structure of semiconductors exhibit a strong de-
pendence with P [38].

From the experimental point of view, appling pressure to materials pro-
vides interesting results concerning intrinsic properties of such compounds
that could lead to new TE materials with large ZT. The goal of appliy-
ing pressure is to improve thermoelectric properties by changing the lattice
parameters; afterwards, improved properties under pressure could provide
targets that lead the synthesis of new materials. Another possibility consists
in inducing such pressure by synthesis procedures [39].

Pressure, as well as temperature, has a strong influence in the DOS of
the materials, especially in the vicinity of the energy gap, which is where the
most interesting phenomena related to thermoelectricity occur.

One of the advantages of pressure tuning, unlike temperature, is that the

changes caused by pressure are often not associated with large changes in en-
tropy [40]. Another advantage of pressure tuning is that it is fast and clean
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and does not, in general, introduce disorder or phase separation. Moreover,
recent developments in high pressure techniques allow the measure of a wide
variety of properties ”in situ” during the process of compression, or during
the release of pressure. The properties that can be measured are, among
others, the electrical conductivity, the Seebeck coefficient, the magnetic and
optical properties, or the crystal structure for pressure ranging from ambient
up to typically 100 GPa.

For experimentalists, the use of pressure is a great asset, but also for
theoreticians. From the theoretical point of view, it is easy to follow changes
in electronic, dynamic and transport properties with the increase of pres-
sure. On the other hand, elements such as antimony and arsenic, as well as
compounds such as bismuth telluride and antimony telluride seem attractive
to apply pressure tuning due to their anisotropic and layered nature. Addi-
tionally, BisTes stands as one of the best thermoelectric materials at room
temperature as well as ShoTes [2].

Hereafter, we show the pressure dependence on the thermoelectric prop-
erties of bismuth telluride. Our results are in very good agreement with those
obtained by experiments at ambient conditions. Moreover, we found strong
evidence that supports previous experimental results, for the existence of an
electronic topological transition (ETT) in BiyTes when the pressure reaches
2 GPa.

We start this chapter with the computational settings that we use for
BiyTes, and for further calculations in (GeTe),(ShyTes);.

4.1 Computational details

For all our calculations, we use the Vienna Ab-Initio Simulation Package
(VASP) that works in the framework of density functional theory (see chapter
2). We perform full relaxation of the crystal structure and atomic positions,
with deviations from the the target pressures not higher than 0.2 GPa, and
residual forces between atoms smaller than 2.0 x 107° eV/A. We carefully
look at the components of the stress tensor and not only to the values of
the trace to assure hydrostatic relaxation. For Bi;Tes under pressure, this
step was essential to obtain the evolution of the electronic and thermoelec-
tric properties with the increase of hydrostatic pressure. Continuing with
bismuth telluride, we enforced that components of the stress tensor do not
differ from the required pressure for more than 0.15 GPa. This requirement
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was not fulfilled when we included van der Waals functionals since we got
abnormally large c/a values. We discretize the Brillouin zone with a regular
grid of 10 x 10 x 10 k-points for the relaxation of the structure as well for the
self-consistent field calculation (SCF). Afterwards, we increase this grid up
to 20 x 20 x 20 k-points for the non-SCF calculation, this for a better rep-
resentation of the states in the vicinity of the bandgap. We used 300 eV for
the planewave basis expansion, this allowed us a convergence in the energy
of 1 x 1077 eV for all the structures under pressure. In this work, we em-
ployed the projector augmented-wave method for the pseudopotentials with
the PW91 generalized gradient approximation for the exchange-correlation
energy [25]. We include semi-core d-orbitals in Bi within the fully relativistic
scheme that allowed us to perform spin-orbit interaction calculations. For the
thermoelectric properties, we worked with the BOLTZTRAP code (chapter
3) [10].

Table 4.1 summarizes the settings that we used in our calculations in tel-
lurium based phase-change materials. For all the compositions and stacking
configurations, we used PBEsol pseudopotentials within the fully-relativistic
scheme and a cutoff energy of 400 eV. We do not include of semicore d-
orbitals in these calculations. We performed two types of calculations, with
and without spin-orbit interactions (SOC). The computational cost to per-
form calculations with the inclusion of SOC to obtain second- and third-order
interatomic force constants (IFCs) prove to be extremely high and unneces-
sary. To compare, we perform calculations for phonons with the inclusion of
SOC even though this was not required for further calculations of the thermal
conductivity. We indeed realized that the heat capacity is independent of the
inclusion of SOC. Therefore, we continued with our calculations of phonons
and third-order IFCs without the inclusion of spin-orbit interactions. The
mentioned second- and third-order IFCs were used to obtain the lattice con-
tribution to the thermal conductivity in these compounds with the use of
the ShengBTE code [11]. We take into account interactions up to the fourth
neighbor in our calculations of the third-order interatomic force constants.
However, the electronic structure depends strongly on the inclusion of SOC.
For this reason, we perform calculations with spin-orbit interactions to obtain
the Seebeck coefficient.
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VASP settings
Compound | k-grid | NSCF k-grid 2nd order 3rd order
GST124 6x6x6| 20x20x20 [3x3x3(2%) [2x2x2(2%)
GST225 8x8x2| 32x32x08 5x5x2(T) | 4dx4x2(T)
GST326 4x4x4] 16x16x16 | 2x2x2(2%) —

Table 4.1: K-point grid for the SCF and NSCF calculations and the size of the
supercell used for the calculation of the 2nd and 3rd-order IFCs. In parenthesis
we show the k-grid used in the calculations of the forces for the real-supercell
approach.

4.2 Crystal structure and electronic proper-
ties under pressure

Bismuth telluride is a well-known narrow-band-gap semiconductor [41, 42,
43, 44]. It has been widely studied over the past 30 years due to its outstand-
ing thermoelectric properties at room temperature [1, 18, 45, 3]. As well as
antimony, bismuth and arsenic, bismuth telluride possesses a layered nature
with a combination of short and long bond lengths [2]. It has been claimed
that the layered nature of BisTes together with the strong relativistic effect
arising from the large atomic weight of bismuth [44] gives the remarkable
thermoelectric properties [1, 3]. But it was not only the outstanding ther-
moelectric performance that originated the research on bismuth telluride. It
has been found that with the application of pressure, anomalies in the bulk
modulus arise together with a nonlinear behavior in the c/a ratio [46, 47]. It
has been claimed that these peculiarities are related to an electronic topo-
logical transition [46]. Moreover, it has been found experimentally that the
a pressure of 1 GPa is sufficient to increase the Seebeck coefficient[48], while
the mentioned ETT occurs around 3 GPa. It is well known that most of the
semiconductors become increasingly conducting with pressure, which leads
to a reduction of S since metals have a smaller Seebeck coefficient than semi-
conductors or insulators (see chapter 1).

In the following, we study the evolution of the seebeck coefficient as a
function of the hydrostatic pressure. We do not only address the changes
in thermoelectric properties, but also in the electronic band structure. Our
results give strong evidence for the existence of an ETT while the increase of
the Seebeck coefficient remains rather limited. We assume that the discrep-
ancy between our results and those obtained experimentally could be related
to the experimental conditions, for example, to grain boundaries that can
play an important role as a function of pressure.
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Trigonal axis

Figure 4.1: a) Brillouin zone of bismuth telluride. Red lines denote high-symmetry
lines while red dots mark special points. b) Rhombohedral primitive representation
of BigTes. ¢) Non-primitive hexagonal representation which contains 3 formula
units. d) View from the z-plane of the hexagonal representation.

For the relaxation of the cell with the applied pressure, we looked at the
components of the stress tensor to assure hydrostatic pressure instead of just
looking at the value of the trace. All details regarding to the settings in our
calculations as well as convergence criteria can be found here above. As we
mentioned, bismuth telluride possesses a layered atomic structure which can
be easily identified in the non-primitive hexagonal representation of the space
group #166 (R-3m). The primitive structure is rhombohedral with 5 atoms,
while the hexagonal representation contains 3 formula units with atomic lay-
ers along the c-axis with sequence Te2-Bi-Tel-Bi-Te2- (See figure 4.1). In
the non-primitive hexagonal representation, Tel atoms are located in the
(3a) Wyckoft position while Bi and Te2 occupy the (6¢) position (Tel in the
(0 0 0) position and Bi and Te2 in the (X £X £X) position in the rhombo-
hedral representation, where Xp, = £0.21 and Xp; = £0.4). The tellurium
atoms in adjacent layers are bonded via long range forces, but, since we do
not include such interactions in our calculations and we still get good agree-
ment with respect to experimental data, even under the effect of pressure,
we assume that these adjacent layers are partially bonded by covalent in-
teractions. Our results of the lattice parameters at zero pressure agree very
well with available experimental data of the system at ambient conditions.
We obtain a lattice parameter value of 10.54 A and a rhombohedral angle
equal to 24.48 degrees. These values are 0.67 and 1.26 % larger than those

39



Chapter 4. Bi,Te; under pressure

\\ / \--
~N
! 7/
o~ R /
> 1
[e) I~ .
~ | — With SOI 40.0
- — — Without SOT
i N
8 [ /\/\/ / 7
2 | AV RS % 1-05
VAN g
/\</\J\/ \ VK \-
PP ZAARLN
L A \/ LV XN~ = =3 .1
U a r Z F r L

Figure 4.2: Full electronic band structure with (solid black) and without (red
dashed) the inclusion of spin-orbit coupling.

reported experimentally [49]. For the internal fractional coordinates of the
atoms, we obtained values as accurate as 1% compared with experiments
(X7e = £0.212 and Xp; = £0.4 [50]). We expect the overestimation of the
lattice parameters since we work with GGA exchange-correlation, and it is
well known that GGA gives elongated crystal cells for this kind of layered
structures.

Up to here, all the results shown have been calculated with the inclusion
of spin-orbit interaction. In his work, Larson showed that the inclusion of rel-
ativistic effects, such as spin-orbit coupling, affects drastically the electronic
properties of BisTes due to the large atomic mass of Bi [44]. Without the
introduction of SOC, the bandgap is direct and is located incorrectly at the
I' point with a value of 388 meV. When SOC is taken into account, the gap
becomes indirect with the bottom of the conduction band along the Z-F high
symmetry line, while the top of the valence band is on the a-I" line where
”a” is not a high symmetry point (see figure 4.1). We obtain an energy gap
of 76 meV, which agrees very well with the experimental value of Park et
al. (83meV, [51]), but differs from the value at room temperature (130 meV
in Ref. [52]). In Ref. [51] the experimental lattice parameters are used and
only the internal coordinates are relaxed, while we perform a full relaxation
of the structure. Our calculations show that even at 5 GPa, not a single band
crosses the Fermi level, therefore, even if pressure reduces the electronic gap,
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Figure 4.3: Normalized changes in the lattice parameter (a), lattice angle («),
primitive cell volume (2) and atomic bond length for BisTes. Experimental volume
was extracted from Ref.[46]

the system remains semimetallic. We obtain a pressure coefficient of -15
meV /GPa. This gives us non-zero gap at 5 GPa which agrees with experi-
ments performed by Vilaplana et al. [53]. From resistivity measurements, Li
et al. obtained a pressure coefficient of -19.73 meV /GPa [54] while Vilaplana
reports a pressure coefficient of -6.4 meV /GPa for measurements of the opti-
cal gap. We compare our results related to the structural behavior of BisTes
under the effects of hydrostatic pressure with those reported in the litera-
ture. Figure 4.3 shows our results of the evolution of the ratio A/A( (where A
stands for the lattice parameter, the rhombohedral angle, the volume of the
crystal, or the first interatomic distance and A( represents the same param-
eter at zero pressure). As expected, the Te-Te bond length decreases more
rapidly than the Bi-Te bond length with the increase of pressure. In the xy
plane, the structure tends to rearrange due to the enhanced proximity of the
adjacent Te-Te layers which induces the increase of the rhombohedral angle.
The decrease of the lattice volume with pressure agrees very well with exper-
imental data. It is worth to mention that the Te-Te bond ratio decreases at
a similar rate as the volume ratio. Based on the change of the energy under
pressure, we extract the bulk modulus at zero pressure. Our theoretical bulk
modulus agrees with -13.4% of the experimental value: the computed bulk
modulus is 28.1 GPa while the experimental value is 32.5 GPa [46].
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Figure 4.4: Normalized changes in the c/a ratio for the hexagonal representation
of BigTes. Experimental data were extracted from Refs. [47, 46] (empty circles
and empty triangles, respectively)

For computational purposes, it is easier to work with BisTes in its prim-
itive representation, nevertheless to compare with available experimental
data, we plot the "c/a” ratio of the non-primitive hexagonal representation
as a function of pressure. In experiment as well as in our theoretical calcu-
lations, both a and c¢ parameters decrease. However the c/a ratio reaches
a minimum at 1.5 GPa experimentally and around 2 GPa in our calcula-
tions. Polian et al. attributed this change in the pressure evolution of the
c/a ratio together with the abrupt change in the Eulerian strains with re-
spect to Birch-Murnaghan’s equation of states (BM-EOS) to the onset of
an electronic topological transition [46]. According to these authors, in the
absence of transition, the dependence of the Eulerian strain with respect to
BM-EOS is linear. In BisTes, this linear dependence disappears around 3
GPa. Moreover, in Ref. [46], this abnormal behavior is only present in-plane
an not out-of-plane.

In figure 4.5 we plot the electronic band structure of bismuth telluride

under pressure. We chose the top of the valence band as reference (zero) en-
ergy in order to easily identify which bands evolve with P. Our calculations
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Figure 4.5: Electronic band structure of BisTes under pressure in steps of 1 GPa.
The valence band maximum is taken as the reference energy, and the horizontal
lines represent the limits of the electronic states contributing to the Fermi surfaces
plotted in Fig. 4.6 (doping case 0 GPa).

show important changes in the electronic structure of bismuth telluride under
pressure. The electronic bands change in a non-isotropic way, which deeply
affects the topology of the electronic structure. At zero pressure, bismuth
telluride exhibits two quasi-degenerate valence band maxima, one in the a-I"
line, and the other in the Z-F high symmetry line. The quasi-degeneracy is
broken with the applied pressure because the peak in the Z-F line shifts to
lower energies. This implies a real change in the electronic topology of the
system which suggests the existence of the electronic topological transition.

To further investigate this phenomenon, we plot the Fermi surface of bis-
muth telluride for a given carrier concentration as a function of pressure. The
result is shown in figure 4.6 and confirms that, at low values of carrier con-
centration, the electronic structure changes. The Fermi surface was obtained
at zero temperature. We impose the hole carried concentration reported in
experiments (p = 1.8 x 10" cm™3). As we mentioned before, the valence
band has two quasi-degenerate, only 7 meV energy difference, maxima at
zero pressure. This difference in energy increases to 21.5 meV at 1 GPa.
This pronounced change in energy between the two maxima causes the dis-
appearance of electronic states from the chosen energy window (the pockets
that disappear at 1 GPa are encompassed by a red circle in figure 4.6). Up
to now it is not clear if this reduction of available states will improve the
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Figure 4.6: View of the (1 1 1) direction plane of the Brillouin zone. Small pockets
represent available electronic states inside of the valence band. At 1 GPa, the top
of the valence band leaves the selected energy window (see figure 4.5). Red cir-
cles encompass the electronic states that vanish with the ETT. The characteristic
pockets at 1 GPa have merged at 2 GPa. The evolution of the Fermi surface above
2 GPa is not observable for the given energy window.

Seebeck coefficient because the system increases its metallic character which,
in principle, should reduce the thermoelectric performance.

4.2.1 Thermoelectric properties at zero pressure

Henceforward, we show results concerning the thermoelectric properties of
bismuth telluride. To start, we compare our results at zero pressure with
those available in the literature. After a full relaxation of the crystal, we use
the obtained electronic bands and the related density of states to calculate
transport properties using the BOLTZTRAP code. The symmetry of the
system, as we mentioned, gives anisotropic values of the transport proper-
ties. Hereafter we refer to the x-direction (symmetric with y-direction) as
in-plane and to the z-direction as out-of-plane. The electronic DOS neglects
this anisotropy and, in order to visualize it, we plot the so-called transport
distribution function (TDF, see equation (3.20)) as a function of the chemi-
cal potential. Even though the two plots seem similar, small changes in the
TDF result in large differences in the transport properties. In addition, the
anisotropy of the system plays a crucial role with the increase of pressure as
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Figure 4.7: Transport distribution function for in-plane (xx) and out-of-plane (zz)
of BisTes at zero pressure for different values of energy. Positive energies corre-
spond to electrons and negative, to holes.

we will show hereafter.

Generally, the Seebeck coefficient depends strongly on the doping level
[16]. In our case, the Seebeck coefficient ranges between +200 1V /K for dop-
ing levels ranging between £1 x 10%cm =3 at 300K. We imposed the carrier
concentration to be equal to that reported in Ref. [51]. We compared our
results of the temperature dependence of the Seebeck coefficient with those
reported in the experiments. Since transport properties are related to states
in the vicinity of the gap, we also include results of the Seebeck coefficient
at experimental bandgap. As we mentioned, our DFT calculations underes-
timate the electronic gap. We thus use the scissors operator to increase the
bandgap to experimental values. The scissors operator artificially opens the
gap by a rigid shift of the conduction band to higher energies. Figure 4.8
shows that our results using data straight from DFT are in better agreement
with experimental data than those obtained by the rigid shift of the elec-
tronic bands. At low temperature, the scissor correction is not needed and
at high temperatures the gap is actually shrinking by thermal effects. This
figure also shows the anisotropic nature of the Seebeck coefficient in BiyTes.
Our calculations allow the independent study of the evolution of in-plane and
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Figure 4.8: Temperature dependence of the in-plane and out-of-plane Seebeck
coefficient for the original energy gap obtained by DFT and for a gap artificially
increased using scissors operator for a doping level of p = 1.3 x 10! cm™3. Black
squares are experimental data extracted from Ref. [51].

out-of-plane transport properties. These values turn out to be different above
250K. There is a correspondence between the chemical potential and the car-
rier concentration: in BiyTes, it is necessary to remove 2.3 x 1073 electrons
per primitive cell to reach a carrier concentration equal to 1.3 x 10*cm™3.
The level in energy at which the total number of electrons is equal to 47.9977
(since our system contains 48 electrons) is equal to -80 meV. At the chosen
carrier concentration, the change in the slope between in-plane and out-of-
plane TDF is almost negligible. The effect of temperature is to move the
chemical potential to a level where the differences in the TDF are consid-
erable. This is also the reason why results with standard DFT and those
obtained with the scissors operator are similar at low T. The operator keeps
the bands unchanged and shifts the conduction band to higher energies which
pushes the maximum of the Seebeck coefficient to higher temperatures. Now
that we have checked that our results match nicely with the experimental
data at room conditions, we continue by of applying hydrostatic pressure to
the system and record the changes in the Seebeck coefficient.
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4.2.2 Thermoelectric properties under pressure

In figure 4.9, we collect our results concerning to thermoelectric properties
with pressure at 300K. Figure 4.9 shows in-plane (xx upper row) and out-
of-plane (zz lower row) transport distribution function with respect to the
chemical potential (a). On the other hand, the electrical conductivity (b)
and the Seebeck coefficient (c) are plotted as a function of the carrier con-
centration. As we mentioned, the BOLTZTRAP code gives the electronic
conductivity divided by the electronic relaxation time. We extract this re-
laxation time from experimental values of o (69.93 x 10® Siemens/m) [49].
We divide the experimental electronic conductivity at room conditions by
our value of 0/7. The obtained relaxation time is equal to 1.0 x 107!s. As
expected, the electrical conductivity increases with doping. However, the de-
pendence of o with the carrier concentration could differ from the observed
linear dependence, since there is no proof that the electronic relaxation time
varies linearly with doping. Nevertheless, our results show that the carriers
move easier in-plane than they do out-of-plane. Since the layers of atoms are
stacked in the z-direction, this result is reasonable as carriers should be able
to move less freely across layers than inside them.

Now, concerning to the Seebeck coefficient, we have no evidence of any
improvement of this property with pressure, at least not for hole doping
(negative values of carrier concentration). However, we find the same be-
havior for S in- and out-of-plane, but it differs if the system is doped with
holes or electron. When the system contains an excess of holes, the maxi-
mum of S constantly decreases with pressure independently of the direction,
and this maximum shifts to higher concentrations. The constant reduction
of the Seebeck coefficient agrees with the obtained results of metallization
of bismuth telluride with pressure. Nevertheless, we explore the behavior
under pressure at room temperature of the Seebeck coefficient, and we com-
pare our results with those obtained experimentally. First, we compute S at
300K as a function of pressure using the experimental carrier concentration
p = 1.2 x 10%em™ [55]. In a recent experimental work, Ovsyannikov et al.
do not report the carrier concentration, but the value of the Seebeck coeffi-
cient suggests a similar order of magnitude [48]. To compare with this last
work, we used the carrier concentration that matches better with our results
of S and those obtained experimentally at zero pressure. We assume that the
experiment was performed at room temperature. The resulting carrier con-
centration is p = 1.8 x 10¥cm ™2 which represents one order of magnitude of
difference with the experimental carrier concentration obtained by Ovsyan-
nikov and by Park. As it can be seen in figure 4.10, our results agree very
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Figure 4.9: (a) the transport distribution function as function of the chemical
potential, (b) the electronic conductivity computed with the BOLTZTRAP code
and multiplied by the relaxation time 1.0 x 10~'*s and (c) the seebeck coefficient.
All the properties were obtained at 300K, (b) and (c) are plotted with respect to
the carrier concentration where negative values denote p-type and positive values
denote n-type. Top row represent in-plane results while bottom row represent
out-of-plane.

well with the experimental reference. We expected a mismatch between our
results and those with low carrier concentration, since the low doping means
that the states involved are closer to the Fermi level, and our DFT calcula-
tions underestimate the bandgap. Even though the trend in the evolution of
the Seebeck coefficient is correct, we do not observe the improvement of S at
1 GPa found by Ovsyannikov [55]. More interestingly, a shoulder appears at
low carrier concentration. To explain this change in the trend, we will refer
to our results about the electronic topological transition. At zero pressure,
there are a certain number of available electronic states that form distinct
pockets in reciprocal space (See figure 4.6). Upon pressure increase, some
of those states vanish from the chosen energy window (the red circle encom-
passes the states in fig. 4.6 disappear). This causes the abrupt drop in the
Seebeck coefficient at 1 GPa. When pressure reaches 2 GPa, the characteris-
tic pockets merge and this produces the small improvement with respect to
the value at 1 GPa. Above 2 GPa, the Fermi surface does not evolve further
in the given energy window, and the metallization of the system produces
a constant decay of the Seebeck coefficient. We should remark that in the
work of Polian the effect of the ETT is only observed in-plane, whereas in our
calculations both in-plane and out-of-plane transport properties are affected
by the ETT. Moreover, our work shows that with the increase of the doping
level the ETT disappears.
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Figure 4.10: Pressure dependence of the in-plane (solid) and out-of-plane (dashed)
Seebeck coefficient a 300K. Experimental data was extracted from references [55,
48].

4.3 Conclusions

In this chapter, we presented our ab-initio calculations of structural, elec-
tronic and thermoelectric properties of BisTes under pressure. We found
that the increase of pressure induces metallicity in the system, however, the
compound remains semiconductor even at 5 GPa in agreement with exper-
imental data. The evolution of the Seebeck coefficient with pressure agrees
with what has been reported experimentally. Nevertheless, the peak found
in experiments at 1 GPa is not reproduced. When the system is doped with
electrons, the Seebeck coefficient slightly improves with pressure, similarly
to what was found for SbyTes [56]. The similarities between our results
and those obtained for antimony telluride suggest two things. First, the
anisotropic evolution of the electronic bands that we describe here should
be present in SbyTez. Second, the Seebeck coefficient in bismuth telluride
should be enhanced by non-hydrostatic pressure. The behavior of the elec-
tronic topology in ShyoTes could be of high interest. This compound exhibits
three quasi-degenerate maxima at the top of the valence band, instead of the
two peaks that we report here for bismuth telluride.

We also found strong evidence of the ETT in bismuth telluride with pres-
sure. We were able to reproduce the abnormal behavior of the ¢/a ratio re-
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ported in experiments, which was claimed to be the experimental evidence for
the mentioned ET'T. We supported this conclusion by plotting the Fermi sur-
face in which we showed that the applied pressure induces anisotropic changes
in the electronic topology of BisTes at 2 GPa. We attributed this ETT to
the non-linear band structure effects that occur when hydrostatic pressure is
applied to an intrinsically anisotropic semiconductor such as BiyTes.
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Ternary compounds;
(GeTe),(ShoTes)q

Phase Change Materials (PCMs) are considered for new generation of non-
volatile memories due to their rapid and reversible transition between crys-
talline and amorphous phases [57]. These kinds of materials have been exten-
sively studied due to their significant difference in the optical and transport
properties between amorphous and (meta-) stable phases [58, 59]. PCMs
exhibit unique properties that eventually could lead to further technological
developments besides their application as data storage memory devices. For
example, it is reasonable to consider PCMs as possible thermoelectric ma-
terials since they are based on tellurides [60] which is also the case for the
most popular thermoelectric materials (see chapter 4). Also, phase change
materials have relatively low thermal conductivities together with high and
adjustable electronic conductivities.

In this chapter, we present our results concerning to crystal structure,
electronic, dynamic and thermoelectric properties of three different quasi-
binary compounds formed by GeTe and SbhyTes. Table 4.1 summarizes the
settings that we use for each of the studied compounds to perform the DFT
calculation in the VASP code. For all our calculations related to pseudo-
binary compounds, we approximate the exchange-correlation energy with
the generalized gradient approximation within the Perdew-Burke-Ernzerhof
scheme revised for solids (PBEsol). We use the projector augmented-wave
(PAW) pseudopotentials which allows us to include spin-orbit interaction in
the calculations. In these pseudopotentials, we do not include semi-core d-
orbitals for the three elements involved. Lee and Jhi performed calculations
with and without the inclusion of Te d-orbitals for the stable and meta-sable
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crystalline structures in GST225 [61]. When the d-orbitals are included as
part of the pseudopotential, the lattice parameters and the interatomic bond
length increase by an average of 4 %. This behavior has been observed in
other materials such as III-V and II-VI compounds [62, 63]. The authors
found that even though the lattice parameters increase slightly with the
inclusion of d-orbitals, characteristic features such as the splitting in the
Ge-Te bond length in the Petrov configuration and the absence of it in the
KH structure for GST225 are independent of the inclusion of the semi-core
orbital. In agreement with the work of Lee and Jhi and in order to reduce
the computational cost, we decided not to include the Te d-orbitals in any
of our calculations.

5.1 (GeTe)1 (Sb2T63)1 (GST124)

The pseudo-binary compound (GeTe);(SboTes); (GST124) is a well-known
phase change material. GST124 possesses two (meta-)stable configurations.
The meta-stable structure is a rock-salt-like cubic phase while the stable
structure is thombohedral. According to Matsunaga and Yamada [64], the
transition between the meta-stable rock-salt structure and the stable rhom-
bohedral structure in GST124 is due to vacancy diffusion. In this work, we
focus on the stable configuration, which is rhombohedral. Even though it
is well known that the stable configuration of GST124 belongs space group
#166 (R-3m), there is a debate about the specific arrangement of the atoms
in this configuration. Matsunaga and Yamada suggested, based on their
x-ray diffraction measurements, that the stacking of the atoms in the non-
primitive hexagonal representation is similar to that in PbBiySe,. In that
structure, tellurium atoms occupy the 6(c) sites while germanium and anti-
mony atoms randomly occupy the 3(a) site with ratio 1:1 and the remaining
6(c) position with a ratio 1:3. This means that the layer corresponding to
the 3(a) Wyckoff position contains the same number of Ge and Sb atoms
while the layer labeled as 6(c) contains 3 atoms of Sb for one Ge atom [64].
On the other hand, Agaev et al. proposed a different atomic arrangement.
They suggested that the crystal structure of GST124 contains not only Te-Te
adjacent layers, but also Sb-Sb bonds. The stacking configuration proposed
in reference [65] for GST124 is: Ge-Te-Te-Sb-Sb-Te-Te-. The work carried by
Matsunaga and Yamada also shows that the meta-stable rock-salt structure
survives up to 500 K. Once the stable crystal structure has been achieved,
it remains in the rhombohedral configuration for temperatures ranging from
90 K up to the melting point (973 K).
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Lattice parameters Exp.[64] Exp.[66]
a 13.69 14.11 13.75
« 17.84 17.41 17.61
Atomic positions
This work Experimental data [64]
Site Atom u u Atom g
3(a) Ge 0 0 Ge/Sb  0.493/0.507
6(c) Te 0.133 0.133 Te 1
6(c) Te 0.292 0.290 Te 1
6(c) Sh 0.424 0.427 Ge/Sb  0.253/0.747
Bond lengths Atomic angles
Ge-Te 2.959 Ge-Te-Ge 55.11
Sb-Te 2.99 - 3.16 | Sb-Te-Sb 54.83
Te-Te 3.669

Table 5.1: Parameters of the crystal structure of GST124. Lattice parameters and
bond lenghts are in A while angles are in degrees. The atomic position (u) referes
to the position (u, u, u) in the primitive rhombohedral structure. The atoms
in the positions 6(c) have a symmetric site at (1-u, 1-u, 1-u). The experimental
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parameter ”g” is the percent of occupancy at such site.

Another early work carried by Kooi and De Hosson [66] argued that the
atomic ordering proposed by Agaev for GST124 is erroneous as well as the
stacking configuration proposed by Petrov et al. for GST225 [67]. They
reported that the real crystal structure of GST124 has a stacking sequence
with only Te-Te adjacent layers, these layers being surrounded by Sb atoms
which gives the following stacking configuration: Ge-Te-Sb-Te-Te-Sb-Te- [66].
This last proposal is the most widely accepted since it contains the pseudo-
binary structure where one chemical formula of SbhyTes is stacked upon one
chemical formula of GeTe. More recently Da Silva and co-workers showed
that the stacking configuration proposed by Kooi and De Hosson is the one
with the lowest energy [68].

5.1.1 Electronic and dynamical properties

In this work, we perform calculations on the primitive rhombohedral cell
which contains seven atoms with the stacking configuration proposed by
Kooi and De Hosson [66]. We find that under this configuration the sys-
tem is semiconductor. Our relaxed structure agrees very well with the avail-
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Figure 5.1: Left) Primitive rhombohedral representation of GST124. Right) Non-
primitive hexagonal representation which contains 3 formula units. Green, blue
and purple balls represent Ge, Sb and Te atoms, respectivelly.

able experimental data. Our results concerning the thermoelectric properties
of GST124 overestimates the values of the Seebeck coefficient found in the
literature, but within a small margin, while the lattice contribution to the
thermal conductivity agrees well with available data.

The primitive rhombohedral and the conventional hexagonal representa-
tions of the stable structure of GST124 are shown in the figure 5.1. The atoms
are stacked along the c-axis in the hexagonal cell. Our obtained rhombohe-
dral lattice parameter is 13.6873 A while the rhombohedral angle is 17.83
degrees. These values are in good agreement with the experimental data
reported by Kooi and De Hosson (13.885 A and 17.6 degrees, respectively)
[66]. Our calculation underestimates the crystal cell length by -1.42 % while
the lattice angle is overestimated by 1.3%. We measure the atomic bond
lengths and we compare them with those in the literature for GST225 [69]
since, as far as we know, this data is not available for GST124. The Te-
Te interlayer distance reported for GST225 is 2.13 % larger than our value
(here 3.67 A for 3.75 A experimentally). The Ge-Te bond length obtained is
2.96 A, which is in the range of values that encompass experimental data for
GST225 (between 2.89 and 3.19 A). Finally, the large spread in the Sbh-Te
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Figure 5.2: The calculated electronic band structure and the corresponding elec-
tronic density of states for GST124. The high symmetry points are similar to those
showed in the figure 4.1.

bond length reported experimentally is observed in our results. We obtain
two lengths for the atomic bonds with a difference of 0.17 A (2.99 to 3.16 A),
while experimentally the spread is 0.3 A with lengths from 2.89 to 3.19 A.

Figure 5.2 shows the electronic bands through high symmetry points and
the related density of states. The space group of GST124 is the same as
for BisTes, therefore, the Brillouin zone is that of figure 4.1. The computed
electronic band gap is 0.225 eV, which is almost the half of the experimental
value reported by Park et al. (0.55 eV) [70]. According to our results, this
band gap is direct and is positioned on the high symmetry line that connects
the center of the Brillouin zone with the Z high symmetry point located at the
top of the BZ (see figure 4.1). References [71] and [72] agree that the system
is metallic, with an increase of the electrical resistivity with the enhancement
of temperature. Our results concerning the electronic properties of GST124
reveal that the crystal structure has semiconductor character. This leads to
the assumption that GST124 in the stable configuration as well as GST225,
is a degenerate semiconductor. Here we refer as degenerate semiconductor a
semiconductor with a well-defined electronic band gap but with metallic-like
transport properties.
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Figure 5.3: Phonon density of states for the stable configuration of GST124 ob-
tained with a 3 x 3 x 3 supercell using finite displacement method.

It is well known that DFT systematically underestimates the band gap.
Nevertheless, as we show in the previous chapter for BisTes, this does not
affect significantly the Seebeck coefficient. On the other hand, the different
curvatures between the valence and the conduction bands make that, at low
values of carrier concentration and high temperature, the Seebeck coefficient
could show the opposite sign depending of the nature of the carriers, i.e.
positive values of S when electrons are the majority carriers. This behavior
has been found by Thonhauser in ShyTes under pressure [73, 74]. Neverthe-
less, this effect is only present when the system is doped with small values
of electrons (10" cm™3) as we will show hereafter.

Regarding the dynamical stability of the system, we compute the second
order IFCs with a regular grid of g-points of 3x 3 x3. With those IFCs, we use
the PHONOPY code [29] to plot the phonon density of states (figure 5.3).
The small negative frequency in the figure arises from imperfection of the
atoms relaxation (although the maximal residual force is less than 1.2 x 107°
eV/A). This phonon density of states is similar to that obtained for GST225
in the Kooi and De Hosson (KH) configuration, where the phonon states
increase almost linearly up to 33 cm™! and the maximum is reached around
100 cm ™.

56



Chapter 5. Ternary compounds; (GeTe),(SbyTesz);

5.1.2 Thermoelectric properties

After we assure the dynamic stability of the structure, we proceed to com-
pute the thermoelectric properties of GST124. In the literature, it has been
found that GST124 could be doped with both types of carriers. For this
reason, we plot the doping dependence of the Seebeck coefficient at 3 dif-
ferent temperatures (see figure 5.4). There are experimental reports that
claim that the carrier concentration for the stable configuration of GST124
is around 2 x 10?° cm™3. In a recent work, Siegrist and co-workers explain the
changes in phase as a function of the annealing temperature [75]. They mea-
sure the electrical resistivity of GST124 where, from the amorphous phase
to the stable crystalline phase, the electrical resistivity decays by 3 orders
of magnitude. The authors show that the annealing temperature at which
the stable configuration is reached is around 530 K. Based on these results,
Zhang et al. show that at 530 K a metal-to-insulator transition occurs due
to the diffusion of the intrinsic vacancies [76]. On the other hand, Shelimova
and co-workers in their extensive work on layered compounds, agree that the
carrier concentration on the stable crystal structure of GST124 is around 102
cm 3. Neither of the mentioned experimental papers explicitly refers to the
type of carriers in the system (electrons or holes), but the Seebeck coefficient
measurements in reference [71] indicate that the majority carriers are holes
since the Seebeck coefficient is positive. As we have previously mentioned,
metals have small Seebeck coefficients. Our results show that, in the range
of carrier concentration reported in the mentioned experimental papers, the
Seebeck coefficient is indeed small.

We plot the changes of the Seebeck coefficient with respect to doping not
only for p-type of carriers, but also for n-type, even though in our knowl-
edge, there is not experimental data that proves that GST124 can be doped
with electrons. However, the theoretical paper of Sun et al. where the en-
ergy formation of different types of vacancies has been studied, suggests that
GST124, contrary to GST225, can be doped with electrons [77]. Our results
reveal that in the case when the system is a p-type semiconductor, an opti-
mization of the Seebeck coefficient with the carrier density is needed. The
value of S at room temperature can be at least five times larger if the carrier
concentration is reduced from 2 x 10?° cm ™ to 5x 10 em~3. Nevertheless, it
is better to keep a high value of hole doping if the objective is a thermoelec-
tric material with the maximum thermoelectric performance at temperatures
higher than room temperature.

There is not much improvement when the type of carriers is changed from
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Figure 5.4: Doping dependence of the trace of Seebeck coefficient at three different
temperatures. We explore the behavior when the system is doped with electrons
(solid lines) and with holes (dashed lines).

holes to electrons. Our results also show that for low carrier concentration
and high temperature, the Seebeck coefficient is positive even though the
system has been doped with electrons. As we mention, this is due to the
difference in the effective mass between the carriers in the top of the valence
bands, and those in the bottom of the conduction band.

Based on the experimental reports of the carrier concentration, we fix the
doping to plot the temperature dependence of the Seebeck coefficient, and
we compare it with the available experimental data. Figure 5.5 shows our
results for the in-plane (solid line) and out-of-plane (dashed line) Seebeck
coefficient and its dependence with temperature together with experimental
data [71, 78]. Our results overestimate experimental values. Nevertheless,
we reproduce the overall trend with the increasing temperature. Also, our
calculations do not show any maximum of the Seebeck coefficient even at 750
K in agreement with the experimental data. This could be important since
the system could work as a thermoelectric generator, where the maximum
thermoelectric performance is required at higher temperatures. The maxi-
mum value of S found experimentally is around 100 pV/K at 750 K. This
value is almost the half of the peak reported for BiyTes at 300 K. Again, the
advantage is that the maximum is at 750 K instead of room temperature. We
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Figure 5.5: Temperature dependence of the in-plane (solid line) and out-of-plane
(dashed line) Seebeck coefficient at fixed carrier concentration. The experimental
data were extracted from Refs. [71, 78].

assume that the overestimation of our results could be due to experimental
procedures, and the possibility to find different phases in the same sample
[75]. One can note that the two experiments differ significantly in the 300 K
- 450 K temperature range.

After obtaining the temperature dependence of the Seebeck coefficient,
we proceed to computing another important thermoelectric property, which
is the thermal conductivity. More precisely, we calculate the lattice contri-
bution to the thermal conductivity. The agreement with the experiments
in reference [79] is remarkable. Our average theoretical lattice thermal con-
ductivity is only 30 % larger than that obtained experimentally using the
Wiedemann-Franz law. The overestimation of the theoretical value was ex-
pected, since in the experiment, there could be many different minor scatter-
ing sources, i.e. impurities, defects, residual isotopic disorder, among others.
Moreover, the limitations of DFT to predict lattice parameters and forces
are well known [11]. Nevertheless, the obtained theoretical values are in very
good agreement with experimental data.

Regarding the type of phonon scattering process, we find that the iterative
solution for the BTE is 14 % larger than the relaxation-time approximation.
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Figure 5.6: Temperature dependence of the components of the lattice contribu-
tion to the total thermal conductivity as well as the average of the trace of the
thermal conductivity tensor and the experimental data. Experimental points were
extracted from the work of Konstantinov et al. [79]. The lattice contribution to the
thermal conductivity reported in experiments was obtained using the Wiedemann-
Franz law.

This value is small but not negligible. Li et al. [11] report that for pure Si,
the converged value of k; is just 4 % larger than the value obtained within
RTA. This means that, even though in GST124 the phonon scattering is
governed by Umklapp process, the contributions due to normal processes are
significant. Our calculations allow us to explore individually the components
of the tensor of the thermal conductivity. In this sense, we find that the
normal processes are more significant in the in-plane component of the lat-
tice thermal conductivity, since the relaxation time approximation gives 86
% of the converged value. While the Umklapp processes dominate almost
completely in the out-of-plane component of the thermal conductivity.

5.2 The case of (GeTe)s(SbyTes);: GST225

Among all the phase change materials, GeySheTes (GST225) is the most
promising PCM for non-volatile memory devices in terms of speed and sta-
bility [80]. As for GST124, GST225 exhibits two different phases at room
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temperature. The meta-stable phase is cubic (rock-salt like) and the stable
one is trigonal. The mentioned data storage process involves the reversible
transition between amorphous and meta-stable crystalline phases. On the
other hand, recent studies reveal that the stable trigonal structure of GST225
shows a topological-insulator behavior [57, 81].

5.2.1 Electronic and Dynamical Properties

The stable trigonal structure of GST225 belongs to space group #164 (P-
3m1l) with nine atoms per primitive cell. Layers of atoms are stacked along
the c-axis. The stacking configuration of atomic layers remains unsettle. In
an early work, Petrov and co-workers proposed the stacking sequence Te-Sh-
Te-Ge-Te-Te-Ge-Te-Sb- [67]. Hereafter, we will refer this stacking configura-
tion as Petrov. More recently (2002), Kooi and De Hosson proposed another
stacking sequence which interchanges the Ge and Sb atoms in the Petrov con-
figuration [66]. In that, the Te-Te adjacent layers are surrounded by antimony
atoms instead of by germanium atoms (KH configuration). Together with
these two proposed stacking configurations, recently, another has been pro-
posed named as inverted-Petrov (i-Petrov) which consists of an interchange
of adjacent Te and Ge atoms in the Petrov structure. This gives the follow-
ing stacking configuration: Te-Sb-Te-Te-Ge-Ge-Te-Te-Sb-. The last stacking
configuration includes Te-Te adjacent layers, as well as one Ge-Ge bond.
We compute, by ab-initio means, the stability of these different stacking se-
quences, as well as their electronic and dynamical properties, together with
the Seebeck coefficient and the lattice thermal conductivity, and compare our
results with the available experimental data. We show that the KH configu-
ration has the minimum energy; nevertheless this stacking sequence exhibits
a mismatch for specific structural properties with respect to experimental
data. Moreover, we find dynamic stability for the three proposed stacking
configurations, and we demonstrate that just by changing the arrangement
of the atoms in the structure, the material goes from semiconductor to metal.
We also discuss previous theoretical results that claim that GST225 in the
inverted-Petrov configuration exhibits Dirac-cone like band structure?.

We perform full relaxation of the three proposed stacking configurations
with and without spin-orbit interaction. We observe that the non-inclusion of
SOC induces a small pressure in the system (close to 2.5 kbar) which means

2The Dirac-cones are responsible for many interesting properties in graphene, such as
the high electron mobility and conductivity, since electrons behave as massless fermions
whose transport can be treated as ballistic (perfect transmission).
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Stacking
KH Petrov i-Petrov
AE (meV /atom) 0 15.92 19.13
Lattice parameters (A) Ref. [69]
a 4.23 4.2 4.16 4.22
c 16.88 17.14 17.59 17.24
Bond length (A)
Ge-Te 2.95-2.97 2.81-3.17 2.8 2.89-3.19
Sb-Te 2.99-3.16 3.00-3.14 2.98-3.13 2.89-3.19
Te-Te 3.65 3.65 3.64 3.75
Ge-Ge 2.95

Table 5.2: Lattice parameters and atomic bond lengths for the three proposed
stacking configurations in GST225.

Atomic positions GST225

KH Petrov i-Petrov Ref. [69]
Site x y Z Atom Z Atom Z Atom Z Atom
1(a) 0 0 0 Tel 0 Tel 0 Tel 0 Tel

2(d) 2/3 1/3]0101 Ge |0117 Sb | 0114 Sb | 0.106 Ge/Sb
2(d) 1/3 2/3]0199 Te2 | 0219 Te2 | 0214 Te2 | 0207 Te2
2d) 0 0 |[0317 Sb 0338 Ge |0370 Te3 | 0327 Sb/Ge
2(d) 2/3 1/3]0420 Te3 | 0421 Te3 | 0451 Ge | 0417 Ted

Table 5.3: Atomic positions for the three proposed stacking configurations of
GST225
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Petrov i-Petrov

Figure 5.7: Primitive rhombohedral representation of GST225 for the Kooi and
De Hosson (left), the Petrov (center) and the inverted-Petrov (right) stacking
configurations. The color of the balls are the same as in figure 5.1.

that with SOC the cell expands. The expansion of the cell is not larger than
0.1 % in each direction (For the KH configuration the expansion was 0.046 %
and 0.052 % for the a and ¢ parameter, respectively). Nevertheless, the elec-
tronic topology changes significantly when the SOC is included. Figure 5.8
shows the electronic band structure with and without spin-orbit coupling for
the KH stacking sequence. We observe that the SOC reduces the gap and
change it from indirect to direct. In summary, the inclusion of spin-orbit
coupling in this particular case does not affect much the lattice parameters,
however, it strongly affects the electronic band structure.

Hereafter, we will refer to the results with spin-orbit interaction. We sum-
marize in table 5.2 our results regarding structural properties of each of the
three stacking configurations of GST225. We find that the three structures
are very close in energy so that any of them could be present at room tem-
perature. The theoretical lattice parameters of all three configurations agree
very well with the available experimental data. The stacking sequence pro-
posed by Kooi and De Hosson has the lowest energy; therefore this structure
is the most stable. However, discrepancies between theoretical and experi-
mental data arise when we look at the Ge-Te bond length. Experimentally it
has been found a spread in this bond length of about 0.3 A. This distortion
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Figure 5.8: Electronic band structure of GST225 in the KH stacking sequence with
(black) and without (red) the inclusion of spin-orbit coupling.

of the Ge-Te bond length is also present in the stable structure at room tem-
perature of GeTe. This binary compound has a distorted rock-salt structure.
The mentioned distortion occurs along the [1 1 1] direction in the rock-salt
representation. The deformation of the cubic cell induces the formation of
distorted octahedras in which the Te atoms are surrounded by three Ge atoms
at a shorter distance (2.85 A), and others three germanium atoms at a longer
distance (3.15 A). At the transition temperature of 716 K the rock-salt angle
reaches the value of 60 degrees which corresponds to the perfect rock-salt
structure [82, 83]. The distortion of the rock-salt structure is known as the
Peierls distortion. The half filling of the p-orbitals in the system originates an
opening in the bandgap, and also favors the creation of short and long bonds
in three orthogonal directions [84]. This difference in the bond length is al-
most completely absent in the KH configuration, while the Petrov sequence
indeed shows a difference of 0.38 A in the Ge-Te bond length. Due to the
nature of the stacking configuration named as inverted-Petrov, the structure
does not show any spread at all. The atomic bond lengths were obtained by
ab-initio means by Lee and Jhi with similar results to those that we show here
(Ge-Tegy = 2.95—2.97 A, Sb-Tery = 2.93 —3.07; Ge-Tepeyron = 2.78 —3.13
A, Sb-Tepetro = 2.95 — 3.08 [61]). The authors relate these changes in the
atomic bonds to the proximity of the Te-Te adjacent bilayer. In the Petrov
configuration the Ge atoms are linked to tellurium atoms that belong to the
above mentioned Te-Te bilayer. Therefore, it can be assumed that the inter-
action between the Ge atoms and those ”pseudo-vacancies” situated between
Te atoms in the mentioned layers is stronger than the interaction between
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these ”"vacancies” and the Sb atoms in the KH configuration. This gives us
a hint that the stacking configuration proposed by Petrov and co-workers
could be the one present in the experiments. Other bond lengths such as
Sb-Te and Te-Te agree with available experimental data. We do not take
into account long-range interactions, nevertheless the Te-Te bond length is
also in line with experimental data.

Figure 5.9 shows the electronic band structures of the three different
stacking configurations. We find that two of the three different configura-
tions show the metallic behavior, while the KH configuration is semiconduc-
tor. Experiments show that the stable structure of GST225 has a bandgap of
about 0.5 eV while our theoretical gap is about 0.2 eV. On the other hand, the
temperature dependence of the electrical conductivity suggests that GST225
is a metal. This is because the electronic conductivity decreases with the
increase of temperature, which is the characteristic behavior of a metallic
compound. Therefore, GST225 is a degenerate semiconductor. In their ex-
perimental work, Lee and co-workers [85] prove that the stable structure of
GST225 has a high carrier concentration at low temperatures (5 K). The
observed carrier density of 2.7 x 10 cm™3 (close to the 0K), together with
the measure of an optical band gap of 0.5 ¢V lead them to determine that
the Fermi level in this compound must lies inside the valence band. They
define this behavior as characteristic of a degenerate semiconductor.

From our band structure, we observe discrepancies with similar theoret-
ical reports. There are in the literature three different papers that show
results with respect to the electronic structure of GST225 in the KH stack-
ing configuration. These three works used GGA approximation; two of the
calculations were performed with PBE (Tominaga [86] and Sa [87]) while the
last one does not specify the scheme type used in their pseudopotentials (Kim
[57]). We also used the GGA approximation but with the PBEsol scheme.
References [86], [87] and [57] show only the electronic structure in two differ-
ent high symmetry lines while we explore almost all the first Brillouin zone.
Due to the selection of the paths in which the electronic structure was ob-
served, the three previous studies agree that the electronic gap of the KH
configuration is direct and lies in the I' point. We also find that the electronic
gap is direct, but on the I'-A high symmetry line. As we mentioned, the KH
stacking sequence has a band gap of around 0.2 eV while in reference [86]
the electronic band gap is slightly smaller.

Now with regard to the Petrov configuration, there are also differences
between our work and those in the literature. However, as well as for the KH
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structure, we think that it is just related to the choice of the xc functional
which produces a shift of the electronic bands. Here, contrary to the three
mentioned works, the structure is metallic with bands crossing the Fermi
level at different points in the irreducible Brillouin zone.

The larger discrepancy between our work and those reported in the lit-
erature is concerning to the i-Petrov configuration. References [86] and [87]
report the electronic structure of the i-Petrov stacking sequence with some
differences between them. Sa and co-workers [87] report a direct band gap
of 0.01 eV located at the I' point, which differs from the work of Tominaga
et al. [86] that claim the existence of a Dirac-cone like band structure. Both
studies use PBE xc and they overestimate the c-parameter by 8.5 (Tominaga
et al.) and 11% (Sa et al.) with respect to the reported experimental data.
We show in our previous work that pressures as small as 2 GPa can induce
electronic topological transition in anisotropic semiconductors such as BisTes
[88]. We realize that the use of PBEsol corrects the large overestimation of
the c-parameter in the i-Petrov stacking configuration since we obtain an
accuracy of 2 % with respect to experimental data (see table 5.2). Our re-
sults show that the i-Petrov structure is metallic with the top of the valence
band located in the A-L high symmetry line while the bottom of the con-
duction line is at the L point. The electronic band structure that we obtain
using PBEsol with the crystal structure and atomic positions obtained from
the relaxation using standard PBE were the same than those that we ob-
tain with plain PBE, and similar to those reported in the literature [87, 86].
The strain induced when the exchange-correlation is changed from PBE to
PBEsol is almost isotropic with a negative pressure of -22.2 kbar in-plane
and -21.9 kbar out-of-plane. This negative pressure provokes a reduction of
-0.05 A and -1.53 A for the length of the a and ¢ parameters, respectively.
With these calculations, we assure that the change in the electronic topol-
ogy of the system is independent of the pseudopotential, and is related to
the induced strain to the cell due to the choice of the exchange-correlation
functional. The repulsion of the electronic bands with compressive strain
has been reported in the work of Sa [87]. Even though they applied com-
pression up to 4 % of the c-parameter length, the change in the electronic
topology with the applied pressure is noticeable even at values as small as
2 % of the c-parameter length. Therefore, we believe that the Dirac-cone
like band structure shown by Tominaga et al. relates to an electronic state
present at some specific strain of the crystal cell. However, we recommend a
full mapping of the first BZ since it is possible the bands crosses the Fermi
level at points that differs from the the I' point.
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Figure 5.9: Electronic band structure along high symmetry lines for the proposed
stacking configurations. Black, red and green curves denote the Kooi and De
Hosson, the Petrov and the inverted-Petrov stacking configurations respectively.

The band structure provides information about the performance of the
Seebeck coefficient. We expect larger values of S for the KH structure due to
its semiconductor nature. This does not mean that this structure has better
thermoelectric performance overall. Up to now we only have an insight of
the electronic transport properties and we lack the dynamic contributions.
We also need to compute the Seebeck coefficient as a function of the carrier
concentration to ensure that KH structure indeed possesses the highest ther-
moelectric efficiency.

We mention that the agreement in the splitting of the Ge-Te bond length
in Petrov configuration suggests that this could be the structure that it is
present in the experiments. Sosso et al. have shown that indeed the KH
structure is the one with the lowest energy [89]. They also show the absence
of the Peierls distortion in the Ge-Te bond in this structure. They performed
their calculations with PBE xc and computed the phonon frequencies at the
I' point for each of the two mentioned stacking configurations. The authors
found an instability in the KH structure. They claimed that this negative
frequency at the center of the Brillouin zone is so small (-9 cm™!) that it
could stabilize at room temperature [89]. Figure 5.10 displays the phonon
density of states (PDOS) for the proposed stacking configurations®. ~ We

3The phonon band structure for each of the three configurations is shown in the ap-
pendix
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Figure 5.10: Phonon density of states for the three stacking configurations.

find that the three structures are dynamically stable (without a single neg-
ative frequency). We assume that the discrepancy between our results and
those obtained by Sosso and et al. comes from the choice of the exchange-
correlation functional; we chose to use PBEsol which improves the agreement
on the lattice parameters with respect to experimental data. This result in-
dicates the strong correlation between the lattice parameters and the phonon
frequencies on GST225. While the inclusion of SOC changes the lattice pa-
rameters about 0.05 %, the use of PBEsol instead of PBE improves the usual
overestimation produced by GGA as much as 2.4 %. The drop in the PDOS
for the Petrov and i-Petrov stacking configurations is related to a quasi-
bipartite phonon dispersion in these structures. The phonon band structure
(see figure in the appendix) has two groups of frequency bands. The lower
group has twelve branches while the other group contains the remained fif-
teen. This kind of bipartite vibrational structure has been reported for the
quasi-laminar compound SnSe in the Pnma structure [90].

After we calculate and highlight differences in the electronic, dynamic

and structural properties of the stacking configurations, we now move on to
the thermoelectric properties.
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Figure 5.11: Carrier concentration dependence of the Seebeck coefficient at 300K.
Solid and dashed lines denote in-plane and out-of-plane S. Experimental data was
extracted from Ref. [71]

5.2.2 The Seebeck coefficient and Lattice Thermal Con-
ductivity

The Seebeck coefficient is a property strongly related to the electronic topol-
ogy of the system. Since the three configurations have different electronic
structures we expect substantial differences in S. Two configurations show
metallic behavior with bands crossing the Fermi level at different points in
the Brillouin zone. The metallic nature certainly will lead to small relative
values of the Seebeck coefficient. Furthermore, the dependence of the Seebeck
coefficient with the electronic structure is linked to the carrier concentration.
A recent theoretical work carried by Sun et al. shows that the lowest defect
formation energy in GST225 is for the vacancy of Ge atoms (0.350 eV), which
leads to a high concentration of vacancies that makes GST225 a permanent
p-type semiconductor [77]. We perform calculations on the Seebeck coeffi-
cient as a function of the carrier concentration at 300 K for each stacking
configuration. We only consider positive carriers in accordance to the work
carried by Sun.

Figure 5.11 shows our results related to the Seebeck coefficient and its
dependence with the carrier concentration. The strong link between S and
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Figure 5.12: Temperature dependence of the in-plane (solid) and out-of-plane
(dashed) Seebeck coefficient at experimental carrier concentration for the three
proposed stacking configurations. Experimental data was extracted from Ref. [71].

the doping level is demostrated in the KH stacking sequence (semiconductor)
where the values of the Seebeck coefficient vary from 300 pV/K at 2 x 10
cm ™ down to nearly 25 uV/K at 1 x 10*' cm™. These values agree with
characteristic values in semiconductors such as PbTe, SbyTes; and BiyTes
[27, 56, 10]. The other two structures with metallic electronic topology, as
expected, exhibit considerably smaller values than those obtained for the KH
configuration. However, both stacking configurations, Petrov and i-Petrov,
are compatible with the available experimental data, with the value of KH
being slightly larger than the experimental results. The figure also shows
that the Seebeck coefficient could be optimized with respect to the carrier
density. In the case of the KH structure the optimal value of doping is
around 2 x 10 em 3. With regard to the metallic-like structures the optimal
carrier concentration is near to 1 x 10?° cm™3. The optimal values of the
carrier density could eventually, double the value of the Seebeck coefficient.
Nevertheless, the experimental electronic gap suggests that GST225 could be
suitable for a high temperature thermoelectric application. For this reason,
we explore the temperature dependence of the Seebeck coefficient at fixed
doping. We impose a carrier density equal to the experimental one reported
by Shelimova (2.9 x 10%° cm=3) [71].
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Figure 5.12 shows the excellent agreement between our theoretical results
and the data reported by Shelimova. The structures named as Petrov and
i-Petrov are those with the better agreement with respect to experimental
data. The structure with semiconductor behavior clearly overestimates the
experimental results. Nevertheless, our results agree with experiments since
the value of the Seebeck coefficient increases continuously with temperature.
This confirms the hypothesis that GST225 would exhibit good thermoelec-
tric performance above room temperature.

At high temperatures, the stability of the compound could be an issue
since phase transitions could be present. Friedrich et al. [91] showed the
rock-salt-like GST225 structure evolves from cubic to rhombohedral around
583 K together with an abrupt drop in the electrical resistivity. The work of
Lyeo and et al. [92] mentions that once that the sample has been heated up to
673 K, and then cooled back to room temperature; the thermal conductivity
remains almost unchanged. This behavior suggests that once the rhombo-
hedral phase is achieved this phase remains intact after cooling. Moreover,
reference [71] shows the temperature dependence of the electrical resistivity
from 100 up to 800 K and there is no indication of phase transition. For all
these reasons, we are confident that the experimental results show transport
properties of the stable configuration of GST225.

Finally, we compute the lattice contribution to the thermal conductiv-
ity. Even though our calculations are not taking into account the electronic
contribution to the thermal conductivity, the agreement with available ex-
perimental data is reasonable. Our results show that the KH structure has
the lowest thermal conductivity. The same analysis that we did for GST124
applies for GST225. We realize that the contribution to x; that comes from
normal processes is smaller than in GST124 (KH,, = 5.3%; KH., = 0.7% at
300 K). Our calculation does not only allow us to assess the contribution that
comes from either normal or Umklapp processes, but it is also possible to
observe the importance of each individual phonon branch to the lattice ther-
mal conductivity. Calculations of x usually avoid optical phonons due their
small group velocities with frequencies that reside too high with respect to
acoustic branches [93]. However, there are systems where the optical phonons
provide important scattering channels to acoustic branches, like in diamond
where 80% of the scattering processes involve acoustic and optical phonons
[93]. Therefore, we explore the change in thermal conductivity when only
the branches with frequencies below 90 cm™! are taken into account for the
Petrov and i-Petrov stacking configurations at 300 K (see figure 5.10). Our
results show that these modes are responsible for the 74.6 % of the total
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lattice contribution to the in-plane thermal conductivity, while out-of-plane
these bands provide the 97.7 % of the total value in the i-Petrov configuration.
Similarly, in the Petrov sequence the contribution of these bands reaches 81
% and 97.5 % of the total value of the lattice thermal conductivity for the
in-plane and out-of-plane, respectively. The KH stacking configuration has
an overall smaller lattice thermal conductivity and this structure lacks the
phonon gap. On the other hand, the optical phonons in the KH sequence
have lower frequencies than those in the other two configurations and, ac-
cording with Carrete and co-workers [90], the large number of optical modes
together with their low-frequency yields lower thermal conductivities. For
the three configurations, the in-plane lattice thermal conductivity is higher
than the out-of-plane counterpart. This is the expected behavior since the
coupling (bonding) of atomic layers in the c-direction is weak. Also, the large
value of the c-parameter, and the consequent reduction of the first BZ in this
reciprocal direction leads to the reduction of k; due to purely geometrical
considerations [90].
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Figure 5.13: Lattice contribution to the total thermal conductivity for the three
proposed stacking configurations. Solid and dashed lines represent in-plane and
out-of-plane contributions, respectively. Experimental data was extracted from
references [71] for bulk and [92] for film.
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5.3 Electronic, Dynamic and thermoelectric
properties of (GeTe)s;(SbyTes),

We further investigate the change of the thermoelectric properties of pseudo-
binaries compounds by increasing the amount of GeTe in the system. We
start with just one formula unit of GeTe, and we get remarkable agreement
with experimental data concerning the lattice contribution to the thermal
conductivity. Nevertheless, we clearly overestimate the Seebeck coefficient.
When we studied the system with two formula units of GeTe (GST225),
we investigate three different stacking configurations and realized that all of
them were possible. Our results on GST225 reveal that the better agreement
that we found in the Seebeck coefficient is for the stacking configuration
with the metallic behavior, while the structure with semiconductor electronic
configuration overestimates the experimental values of S. This fact leads us to
think that another stacking sequence for GST124 could be stable while having
a metallic character. This could yield a better agreement with experimental
data even though, as well as for GST225, the stacking sequence with the
lowest energy is the one with semiconductor behavior. In what follows, we
present our work for a system with three GeTe formula units for one ShyTes
unit. In an early stage of our work, we realized that the generally accepted
stacking configuration of GST326 was dynamically unstable. Therefore, we
have changed the stacking sequence, and we found the arrangement of the
atomic layers that yield the dynamic stability of the system. For this reason,
we present our results for two different stacking sequences. The one with
the lowest energy is the unstable one and the stacking sequence is as follows:
Te-Ge-Te-Ge-Te-Sb-Te-Te-Sb-Te-Ge- (named as KH-326). This arrangement
of the atomic layers was proposed by Kooi and De Hosson. Nevertheless, we
find that the stacking configuration that leads to the dynamic stability of the
system is given by Te-Ge-Te-Sb-Te-Ge-Te-Te-Ge-Te-Sb- (named as Petrov-
326). Even though Baisheng and co-workers [94] show that the structure
with the lowest energy is the one named as KH-326, the differences in energy
between the KH and Petrov structures is only -7 meV/atom. This energy
difference is even smaller than what we found in GST225 between KH and
Petrov stacking configurations.

Similarly to what we did for GST124, we use the primitive cell which is
rhombohedral with 11 atoms per cell. The small values of the forces between
atoms that we obtained during the relaxation of the cell, together with the
use of PBEsol xc gives us the confidence that the negative frequency that we
have found is not related to an insufficient relaxation, or with a bad behavior
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Figure 5.14: Non-primitive Hexagonal representantion of the KH-326 (Top) and
the Petrov-326 (Bottom) stacking configurations.

of the PBEsol functional. The fact that our calculated lattice parameters
and lattice angle agree with the available experimental data, reinforce our
hypothesis that GST326 in the KH stacking configuration is dynamically
unstable. We find that the lattice parameters are within as 2 % of the
experimental data reported by Karpinsky and co-workers [95]. We summarize
the lattice lengths, lattice angle and atomic positions in the tables 5.4 and
5.5.

The differences between the two proposed configurations are analogous
to those in GST225 in the KH and Petrov stacking sequences. The elec-
tronic properties are similar also to what we get for GST225. When the Ge
atoms are surrounding the Te-Te adjacent layers the system is metallic. On
the other hand, when the Te-Te bond is surrounded by Sb atoms, the elec-
tronic character changes to semiconductor (figure 5.8). According to what
we have obtained for GST225, we expect that the stacking configuration with
semiconductor-like electronic structure will lead to a larger value of the See-
beck coefficient. According to the work of Rosenthal et al. [97], the range
of values of the Seebeck coefficient for GST326 should be the same as those
obtained for GST225.
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Stacking
KH-326 Petrov-326 KH [94] Petrov [94] Ref.[95] Ref.[96]
E \ -4.274 -4.267 -3.793 -3.781
Lattice parameters
a 4.225 4.222 4.287 4.264 4.214 4.213
c 61.100 61.175 63.123 64.391 62.24 62.309
Bond length
Te-Te 3.754 3.632 4.058 4.008
Sb-Te | 2.97-3.18 298-3.16 3.12-3.29 3.02-3.20
Ge-Te | 293-299 280-320 299-3.03 2.82-3.32

Table 5.4: Lattice parameters and atomic bond lengths for GST326. Energies are
in €V while the lattice parameters and bond lengths are in A.

Atomic positions

KH-326 Petrov-326 Ref.[96]

Site Z Atom Z Atom Z Atom g
3(a) | 0.000 Ge |0.000 Ge |0.000 Ge/Sb 0.77/0.23
6(c) | 0.082 Te 0.088 Te 0.085 Te 1.00
6(c) | 0.190 Te 0.187 Te 0.189 Te 1.00
6(c) | 0278 Ge | 0.273 Sb 0.274 Ge/Sb 0.75/0.25
6(c) | 0.361 Te 0.361 Te 0.361 Te 1.00
6(c) | 0.449 Sh 0.455  Ge |0.451 Ge/Sb 0.36/0.64

Table 5.5: Atomic positions and occupancy factor (g) for the two proposed stacking
configurations of GST326.
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Figure 5.15: Electronic density of states of the two proposed stacking configura-
tions.

As we mentioned, the main difference between our work and the one
carried previously using DFT is that we perform phonon calculations, and
realized that the stacking configuration denoted here as KH has negative
modes at the I' and A points (including the high symmetry line that goes
between them). As far as we know, this is the first study of phonons in
GST326, therefore, we lack comparison points.

Figure 5.16 show the phonon band structure of the two stacking configu-
rations. It can be noticed that the negative value obtained is not as small as
the one found in the work of Sosso et al. for the KH stacking configuration
of GST225 [89]. Here the negative frequency reaches -40 cm™! which clearly
means that the system is unstable under this configuration. We find that
this phonon mode is degenerate, and corresponds to the movement of the Ge
and Sb atoms in phase along the x (or y) axis while all the Te atoms move
out-of-phase in the same direction (lower panel in figure 5.16). This result
is not what we expect since the instability is not arising from the movement
of the atoms along the direction of the stacking of the layers. We expected
that the negative frequency was originated by the Ge and Sb atoms trying
to interchange positions, since our result in the Petrov-326 sequence reveal
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Figure 5.16: Phonon band structure for the two stacking sequences. The KH-326
configuration is clearly unstable. The lower panel shows the KH-326 structure
with arrows that denote the movement of the atom that produces the negative
frequencies.

that this configuration is stable, but this was not the case.

Despite that we demonstrate that the KH-326 is unstable, we will show
in what follows our results concerning to the Seebeck coefficient for both
stacking configurations, and compare with the available experimental data.
We would like to remark that the comparison with experiments is more dif-
ficult for this compound than for the others. Since the crystal structure is
larger and the intrinsic vacancies (those between the Te-Te adjacent layers)
are more numerous, the compound becomes more susceptible to the growing
method and the annealing temperature. For example, Sittner et al. mea-
sured the changes of the Seebeck coefficient with the temperature for the
meta-stable structure of GST326 treated at two different annealing tempera-
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tures [98]. They found that a difference of 50 degrees Celsius in the annealing
temperature leads to 33 % difference in the value of the Seebeck coefficient.
They argue that this behavior is due to the rearrangement of the intrinsic
vacancies in GST326. With regard to the thermal conductivity, we were un-
able to compute it due to the large primitive cell, the high number of atoms
in it and computational restrictions.

We start by plotting the doping dependence of the Seebeck coefficient at
300, 500 and 800 K. Since in the experiments the carrier concentration was
not measured, we decide to adjust our carrier concentration to the one that
makes the Seebeck coefficient agree with the experimental values. However,
as can be seen in the figure 5.17, the difference between the two stacking
configurations is huge. The values of the Seebeck coefficient for the Petrov-
326 configuration are almost one third of those obtained for the KH-326. As
we explained for GST225, the semiconductor character of the KH configura-
tion leads to large values of S, but in the present case the differences in the
Seebeck coefficient for the two configurations are much larger. We also find
that for the KH-326 sequence, the peak in the Seebeck coefficient tends to
oscillate (S=175 pV/K at 300 K; S=250 uV/K at 500 K; S=225 pV/K at
800 K), which differs from what we found in GST124 where the peak in the
Seebeck coefficient shifts to higher carrier concentration and also decreases
its value. We only plot the Seebeck coefficient for p-type of doping. We
assume that the behavior of GST326 will be closer to GST225 where only
p-type carriers are allowed.

Since the GST124 and GST225 have a carrier concentration around 3 x
10%° cm~3, we decide to plot the temperature dependence of the Seebeck
coefficient with the carrier concentration fixed at this value. Our results are
shown in figure 5.18, and compared with the Seebeck coefficient measured
by Rosenthal et al. [97]. The agreement with the experiment is, again,
remarkable. However, the authors report this value of Seebeck coefficient
for structures that were quenched from their cubic phase. We would like to
remark that in this experimental paper there are no measures related to the
carrier concentration. If we compare our result with the experimental work
carried by Sittner and co-workers the agreement vanished [98]. The authors
assure that the measures in their work are made on samples that have the
stable crystal structure of GST326. But as we have already mentioned, it is
really difficult to compare with them since the annealing temperature leads
to abrupt changes in the Seebeck coefficient.
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Figure 5.17: Carrier concentration dependence of the Seebeck coefficient for
GST326. Solid and dashed lines denote values for the KH-326 and Petrov-326
stacking arrangement, respectively.

5.4 Conclusions

We explored the electronic, dynamic and thermoelectric properties of the
pseudo-binary compounds (GeTe),/(SbaTes); (x=1, 2, 3). For GST124, our
study reveals that this semiconductor is dynamically stable under this con-
figuration. Our values systematically overestimate the experimental results
related to the temperature dependence of the Seebeck coefficient, however,
we reproduce the overall trend. We also found that an optimization of S
with the carrier concentration could lead to the increase of the thermoelec-
tric performance. When the doping decreases from the experimental value of
3.0 x 10%° cm ™3 down to 1.0 x 10%° cm ™3, the Seebeck coefficient duplicates
its value at 300 K and, at 500 K, S is improved by 30 %. We also showed
that there is no improvement in the Seebeck coefficient when the majority
of carriers change from holes to electrons. On the other hand, the overesti-
mation of the values of S with temperature together with our further results
on the other pseudobinary compounds suggest that, it should be a stacking
configuration with metallic character that will reduce the Seebeck coefficient
very close to experimental values.
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Figure 5.18: Temperature dependence of the in-plane (solid lines) and out-of-
plane (dashed lines) Seebeck coefficient for stacking configurations of GST326.
The experimental data was extracted from the reference [97].

Regarding to the thermal conductivity, we showed that our results have
a very good agreement with those in the literature at 300 K. The decrease
of the lattice contribution to the thermal conductivity, together with the in-
crease of the Seebeck coefficient suggests that the maximum thermoelectric
performance (ZT) in this compound should be around 600 K. Our theo-
retical maximum is ZT=0.83 at 600 K (5S=116.43 pV/K; k=0.82 W/mK;
p =12 x 107Qm [71]). However, our theoretical lattice contribution to the
thermal conductivity is lower than the one obtained from experiments by the
Wiedemann-Franz law (k=1.22). Also, our value for the Seebeck coefficient
overestimates the experimental value (S=70 ©V/K [78]) therefore, our the-
oretical thermoelectric figure of merit is much larger than the one that can
be extracted from experimental results (ZT=0.20). However, we believe that
it is worth to look at the optimization of S with the carrier concentration
which could lead to values of ZT around 0.5.

Our results for GST225 exemplify the challenges faced for theoretical
studies on phase-change materials. We explored three different stacking con-
figurations of the pseudo-binary compound with x=2, and found that the
sequence denoted as KH (Te-Ge-Te-Sb-Te-Te-Sb-Te-Ge-) is the one with the
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lowest energy and is a semiconductor which agrees with previous theoretical
results. We also reported the dynamic stability of the compound through our
calculations of phonon modes. Our results on the thermoelectric properties of
these materials show that the KH configuration has the best thermoelectric
performance of the three proposed stacking sequences. The Seebeck coeffi-
cient, as well as for GST124, is overestimated with respect to the experimen-
tal data. As we mentioned, we assume that this is due to the semiconductor
nature of this particular structure. An optimization of the Seebeck coefficient
with respect to the carrier concentration is also needed for GST225. Even
though, carrier densities as small as 2 x 10'® cm™ could be hard to reach, S
could double its value going from 3.0 x 10?° cm™2 to 1.0 x 10%° cm™3. This
structure also exhibits the lowest lattice thermal conductivity of the three
configurations with values of x that are in remarkable agreement with the
experimental data.

The other two stacking configurations, named as Petrov (Te-Sb-Te-Ge-
Te-Te-Ge-Te-Sb-) and inverted-Petrov (Te-Sh-Te-Te-Ge-Ge-Te-Te-Sh-), are
metallic. Both structures show dynamic stability and their energy differ-
ence with respect to the KH configuration is not larger than 20 meV /atom.
This small energy difference suggests that at room temperature the three
proposed stacking configurations could coexist in the same sample. Our re-
sults for the i-Petrov structure exalt the importance of the volume of the
crystal for the electronic topology. We performed calculations with PBEsol
exchange-correlation with the aim to correct the systematic overestimation
of the lattice parameters carried by standard PBE. We showed that the the-
oretical Dirac-cone in the band structure that has been recently reported by
Tominaga and co-workers only exists under specific conditions of strain in
the inverted-Petrov structure. With regard to the thermoelectric properties
of the Petrov and i-Petrov structures, we achieved very good agreement with
the experimental data for the temperature dependence of the Seebeck coef-
ficient. Moreover, we showed that at the experimental carrier concentration,
the in-plane and out-of-plane Seebeck coefficient for both configurations are
quasi-degenerate, contrary to what we found in the KH stacking sequence.
For the three proposed configurations, the out-of-plane lattice thermal con-
ductivity is considerably smaller than the in-plane counterpart. This is the
expected behavior due that the stacks of covalent layers are only loosely
bonded along the c-axis, moreover, the reduction of the ¢* reciprocal length
leads to the decrease of the thermal conductivity due to pure geometrical
considerations.

On the other hand, the Petrov and i-Petrov structures have higher values
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of k than those in the KH configuration, even though both showed an abrupt
drop in the phonon density of states around 80 cm™!. This drop is a conse-
quence of the quasi-bipartite phonon dispersion which is similar to what it
was found in the Pnma structure of SnSe. As well as in SnSe, the lower set of
phonon modes consists of twelve bands. However, the lack of a phonon gap
suggests that the branches cross at some point in the BZ. We showed that this
lower set of bands are responsible for at least 74 % of the total lattice thermal
conductivity in-plane, while this percentage reaches 97 % for the out-of-plane
contribution. Finally, our results show that the thermoelectric figure of merit
reaches 1.35 at 600 K for the KH stacking sequence, again this is a purely
theoretical value (except for the electrical resistivity that was extracted from
the work of Shelimova and co-workers and is same than for GST124) where
the Seebeck coefficient (128.45 4V /K) and the thermal conductivity (0.613
W/mK) are overestimated and underestimated, respectively. The structure
with the ZT closer to the experimental value is the Petrov one with a figure
of merit of 0.11 which represent the half of the value that can be extracted
from experimental works (there are no experimental reports of the Seebeck
coefficient at 600 K, therefore we extrapolate to a value of 75 V/K). The
i-Petrov stacking sequence has the poorest thermoelectric performance with
Z'T=0.08, this low value being due to the large thermal conductivity that we
found even at 600 K (x = 2.33 W/mK).

Finally, we explored the electronic properties and the Seebeck coefficient
of GST326 (x=3). We realized that the most accepted stacking sequence of
this pseudo-binary compound is unstable. Therefore, we performed the cal-
culations on two different stacking configurations. The one with the negative
modes at the I' point is the so-called KH-326 (Te-Ge-Te-Ge-Te-Sh-Te-Te-
Sb-Te-Ge-). The energy in this configuration is 7 meV smaller than the
Petrov-326 configuration (Te-Ge-Te-Sb-Te-Ge-Te-Te-Ge-Te-Sb-). Similarly
to what we found in GST225, the KH-326, and the Petrov-326 configuration
have semiconductor and metallic character, respectively. With regard to the
Seebeck coefficient and its dependence with doping, we found that, as well as
in the previous cases, the value of S could increase with the reduction of the
carrier concentration. However, we expect that the reduction of the doping
will lead to a shift of the maximum Seebeck coefficient at lower temperatures
in the Petrov-326 stacking sequence. In general, the trend in the tempera-
ture dependence of the Seebeck coefficient is the same as in GST225. The
semiconductor structure clearly overestimates the experimental data, while
the metallic structure agrees very well with it.

We suggest that phase-change materials such as those that we studied in
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this thesis could be good thermoelectric options, especially if it is possible to
optimize the Seebeck coefficient with the carrier concentration. The changes
in the electrical resistivity reported experimentally, should be another stim-
ulus to further study the thermoelectric possibilities of these materials. We
also believe that the increase in the GeTe concentration will reduce the ther-
mal conductivity. Another possibility to improve the thermoelectric perfor-
mance of phase-change materials could be the induction of disorder expecting
that the thermal conductivity decreases significantly while the electrical con-
ductivity and the Seebeck coefficient remain almost unchanged with respect
to their values of the ordered stable structure. We also suggest further stud-
ies with regard to the stable structure of GST326. The negative frequencies
that we found in this study give us a hint about the possible stable structure.
The fact that these modes are in the I' point tells us that the symmetry of
the structure is broken.
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Conclusions

In this thesis, we explored the thermoelectric performance of tellurium based
layered compounds as a function of pressure and composition. We have used
density functional theory and Boltzmann transport equations to compute
electronic, dynamic and transport properties of the materials.

We began by studying the best bulk room temperature thermoelectric ma-
terial, bismuth telluride (BiyTes). This compound is the prototype tellurium-
based layered compound for thermoelectric applications. We investigated the
evolution of the electronic structure with the modification of the bond length
by the application of pressure. We found that pressure can, indeed, tune the
Seebeck coefficient and, even though we do not achieve the improvement
showed in some experiments, we reproduced the overall trend of S with pres-
sure at 300 K. On the other hand, our results support experimental evidence
of the existence of an electronic topological transition around 2 GPa. We
explained that this ETT is a consequence of non-linear effects on the band
structure that occurs when hydrostatic pressure is applied to an intrinsic
anisotropic semiconductor.

Then we studied other semiconductor layered tellurium structures with
high and tunable electrical conductivity and with high possibility of disorder
((GeTe),(SbeTes);, with x = 1, 2 and 3). We have started with total energy
calculations for different stacking sequences since, for some compositions, the
arrangement of atoms in the stable crystalline structure is still a motive of de-
bate. We found that the energy differences between stacking configurations
are small, which suggest that possibly all are present in the experiments.
For the specific case of x=3, we showed that the most accepted arrangement
(which is the one with the lowest energy) is unstable. Therefore, we pro-
posed another stacking sequence that shows dynamic stability. Regarding to
the electronic properties, our results have revealed that some structures are
semiconductors (with gaps around 0.2 eV) while others are metallic. For x=2
(GST225), we evidenced that the Dirac-cone like band structure reported by
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Tominaga et al. is only present at certain conditions of strain and was never
found when the crystal lengths were close to experimental values.

With respect to the thermoelectric properties of (GeTe),(SbaTes); com-
pounds, we showed that all the semiconductor structures have larger values
of the Seebeck coefficient than those reported in experiments. We argue that
this could be due to the possible mixture of different stacking configurations
in experiments. For all the studied compounds, semiconductor or metallic,
the out-of-plane thermal conductivity is smaller than the in-plane counter-
part. The explanation is that, along the stacking of the atomic layers, atoms
are weakly bonded and according to Carrete et al., the reduction of the re-
ciprocal space in such direction yields low values of k due to geometrical
considerations.

Even though, according to our estimations, (GeTe),(SbaTe3); compounds
have poor thermoelectric performance (ZT around 0.2), the optimization of
the Seebeck coefficient with doping could, eventually, double the current
thermoelectric figure of merit (ZT close of 0.5). Moreover, the optimal ther-
moelectric performance is found at high temperatures (600 K or beyond),
which could make them suitable for energy conversion in combustion engines
(however in practice there could be chemical issues).

To summarize, we studied some fundamental relations between structure
and thermoelectric properties in layered tellurium compounds by playing ei-
ther with pressure or composition. We suggested that improvement in the
Seebeck coefficient (and therefore in ZT) is feasible, but at present, insuffi-
cient for the studied compounds except at high temperatures (GST225).

During the time of this work, we used state-of-art techniques and method-
ologies for computing properties of materials that are relevant for thermo-
electric applications. We realized that there are limitations that restrict a
full theoretical study of the figure of merit. There is a necessity for further
developments to calculate the electronic conductivity and the electronic con-
tribution to the thermal conductivity. Also, the calculation of k; for systems
with large number of atoms in their primitive cell, such as skutterudites or
clathrates, is out of reach with current computational methods due to the
high computational cost.

For further studies, we propose an extensive investigation of the evolution

of electronic and thermoelectric properties of (GeTe),(SbyTes); compounds
under effects of pressure, either hydrostatic or constrain along the out-of-
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plane axis. Indeed, we showed for BisTes how modifying the interlayer sep-
aration lead to interesting changes in the electronic topology and eventually
to an improvement of the Seebeck coefficient. We also suggest theoretical
and experimental studies where Ge i substituted, maybe only partially by
Pb in the (GeTe),(SbyTes); structures. It is well known that PbTe lacks of
the distortion present in GeTe, and is a better thermoelectric material. We
also recommend the change of Sb for Bi, as this increases the difference in
mass between constituted elements which could lead higher thermal scatter-
ing. Finally, the disorder in (GeTe),(SbyTes); could also increase thermal
scattering with the inconvenience that the electrical conductivity is smaller
than in the stable structure. Also, there is a limitation in temperature, since
at high T the system will evolve towards more order and lose the advantages.
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Appendix A

In this appendix we show figures that support results in the thesis.
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Figure A.1: Phonon bands in high symmetry paths for GST124. The small nega-
tive frequency (-3.4 cm™!) comes from imperfection of the atoms relaxation.
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Figure A.2: Comparison of the electronic band structures obtained in this work
within PBE xc (left panel) and the one reported by Tominaga et al. (right panel).
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Figure A.3: Phonon band structure for GST225 in the three proposed stacking
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List of scientific contributions

Publications in international journals

1. Effect of hydrostatic pressure on the thermoelectric properties of Biy Tes
Wilfredo Ibarra-Hernadez, Matthieu J. Verstraete and Jean-Yves Raty.
PHYSICAL REVIEW B 90, 245204 (2014)

2. Effect of the change in composition on electronic, dynamic and ther-
moelectric properties of phase-change materials
Wilfredo Ibarra-Hernadez and Jean-Yves Raty.
In progress

Oral presentations

1. Ab Initio DF'T study of electronic and thermoelectric properties of crys-
talline GeySby Tes
Wilfredo Ibarra-Hernddez, Matthieu J. Verstraete and Jean-Yves Raty.
PhD Day, University of Liege, Belgium, March 2015.

2. Ab Initio DF'T study of electronic and thermoelectric properties of crys-
talline GeyShy Tes
Wilfredo Ibarra-Hernadez and Jean-Yves Raty.
March meeting APS, San Antonio, USA, March 2015

3. Electronic properties and dynamic stability of two sequences of the crys-
talline GeyShy Tes
Wilfredo Ibarra-Hernadez, Matthieu J. Verstraete and Jean-Yves Raty.
PhD Day, University of Liege, Belgium, April 2014.
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4. Effect of pressure on thermoelectric properties of Biy Tes
Wilfredo Ibarra-Hernadez, Matthieu J. Verstraete and Jean-Yves Raty.
10th ETSF Young Researcher’s Meeting, Budapest, Hungary, May
2013.

5. Effect of hydrostatic pressure on thermoelectric properties of Biy Tes
Wilfredo Ibarra-Hernadez, Matthieu J. Verstraete and Jean-Yves Raty.
PhD Day, University of Liege, Belgium, March 2013.

6. An ab-initio study of GeTe based thermoelectric materials
Wilfredo Ibarra-Hernadez and Jean-Yves Raty.
PhD Day, University of Liege, Belgium, March 2012.

Poster presentations

1. Thermoelectric properties of two stacking sequences of crystalline GST
- 225
Wilfredo Ibarra-Hernadez and Jean-Yves Raty.
International Conference on Thermoelectrics, Nashville, USA, July 2014.

2. Changes in thermoelectric properties of Bis Tes as a function of hydro-
static pressure.
Wilfredo Ibarra-Hernadez, Matthieu J. Verstraete and Jean-Yves Raty.
FRONTIERS OF CONDENSED MATTER: NANOSCIENCES AND
ENERGY, Les Houches, France, September 2013.

3. An ab-initio study of thermoelectrical properties of GeTe and X2Te3
(X=Bi, Sb)
Wilfredo Ibarra-Hernadez and Jean-Yves Raty.
17th ETSF Workshop on Electronic Excitations Advanced Green func-
tion methods, Coimbra, Portugal, October 2012.

91



Bibliography

1]
2]

H. Julian Goldsmid. FElectronic refrigeration. Pion Limited,, 1986.

H. Julian Goldsmid. Chapter 1 introduction. In Terry M. Sbitt, editor,
Recent Trends in Thermoelectric Materials Research I, volume 69 of
Semiconductors and Semimetals, pages 1 — 24. Elsevier, 2001.

Terry M. Tritt and M. A. Subramanian. Thermoelectric materials, phe-
nomena, and applications: A bird’s eye view. MRS Bulletin, 31:188-198,
3 2006.

Jihui Yang and Thierry Caillat. Thermoelectric materials for space and
automotive power generation. MRS Bulletin, 31:224-229, 3 2006.

G. Jeffrey Snyder and Eric S. Toberer. Complex thermoelectric materi-
als. Nature Materials, 7:105-114, February 2008.

M. Wuttig and N. Yamada. Phase-change materials for rewriteable data
storage. Nature Materials, 6:824-832, Nov 2007.

G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals.
Phys. Rev. B, 47:558-561, Jan 1993.

G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the

liquid-metal “amorphous-semiconductor transition in germanium. Phys.
Rev. B, 49:14251-14269, May 1994.

G. Kresse and J. Furthmiiller. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set. Phys. Rev. B,
54:11169-11186, Oct 1996.

92



Bibliography

[10]

[11]

[20]

[21]

22]

G. K. H. Madsen and D. J. Singh. BoltzTraP. A code for calculating
band-structure dependent quantities. Computer Physics Communica-
tions, 175:67-71, July 2006.

Wu Li, Jesus Carrete, Nebil A. Katcho, and Natalio Mingo. ShengBTE:
a solver of the Boltzmann transport equation for phonons. Comp. Phys.
Commun., 185:17471758, 2014.

bp Company. bp statical review of world energy 2014, 2014.

H. Julian Goldsmid. Introduction to Thermoelectricity. Springer-Verlag
Berlin Heidelberg, 2010.

David Emin. Chapter 5 effects of charge carriers interactions on seebeck
coefficients. In David Michael Rowe, editor, Thermoelectrics Handbook
Macro to Nano, pages 5—1 — 5-7. CRC Press, 2005.

Francis J. DiSalvo. Thermoelectric cooling and power generation. Sci-
ence, 285(5428):703-706, 1999.

David J. Singh. Chapter 5 theoretical and computational approaches for
identifying and optimizing novel thermoelectric materials. In Terry M.
Tritt, editor, Recent Trends in Thermoelectric Materials Research II,
volume 70 of Semiconductors and Semimetals, pages 125 — 177. Elsevier,
2001.

Jin-cheng Zheng. Recent advances on thermoelectric materials. Frontiers
of Physics in China, 3(3):269-279, 2008.

Terry M. Tritt. Thermoelectric phenomena, materials, and applications.
Annual Review of Materials Research, 41(1):433-448, 2011.

Richard M. Martin. Electronic  structure basic  the-
ory and practical methods. Cambridge University Press,
Cambridge, New York, 2004. Description de l'diteur

http://www.loc.gov/catdir/description/cam032/2003044028. html.

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136:B864-B871, Nov 1964.

Takao Tsuneda. Density Functional Theory in Quantum Chemistry.
Springer Japan, 2014.

W. Kohn and L. J. Sham. Self-consistent equations including exchange
and correlation effects. Phys. Rev., 140:A1133-A1138, Nov 1965.

93



Bibliography

23]

[24]

32]

[33]

M. De La Pierre, R. Orlando, L. Maschio, K. Doll, P. Ugliengo, and
R. Dovesi. Performance of six functionals (lda, pbe, pbesol, b3lyp, pbe0,
and wcllyp) in the simulation of vibrational and dielectric properties
of crystalline compounds. the case of forsterite mg2siod. Journal of
Computational Chemistry, 32(9):1775-1784, 2011.

John P. Perdew, Adrienn Ruzsinszky, Gabor I. Csonka, Oleg A. Vydrov,
Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou, and Kieron
Burke. Restoring the density-gradient expansion for exchange in solids
and surfaces. Phys. Rev. Lett., 100:136406, Apr 2008.

John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R.
Pederson, D. J. Singh, and Carlos Fiolhais. Atoms, molecules, solids,
and surfaces: Applications of the generalized gradient approximation for
exchange and correlation. Phys. Rev. B, 46:6671-6687, Sep 1992.

Walter A Harrison. Solid State Theory. Dover, New York, 1980.

David J. Singh. Doping-dependent thermopower of pbte from boltzmann
transport calculations. Phys. Rev. B, 81:195217, May 2010.

Yi Wang, Xin Chen, Tian Cui, Yingli Niu, Yanchao Wang, Mei Wang,
Yanming Ma, and Guangtian Zou. Enhanced thermoelectric perfor-
mance of pbte within the orthorhombic pnma phase. Phys. Rev. B,
76:155127, Oct 2007.

A Togo, F Oba, and I Tanaka. First-principles calculations of the fer-
roelastic transition between rutile-type and cacl2-type sio2 at high pres-
sures. Phys. rev. B, 78:134106, Oct 2008.

Xiaoli Tang and Jianjun Dong. Lattice thermal conductivity of mgo at
conditions of earths interior. Proceedings of the National Academy of
Sciences, 107(10):4539-4543, 2010.

D. A. Broido, M. Malorny, G. Birner, Natalio Mingo, and D. A. Stew-
art. Intrinsic lattice thermal conductivity of semiconductors from first
principles. Applied Physics Letters, 91(23):—, 2007.

A. Ward and D. A. Broido. Intrinsic phonon relaxation times from first-
principles studies of the thermal conductivities of si and ge. Phys. Rev.
B, 81:085205, Feb 2010.

Giorgia Fugallo, Michele Lazzeri, Lorenzo Paulatto, and Francesco
Mauri. Ab initio variational approach for evaluating lattice thermal
conductivity. Phys. Rev. B, 88:045430, Jul 2013.

94



Bibliography

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[42]

John Michael Ziman. FElectrons and Phonons: The Theory of Transport
Phenomena in Solids. Oxford University Press, Oxford, seven edition,
2001.

Jivtesh Garg, Nicola Bonini, and Nicola Marzari. Chapter 4 first-
principles determination of phonon lifetimes, mean free paths, and ther-
mal conductivities in crystalline materials: Pure silicon and germa-
nium. In Gyaneshwar P. Srivastava Subhash L. Shind, editor, LENGTH-
SCALE DEPENDENT PHONON INTERACTIONS, volume 128 of
Topics in applied physics, pages 115 — 136. Springer, 2014.

N. Mingo, D. A. Stewart, D. A. Broido, L. Lindsay, and W. Li. Chapter
5 ab initio thermal transport. In Gyaneshwar P. Srivastava Subhash
L. Shind, editor, LENGTH-SCALE DEPENDENT PHONON INTER-
ACTIONS, volume 128 of Topics in applied physics, pages 137 — 173.
Springer, 2014.

Sangyeop Lee, Keivan Esfarjani, Tengfei Luo, Jiawei Zhou, Zhiting Tian,
and Gang Chen. Resonant bonding leads to low lattice thermal conduc-
tivity. nature communications, 5:3525, Apr 2014.

J. F. Meng, D. A. Polvani, C. D. W. Jones, F. J. DiSalvo, Y. Fei,
and J. V. Badding. Pressure tuning in the chemical search for im-

proved thermoelectric materials: ndxce3-xpt3sb4. Chemistry of Materi-
als, 12(1):197-201, 2000.

D. A. Polvani, J. F. Meng, N. V. Chandra Shekar, J. Sharp, and J. V.
Badding. Large improvement in thermoelectric properties in pressure-
tuned p-type sb1.5bi0.5te3. Chemistry of Materials, 13(6):2068-2071,
2001.

J. V. Badding, J. F. Meng, and D. A. Polvani. Pressure tuning in
the search for new and improved solid state materials. Chemistry of
Materials, 10(10):2889-2894, 1998.

P. Larson, S. D. Mahanti, and M. G. Kanatzidis. Electronic structure
and transport of bistes and babites. Phys. Rev. B, 61:8162-8171, Mar
2000.

S. J. Youn and A. J. Freeman. First-principles electronic structure
and its relation to thermoelectric properties of bistes. Phys. Rev. B,
63:085112, Feb 2001.

95



Bibliography

[43]

[49]

[50]

[51]

[52]

[53]

[54]

S K Mishra, S Satpathy, and O Jepsen. Electronic structure and ther-
moelectric properties of bismuth telluride and bismuth selenide. Journal
of Physics: Condensed Matter, 9(2):461, 1997.

P. Larson. Effect of p;/, corrections in the electronic structure of bistes
compounds. Phys. Rev. B, 68:155121, Oct 2003.

David M. Rowe. CRC handbook of thermoelectrics. CRC Press, 1995.

Alain Polian, Michel Gauthier, Sergio Michielon Souza, Daniela Mene-
gon Tricheés, Joao Cardoso de Lima, and Tarciso Antonio Grandi. Two-
dimensional pressure-induced electronic topological transition in bistes.
Phys. Rev. B, 83:113106, Mar 2011.

A. Nakayama, M. Einaga, Y. Tanabe, S. Nakano, F. Ishikawa, and Y. Ya-
mada. Structural phase transition in bi2te3 under high pressure. High
Pressure Research, 29(2):245-249, 2009.

S.V. Ovsyannikov, Yu.A. Grigoreva, G.V. Vorontsov, L.N. Lukyanova,
V.A. Kutasov, and V.V. Shchennikov. Thermoelectric properties of p-
bi2 x sbx te3 solid solutions under pressure. Physics of the Solid State,
54(2):261-266, 2012.

Prof. Dr. Otfried Madelung. Semiconductors: Data Handbook. Springer-
Verlag, Berlin Heidelberg, third edition, 2004.

Seizo Nakajima. The crystal structure of bi2te3xsex. Journal of Physics
and Chemistry of Solids, 24(3):479 — 485, 1963.

Min Sik Park, Jung-Hwan Song, Julia E. Medvedeva, Miyoung Kim,
In Gee Kim, and Arthur J. Freeman. Electronic structure and volume
effect on thermoelectric transport in p-type bi and sb tellurides. Phys.
Rev. B, 81:155211, Apr 2010.

I G Austin. The optical properties of bismuth telluride. Proceedings of
the Physical Society, 72(4):545, 1958.

R. Vilaplana, O. Gomis, F. J. Manjon, A. Segura, E. Pérez-Gonzélez,
P. Rodriguez-Herndndez, A. Munoz, J. Gonzalez, V. Marin-Borras,
V. Munoz Sanjosé, C. Drasar, and V. Kucek. High-pressure vibrational
and optical study of bistes. Phys. Rev. B, 84:104112, Sep 2011.

CheYu Li, A. L. Ruoff, and C. W. Spencer. Effect of pressure on the
energy gap of bi2te3. Journal of Applied Physics, 32(9):1733-1735, 1961.

96



Bibliography

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

L. G. Khvostantsev, A. I. Orlov, N. Kh. Abrikosov, T. E. Svechnikova,
and S. N. Chizhevskaya. Thermoelectric properties and phase transitions
in bi2te3 under hydrostatic pressure up to 9 gpa and temperature up to
300 c. physica status solidi (a), 71(1):49-53, 1982.

T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and
G. D. Mahan. Thermoelectric properties of sbotes under pressure and
uniaxial stress. Phys. Rev. B, 68:085201, Aug 2003.

Jeongwoo Kim, Jinwoong Kim, and Seung-Hoon Jhi. Prediction of
topological insulating behavior in crystalline ge-sb-te. Phys. Rev. B,
82:201312, Nov 2010.

Feng Xiong, Albert D. Liao, David Estrada, and Eric Pop. Low-power
switching of phase-change materials with carbon nanotube electrodes.
Science, 332(6029):568-570, 2011.

Feng Rao, Zhitang Song, Yan Cheng, Mengjiao Xia, Kun Ren, Liangcai
Wu, Bo Liu, and Songlin Feng. Investigation of changes in band gap
and density of localized states on phase transition for ge2sb2teb and
si3.5sb2te3 materials. Acta Materialia, 60(1):323 — 328, 2012.

Schneider Matthias N., Rosenthal Tobias, Stiewe Chrsitian, and Oeckler
Oliver. From phase-change materials to thermoelectrics? Zeitschrift Fur
Kristallographie, 225:463, 2010. 11.

Geunsik Lee and Seung-Hoon Jhi. Ab initio studies of structural
and electronic properties of the crystalline ge,shotes. Phys. Rev. B,
77:153201, Apr 2008.

Vincenzo Fiorentini, Michael Methfessel, and Matthias Scheffler. Elec-
tronic and structural properties of gan by the full-potential linear muffin-
tin orbitals method: The role of the d electrons. Phys. Rev. B, 47:13353—
13362, May 1993.

S.-H. Jhi and J. Thm. Study of the electronic structure and the role
of gallium 3d electrons in gallium nitride. physica status solidi (b),
191(2):387-394, 1995.

Toshiyuki Matsunaga and Noboru Yamada. Structural investigation of
gesb,tey @ a high-speed phase-change material. Phys. Rev. B, 69:104111,
Mar 2004.

97



Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[72]

73]

[74]

[75]

Agaev K A and Semiletov S A. Soviet Physics - Crystallography, 10:86,
1965.

B. J. Kooi and J. Th. M. De Hosson. Electron diffraction and high-
resolution transmission electron microscopy of the high temperature
crystal structures of gexsb2te3+x(x=1,2,3) phase change material. Jour-
nal of Applied Physics, 92(7), 2002.

Imanov R M Petrov I I and Pinsker Z G. Sowviet Physics - Crystallogra-
phy, 13:339, 1968.

Juarez L. F. Da Silva, Aron Walsh, and Hosun Lee. Insights into the
structure of the stable and metastable (GeTe), (SbeTes), compounds.
Phys. Rev. B, 78:224111, Dec 2008.

Toshiyuki Matsunaga, Noboru Yamada, and Yoshiki Kubota. Struc-
tures of stable and metastable GeySbyTes, an intermetallic compound

in GeTe-ShyTes pseudobinary systems. Acta Crystallographica Section
B, 60(6):685-691, Dec 2004.

Jun-Woo Park, Seung Hwan Eom, Hosun Lee, Juarez L. F. Da Silva,
Youn-Seon Kang, Tae-Yon Lee, and Yoon Ho Khang. Optical properties
of pseudobinary gete, ge,shotes, gesbytey, gesb,ter, and sbotes from el-
lipsometry and density functional theory. Phys. Rev. B, 80:115209, Sep
2009.

L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, M.A. Kretova, E.S.
Avilov, and V.S. Zemskov. Composition and properties of layered com-
pounds in the getesb2te3system. Inorganic Materials, 37(4):342-348,
2001.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlock-
ermann, and M. Wuttig. Disorder-induced localization in crystalline
phase-change materials. Nat Mater, 10(3):202-208, Mar 2011.

T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and
G. D. Mahan. Thermoelectric properties of sbotes under pressure and
uniaxial stress. Phys. Rev. B, 68:085201, Aug 2003.

T. Thonhauser. Influence of negative pressure on thermoelectric prop-
erties of sb2te3. Solid State Communications, 129(4):249 — 253, 2004.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlock-
ermann, and M. Wuttig. Disorder-induced localization in crystalline
phase-change materials. Nature Materials, 10:202, 208, 2011.

98



Bibliography

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

W. Zhang, A. Thiess, P. Zalden, R. Zeller, P. H. Dederichs, J-Y. Raty,
M. Wuttig, S. Blgel, and R. Mazzarello. Role of vacancies in metalinsu-

lator transitions of crystalline phase-change materials. Nature Materials,
11:952-956, November 2012.

Zhimei Sun, Yuanchun Pan, Jian Zhou, Baisheng Sa, and Rajeev Ahuja.
Origin of p-type conductivity in layered ngete-msbstes chalcogenide
semiconductors. Phys. Rev. B, 83:113201, Mar 2011.

F. Yan, T.J. Zhu, X.B. Zhao, and S.R. Dong. Microstructures and
thermoelectric properties of gesbte based layered compounds. Applied
Physics A, 88(2):425-428, 2007.

P.P. Konstantinov, L.E. Shelimova, E.S. Avilov, M.A. Kretova, and
V.S. Zemskov. Thermoelectric properties of ngete msb2te3layered com-
pounds. Inorganic Materials, 37(7):662-668, 2001.

Zhimei Sun, Jian Zhou, and Rajeev Ahuja. Structure of phase change
materials for data storage. Phys. Rev. Lett., 96:055507, Feb 2006.

Baisheng Sa, Jian Zhou, Zhitang Song, Zhimei Sun, and Rajeev Ahuja.
Pressure-induced topological insulating behavior in the ternary chalco-
genide gesshotes. Phys. Rev. B, 84:085130, Aug 2011.

Akifumi Onodera, Ichiro Sakamoto, Yasuhiko Fujii, Nobuo Mo ri, and
Shunji Sugai. Structural and electrical properties of gese and gete at
high pressure. Phys. Rev. B, 56:7935-7941, Oct 1997.

J. Goldak, C. S. Barrett, D. Innes, and W. Youdelis. Structure of alpha
gete. The Journal of Chemical Physics, 44(9), 1966.

J. Y. Raty, V. Godlevsky, Ph. Ghosez, C. Bichara, J. P. Gaspard, and
James R. Chelikowsky. Evidence of a reentrant peierls distortion in
liquid gete. Phys. Rev. Lett., 85:1950-1953, Aug 2000.

Bong-Sub Lee, John R. Abelson, Stephen G. Bishop, Dae-Hwan Kang,
Byung-ki Cheong, and Ki-Bum Kim. Investigation of the optical and
electronic properties of ge2sb2teb phase change material in its amor-
phous, cubic, and hexagonal phases. Journal of Applied Physics, 97(9):—,
2005.

J. Tominaga, A. V. Kolobov, P. Fons, T. Nakano, and S. Murakami.
Ferroelectric order control of the dirac-semimetal phase in gete-sb2te3
superlattices. Advanced Materials Interfaces, 1(1)m/a-n/a, 2014.

99



Bibliography

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Baisheng Sa, Jian Zhou, Zhimei Sun, Junji Tominaga, and Rajeev
Ahuja. Topological insulating in GeTe/sbotes phase-change superlat-
tice. Phys. Rev. Lett., 109:096802, Aug 2012.

Wilfredo Ibarra-Hernandez, Matthieu J. Verstraete, and Jean-Yves
Raty. Effect of hydrostatic pressure on the thermoelectric properties
of bistes. Phys. Rev. B, 90:245204, Dec 2014.

G C Sosso, S Caravati, C Gatti, S Assoni, and M Bernasconi. Vibrational
properties of hexagonal ge 2 sb 2 te 5 from first principles. Journal of
Physics: Condensed Matter, 21(24):245401, 2009.

Jess Carrete, Natalio Mingo, and Stefano Curtarolo. Low thermal con-
ductivity and triaxial phononic anisotropy of snse. Applied Physics Let-
ters, 105(10):—, 2014.

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig. Struc-
tural transformations of ge2sb2teb films studied by electrical resistance
measurements. Journal of Applied Physics, 87(9), 2000.

Ho-Ki Lyeo, David G. Cahill, Bong-Sub Lee, John R. Abelson, Min-Ho
Kwon, Ki-Bum Kim, Stephen G. Bishop, and Byung-ki Cheong. Ther-
mal conductivity of phase-change material ge2sb2te5. Applied Physics
Letters, 89(15):—, 2006.

N. Mingo, D.A. Stewart, D.A. Broido, L. Lindsay, and W. Li. Ab initio
thermal transport. In Subhash L. Shind and Gyaneshwar P. Srivas-
tava, editors, Length-Scale Dependent Phonon Interactions, volume 128
of Topics in Applied Physics, pages 137-173. Springer New York, 2014.

Baisheng Sa, Naihua Miao, Jian Zhou, Zhimei Sun, and Rajeev
Ahuja. Ab initio study of the structure and chemical bonding of stable
ge3dsb2te6. Phys. Chem. Chem. Phys., 12:1585-1588, 2010.

0O.G. Karpinsky, L.E. Shelimova, M.A. Kretova, and J.-P. Fleurial. An
x-ray study of the mixed-layered compounds of (gete)n (sb2te3)m ho-
mologous series. Journal of Alloys and Compounds, 268(12):112 — 117,
1998.

Toshiyuki Matsunaga, Rie Kojima, Noboru Yamada, Kouichi Ki-
fune, Yoshiki Kubota, and Masaki Takata. Structural investigation of
ge3dsb2te6, an intermetallic compound in the getesh2te3 homologous se-
ries. Applied Physics Letters, 90(16):—, 2007.

100



Bibliography

[97]

[98]

Tobias Rosenthal, Matthias N. Schneider, Christian Stiewe, Markus
Dblinger, and Oliver Oeckler. Real structure and thermoelectric proper-
ties of gete-rich germanium antimony tellurides. Chemistry of Materials,
23(19):4349-4356, 2011.

Ernst-Roland Sittner, Karl Simon Siegert, Peter Jost, Carl Schlocker-
mann, Felix Rolf Lutz Lange, and Matthias Wuttig. (gete)x(sb2te3)1x

phase-change thin films as potential thermoelectric materials. physica
status solidi (a), 210(1):147-152, 2013.

101



	Acknowledgments
	Résumé
	Abstract
	Introduction
	Thermoelectricity
	The Thermoelectric Effect
	Thermoelectric efficiency
	Thermoelectric materials
	Metals and insulators
	Semiconductors
	Thermoelectric compounds


	Computational Background
	Density Functional Theory
	The electronic density
	The Hohenberg and Kohn Theorems
	The Kohn-Sham equation

	The exchange-correlation energy
	Pseudopotentials

	Boltzmann Transport Equation
	Boltzmann transport equation (BTE) for electrons
	The Relaxation Time Approximation (RTA)

	The BOLTZTRAP Code
	BTE for phonons

	 Bi2Te3 under pressure
	Computational details
	Crystal structure and electronic properties under pressure
	Thermoelectric properties at zero pressure
	Thermoelectric properties under pressure

	Conclusions

	Ternary compounds; (GeTe)x(Sb2Te3)1
	(GeTe)1 (Sb2Te3)1 (GST124)
	Electronic and dynamical properties
	Thermoelectric properties

	The case of (GeTe)2(Sb2Te3)1: GST225
	Electronic and Dynamical Properties
	The Seebeck coefficient and Lattice Thermal Conductivity

	Electronic, Dynamic and thermoelectric properties of (GeTe)3(Sb2Te3)1
	Conclusions

	Conclusions
	Appendix A
	Appendix B

