1 SUPPLEMENTARY INFORMATION

2 Pelagic photoferrotrophy and Iron cycling in a modern

3 ferruginous basin

4

Marc Llirós^{1,2,*,†}, Tamara García–Armisen³, François Darchambeau⁴, Cédric Morana⁵,
Xavier Triadó–Margarit^{6,7}, Özgül Inceoğlu³, Carles M Borrego^{7,8}, Steven Bouillon⁵,
Pierre Servais³, Alberto V Borges⁴, Jean–Pierre Descy¹, Don E Canfield⁹ & Sean A
Crowe^{9,10,*}.

9

10

- ¹¹ [†]Present address: Institute des Sciences de la Vie, Université Catholique de Louvain,
- 12 Place Croix du Sud 4/5, B-1348 Louvain-La-Neuve, Belgium.
- 13 *Authors to whom correspondence should be addressed.

15 SUPPLEMENTARY METHODS

16 *Site description and sampling*

Kabuno Bay (KB, 1.58°-1.70° S, 29.01°-29.09° E; DR Congo) is a sub-basin of Lake 17 Kivu located in the East African Rift system. KB has a surface area of 48 km² and a 18 19 maximum depth of 120 m and is permanently stratified. Many physical and chemical 20 characteristics of the basin are related to its isolation from the main lake due to its 150 21 m wide and 10 m deep connection¹. Further details on KB and Lake Kivu are published elsewhere²⁻¹¹. Water samples were collected at different depths during two sampling 22 23 campaigns conducted during 2012 covering both the rainy (RS, February) and the dry 24 (DS, October) seasons using either a battery-driven peristaltic pump connected to a 25 weighted-double conical intake through plastic tubing (for those depths corresponding 26 to the oxic-anoxic transition zone) or a 5-1 vertical Niskin bottle (Hydro-Bios; for the 27 rest of the depths). Water samples were processed immediately for chemical analyses or 28 subsequently stored in 4-l plastic containers at 4°C for further processing for molecular 29 microbiology.

30 *Physico-chemical analyses*

31 Vertical depth profiles of temperature, conductivity, pH, and oxygen were measured in 32 situ with either Hydrolab DS5 (OTT Hydromet, Germany) or a Sea&Sun CTD90 (Sea 33 and Sun Technology, Germany) multiparametric probes. Photosynthetically Active 34 Radiation (PAR) was measured by means of a Li-Cor LI-193SA spherical quantum 35 sensor apparatus (Lincoln, NE, USA). Fe speciation was measured by ferrozine 36 method¹². CH₄ concentrations in the collected water samples were determined as previously described^{9,13} via the headspace equilibration technique and gas 37 chromatography¹⁴. 38

Water samples for NOx (*i.e.*, NO₃⁻ and NO₂⁻) analyses were directly passed through 0.22 μ m pore size cellulose acetate syringe filters and stored frozen until analyses with no preservative. NO₂⁻ concentrations were determined following the sulphanilamide coloration method¹⁵, whereas NO₃⁻ concentrations were measured after vanadium reduction to nitrite and further quantified as previously described^{15,16}. Samples for Hydrogen (H₂) determinations were conducted by headspace equilibration technique^{17,18}. Furthermore, acetate (CH₃COO⁻) concentrations were measured from 46 frozen water samples collected during the DS sampling campaign by Ion
47 Chromatography using a Dionex Instrument as described here¹⁹.

Samples for the determination of the stable isotope composition (δ^{13} C) of dissolved 48 inorganic carbon (DIC) were collected by gently overfilling 12 ml glass vial (Labco 49 50 Exetainer) preserved with 20 µl of saturated HgCl₂ (final conc., 0.45 mM). For the 51 analysis of δ^{13} C-DIC, a 2 ml helium headspace was created and 100 µl of H₃PO₄ (99%) 52 was added into each vial to convert all DIC species into CO₂. After overnight 53 equilibration, a variable volume of the headspace was injected into an elemental 54 analyser coupled to an isotope ratio mass spectrometer (EA-IRMS; Thermo FlashHT with Thermo DeltaV Advantage). Calibration of δ^{13} C-DIC measurements was 55 performed with certified reference materials (LSVEC and either NBS-19 or IAEA-CO-56 57 1). Samples for the determination of the concentration and the stable isotope composition (δ^{13} C) of particulate organic C (POC) were obtained by filtering a known 58 59 volume of water on pre-combusted (overnight at 450°C) 0.3 µm pore-size 25 mm 60 diameter glass fiber filters (Advantec GF-75) and kept frozen (-20°C) until processing. 61 Filters were decarbonated with HCl fumes for 4h, dried, packed in silver cups and analysed on an EA-IRMS (Thermo FlashHT with Thermo DeltaV Advantage). 62 Acetanilide ($\delta^{13}C = -27.65\% \pm 0.05$) and Leucine ($\delta^{13}C = -13.47\% \pm 0.07$) were used 63 64 as standards, and were calibrated in-house against certified standards (IAEA-CH-6). Relative standard deviation for POC measurements was below 5%, and analytical 65 uncertainty for (natural abundance) δ^{13} C-POC measurements was typically better than 66 0.15‰. 67

68 Pigment analyses

69 Water samples for pigment analyses (2.0 to 3.0 l) were collected and subsequently 70 passed through 47 mm diameter Macherey-Nägel GF5 filters (Düren, Germany). 71 Chlorophyll (Chl)-related pigments were analysed by High Performance Liquid 72 Chromatography (HPLC) from 90% acetone (Fischer Chemical) extracts (10 ml final volume) according to^{20,21}. Identification and quantification of pigments were done 73 according to retention times and specific absorption spectra in the eluent solvents. 74 75 Calibration and Chl a quantification were undertaken by using commercial external 76 standards (DHI, Denmark). The complete separation and quantification of

- bacteriochlorophyll (BChl) pigments and homologues was determined from the total
 area of the corresponding peaks and using appropriate molar absorption coefficients^{22,23}.
- 79 Total cell abundances
- 80 Total cell abundances were quantified by flow cytometry as previously described⁷.
- 81 Simple isotope mass balance
- 82 The contribution of *Chlorobium*-derived carbon to the POC pool (%POC_{Chlorobium}) at a
 83 given depth (z) was estimated via an isotope mass balance approach, as:
- 84 %POC_{Chlorobium} = (100 x δ^{13} C-POC_z 100 x δ^{13} C-POC_{ML}) / (δ^{13} C-Chlorobium δ^{13} C-85 POC_{ML})
- 86 where δ^{13} C-POC_z is the δ^{13} C signature of the POC at the depth z, δ^{13} C-POC_{ML} (-27.5‰ $\pm 0.3, n = 3$) is the δ^{13} C signature of the POC in the mixed layer, and δ^{13} C-*Chlorobium* 88 is the theoretical δ^{13} C signature of the *Chlorobium*, estimated based on the isotope 89 fractionation factor for C fixation by *Chlorobioum* via the rTCA pathway (-12.2‰,²⁴) 90 and the measured δ^{13} C-DIC in the chemocline (-5.3‰ ± 0.2, n = 5).

91 Light and dark CO₂ fixation

92 Photo- and chemoautotrophic bulk CO₂ fixation rates were quantified in 60 ml glass 93 serum bottles from selected depths covering the oxic-anoxic transition zone of KB 94 during both RS and DS. Serum bottles (eight per depth) were overflowed 3 times, 95 completely filled avoiding bubbles and then capped with butyl stoppers and crimp-96 sealed with aluminium caps. The incubation set included clear (light) and dark (aluminium foil covered) triplicate bottles. All samples were spiked with 1 ml of a ¹³C-97 DIC solution (99.8% NaH¹³CO₃ dissolved in lake water; final concentration 1mM, 98 99 equivalent to less than 8% of total DIC stock) through the septa. Additionally, one 100 HgCl₂-killed bottle for each condition was incubated as a control without biological 101 activity. Each bottle was gently shaken and incubated for 24h at their corresponding 102 depths. After incubation, 40 ml sub-samples were passed through 0.3 µm pore-size glass fiber filters (Advantec GF-75) to trace ¹³C-DIC incorporation into the POC pool, 103 and 12 ml sub-samples were used to fill Exetainer tubes (LabCo) poisoned with 20 µl of 104 a saturated solution of HgCl₂ (final conc., 0.45 mM) to determine the exact ¹³C-105 enrichment in the DIC pool in every bottle. Measurement of the δ^{13} C-DIC and δ^{13} C-106

107 POC were carried out as described above. CO_2 fixation rates (µmol $l^{-1} d^{-1}$) were 108 calculated as previously described²⁵ from dark and light bottles according to equations 109 (1) and (2):

110 (1) DarkCO₂ = [POC_f x (
$$\%^{13}$$
C-POC_f - $\%^{13}$ C-POC_i)] x [t x ($\%^{13}$ C-DIC - $\%^{13}$ C-

 POC_i]⁻¹

112 113

(2) LightCO₂ = [(POC_f x (
$$\%^{13}$$
C-POC_f - $\%^{13}$ C-POC_i)) x (t x ($\%^{13}$ C-DIC - $\%^{13}$ C-POC_i))⁻¹] – DarkCO₂

where POC_f is the POC concentration at the end of the incubation, $\%^{13}C$ -POC_i and $\%^{13}C$ -POC_f are the initial an final percentage of ^{13}C in POC, t is the incubation time and $\%^{13}C$ -DIC is the percentage of ^{13}C in DIC after the addition of the tracer.

117 Bacterial Production

Bacterial production was estimated from tritiated thymidine (³H-Thymidine) 118 incorporation rates²⁶. Briefly, 20 ml of water were incubated in gas tight serum bottles 119 with ³H-Thy (ca. 80 Ci mmol⁻¹; ICN Pharmaceuticals) for two to four hours in the dark 120 121 at *in situ* temperature and at saturation conditions (ca. 50 nM of ³H-Thy,²⁷). After 122 incubation, cold trichloroacetic acid (TCA; 5.0%, fin. conc.) was added in order to stop 123 ³H-Thy incorporation and samples were kept cold until passed through 0.22 µm pore-124 size cellulose nitrate filters (Sartorius). Radioactivity associated with the filters was 125 estimated by liquid scintillation in a Liquid Scintillation Analyser Tri-Carb 2100TR (Packard). Cell production was calculated from ³H-Thy incorporation rates according to 126 recent calibrations²⁸. 127

128 *Fe-oxidation and reduction rate measurements.*

129 Water samples from selected depths corresponding to those with maximum of turbidity 130 and red fluorescence signals were incubated either in situ or ex situ for Fe-oxidation and reduction rate measurements. In situ incubations were conducted by suspending 131 132 incubation vessels (25 ml glass syringes) at the depths of collection so the microbial 133 community experienced near in situ light conditions. Parallel vessels were incubated 134 under light and dark (aluminium foil for shielding) conditions, and changes in Fespeciation were monitored over time. Fe(II) accumulation rates in the dark syringes 135 136 were used to calculate Fe reduction rates, whereas the difference in Fe(II) accumulation 137 between light and dark syringes was used to calculate Fe oxidation rates. Ex situ

- incubations were also conducted in glass syringes (100 ml) that were incubated under 139 15 μ E m⁻² s⁻¹ of light (supplied by 60 W incandescent light bulb) with the addition of 140 DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea or DCMU, 0.55 mg l⁻¹), a well-141 known inhibitor of photosystem II and oxygenic photosynthesis^{29,30}. Syringes were 142 subjected to alternating light and dark cycles. Rates of oxidation and reduction were 143 calculated from time course changes in Fe speciation^{31,32}.
- 144 Sulfate reduction rates
- 145 In situ sulfate reduction rates were determined using the ³⁵S radiotracer technique³³

146 Molecular analyses

Water samples (0.5 to 1.0 l) for nucleic acid extraction were processed, filtered and stored as previously described^{34,35}. Genomic deoxyribonucleic acid (DNA) was extracted from 0.22-µm filters and DNA extractions (*ca.* 50 µl at 60 – 250 ng µl⁻¹) from each water depth were subsequently analysed by means of tag-encoded FLX-Titanium amplicon pyrosequencing (TEFAP)^{36,37} at Research and Testing Laboratory (Lubbock, TX, USA). The archaeal and bacterial TEFAP (aTEFAP and bTEFAP, respectively) were performed using previously described primers³⁷.

154 In order to obtain nearly full-length 16S rRNA gene sequences from pure cultures of 155 *Chlorobi* isolates from KB (see below), DNA was amplified with general bacterial 156 primers $(27f - 1492r;^{38,39})$ and sequenced at external facilities.

157 Pyrosequencing data analyses

Pyrosequencing data was analysed using Mothur⁴⁰. Briefly data was decompressed and 158 sequencing errors were reduced by trimming flows (i.e., denoising) and sequences by 159 160 applying the following quality criteria: amplicons shorter than 200 bp in length, reads 161 containing any unresolved nucleotides and more than 8 homopolimers were removed from the archaeal and bacterial pyrosequencing-derived datasets. Subsequently, 162 improved sequences were processed from individual files. Putative chimeras (checked 163 by using Uchime software⁴¹) and contaminants (understood as those unclassified or 164 165 misclassified sequences) were removed from our sequence collection files. Afterwards, 166 alpha- and beta-diversity analyses by OTUs and phylogenetic relationships were 167 conducted. For the taxonomic adscription of both aTEFAP and bTEFAP amplicons, the 168 SEED alignment for archaea and bacteria from the SILVA databases was uploaded in 169 Mothur⁴⁰ and a confidence threshold of 80% (bootstrap) was applied. Relative 170 abundances of retrieved phylogenetic groups and hierarchical visualization was 171 performed with Krona tool version 2-4⁴².

172 Phylogenetic analyses of the GSB community present in KB

173 bTEFAP sequences from KB water samples tentatively belonging to the Chlorobi phylum and 16S rRNA gene sequences from KB isolates were subsequently analysed 174 for further taxonomic refinement. All sequences were aligned using the SINA aligner⁴³ 175 176 and then imported into the latest SILVA 16S rRNA-ARB-compatible database (SSURef-111_NR_98_04_08_12 opt v2.arb; http://www.arb-silva.de) in ARB⁴⁴. Two 177 178 base frequency filters ("Termini" and "pos var ssuref:bacteria"; positional variability 179 by parsimony) were applied to exclude highly variable positions before adding 180 sequences to the original database using the "parsimony quick add marked" tool from 181 ARB. Sequence identities of representative OTUs retrieved from water samples with 182 respect to both Chlorobium ferroooxidans strain KoFox and KB isolates were determined by pairwise comparisons in BLAST analyses⁴⁵. 183

184 *Culture conditions*

Water samples for culturing were collected from chemocline depths. Enrichment cultures were initiated by supplementing lake water with a defined mineral media⁴⁶.

Isolates were obtained from these enrichment cultures through multiple serial dilutions.

188

189 **References of supplementary methods**

- Damas, H. La stratification thermique et chimique des lacs Kivu, Édouard et
 Ndalaga (Congo Belge). *Annales de la Société Royale Zoologique de Belgique* 68, 51–68 (1937).
- Degens, E. T. & Kulbicki, G. Hydrothermal origin of metals in some East
 African rift lakes. *Mineral Deposita* 8, 388–404 (1973).
- Degens, E. T., Herzen, R. P., Wong, H.-K., Deuser, W. G. & Jannasch, H. W.
 Lake Kivu: structure, chemistry and biology of an East African rift lake. *Geol Rundsch* 62, 245–277 (1973).
- Tietze, D. K. *et al.* The genesis of the methane in Lake Kivu (Central Africa).
 Geol Rundsch 69, 452–472 (1980).
- S. Isumbisho, M., Sarmento, H., Kaningini, B., Micha, J.-C. & Descy, J.-P.
 Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction. *J Plankton Res* 28, 971–989 (2006).
- 203 6. Sarmento, H., Isumbisho, M. & Descy, J.-P. Phytoplankton ecology of Lake
 204 Kivu (eastern Africa). *J Plankton Res* 28, 815–829 (2006).
- 205 7. Sarmento, H. *et al.* Abundance and distribution of picoplankton in tropical,
 206 oligotrophic Lake Kivu, eastern Africa. *Freshwater Biol* 53, 756–771 (2008).
- 207 8. Descy, J.-P., Darchambeau, F. & Schmid, M. Lake Kivu. 1–169 (Springer, 2012).
- Borges, A. V. *et al.* Carbon cycling of Lake Kivu (East Africa): net autotrophy in the epilimnion and emission of CO₂ to the atmosphere sustained by geogenic inputs. *PLoS ONE* 9, e109500 (2014).
- Pasche, N., Dinkel, C., Müller, B., Schmid, M. & Wehrli, B. Physical and
 biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. *Limnol. Oceanogr.* 54, 1863–1873 (2009).
- Schmid, M., Halbwachs, M., Wehrli, B. & Wüest, A. Weak mixing in Lake
 Kivu: New insights indicate increasing risk of uncontrolled gas eruption. *Geochem Geophys Geosyst* 6, 1–11 (2005).
- 217 12. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen,
 218 P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters.
 219 Appl. Geochem. 15, 785–790 (2000).
- Borges, A. V., Abril, G., Delille, B., Descy, J.-P. & Darchambeau, F. Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J. *Geophys. Res.* 116, 1–15 (2011).
- Weiss, R. F. Determinations of Carbon Dioxide and Methane by Dual Catalyst
 Flame Ionization Chromatography and Nitrous Oxide by Electron Capture
 Chromatography. *J Chromatogr Sci* 19, 611–616 (1981).
- Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water Wastewater. (2012).
- Miranda, K. M., Espey, M. G. & Wink, D. A. A Rapid, Simple
 Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. *Nitric Oxide* 5, 62–71 (2001).
- 17. Lovley, D. R. & Goodwin, S. Hydrogen concentrations as an indicator of the
 predominant terminal electron-accepting reactions in aquatic sediments. *Geochim Cosmochim Acta* 52, 2993–3003 (1988).
- 18. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic
 control on hydrogen concentrations in anoxic sediments. *Geochim Cosmochim Acta* 62, 1745–1756 (1998).
- 237 19. Vandieken, V., Finke, N. & Thamdrup, B. Hydrogen, acetate, and lactate as

238		electron donors for microbial manganese reduction in a manganese-rich coastal
239	•	marine sediment. FEMS Microbiology Ecology 87, 733–745 (2014).
240	20.	Descy, JP., Higgins, H. W., Mackey, D. J., Hurley, J. P. & Frost, T. M. Pigment
241		ratios and phytoplankton assessment in northern Wisconsin lakes. J. Phycol. 36,
242		274–286 (2000).
243	21.	Wright, S. W. et al. Improved HPLC method for the analysis of chlorophylls and
244		carotenoids from marine phytoplankton. <i>Mar Ecol Prog Ser</i> 77, 183–196 (1991).
245	22.	Borrego, C. M. & Garcia-Gil, L. J. Separation of bacteriochlorophyll homologues
246		from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth.
247		<i>Res.</i> 41, 157–164 (1994).
248	23.	Borrego, C. M., Arellano, J. B., Abella Ametller, C. A., Gillbro, T. & Garcia-Gil,
249		J. The molar extinction coefficient of bacteriochlorophyll e and the pigment
250		stoichiometry in Chlorobium phaeobacteroides. <i>Photosynth. Res.</i> 60, 257–264
251		(1999).
252	24.	Sirevåg, R., Buchanan, B. B., Berry, J. A. & Troughton, J. H. Mechanisms of
253		CO2 fixation in bacterial photosynthesis studied by the carbon isotope
254		fractionation technique. Arch. Microbiol. 112 , 35–38 (1977).
255	25.	Hama, T. <i>et al.</i> Measurement of photosynthetic production of a marine
256		phytoplankton population using a stable 13 C isotope Mar Biol 73, 31–36
257		(1983)
258	26	Fuhrman I A & Azam F Thymidine incorporation as a measure of
259	20.	heterotrophic bacterionlankton production in marine surface waters. Evaluation
260		and field results Mar. Biol. 66, 109–120 (1982)
261	27	Servais P Bacterionlanktonic biomass and production in the river Meuse
262	_ /.	(Belgium). <i>Hydrobiologia</i> 174 , 99–110 (1989).
263	28.	Stenuite, S. et al. Abundance and production of bacteria, and relationship to
264		phytoplankton production, in a large tropical lake (Lake Tanganyika).
265		Freshwater Biol 54, 1300–1311 (2009).
266	29.	Steenbergen, C. L. M. & van den Hoven, P. A note on the measurement of
267		production of phototrophic bacteria in deep layers. Arch. Hydrobiol. Beih.
268		Ergebn. Limnol. 34, 349–355 (1990).
269	30.	Jørgensen, B. B., Kuenen, J. G. & Cohen, Y. Microbial transformations of sulfur
270		compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr. 24, 799-
271		822 (1979).
272	31.	Crowe, S. A. <i>et al.</i> Photoferrotrophs thrive in an Archean Ocean analogue. <i>Proc.</i>
273		Natl. Acad. Sci. USA 105, 15938–15943 (2008).
274	32.	Crowe, S. A. <i>et al.</i> The methane cycle in ferruginous Lake Matano. <i>Geobiology</i>
275		9. 61–78 (2011)
276	33	Fossing H & Jørgensen B B Measurement of bacterial sulfate reduction in
277	55.	sediments – Evaluation of a single-step Chromium reduction method
278		Riogeochemistry 8, 205–222 (1989)
279	34	Llirós M <i>et al</i> Vertical distribution of ammonia-oxidizing crenarchaeota and
280	51.	methanogens in the eninelagic waters of Lake Kivu (Rwanda-Democratic
281		Republic of the Congo) Appl Environ Microbiol 76 (6853–6863 (2010)
282	35	Llirós M Casamayor F O & Borrego C M High archaeal richness in the
282	55.	water column of a freshwater sulfurous karstic lake along an interannual study
203		66 331_342 (2008)
285	36	Dowd S E et al Evaluation of the bacterial diversity in the faces of cattle using
286	50.	16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (hTEFAP)
287		<i>RMC Microbiol</i> 8 125 (2008)
207		<i>Divic Microbiol</i> 0 , 125 (2000).

- 37. Shah, V. *et al.* Bacterial and archaea community present in the Pine Barrens
 Forest of Long Island, NY: unusually high percentage of ammonia oxidizing
 bacteria. *PLoS ONE* 6, e26263 (2011).
- 38. Suzuki, M. & Giovannoni, S. J. Bias Caused by Template Annealing in the
 Amplification of Mixtures of 16S rRNA Genes by PCR. *Appl Environ Microbiol*62, 625–630 (1996).
- 39. Stahl, D. A. & Amann, R. in *Nucleic Acid Techniques in Bacterial Systematics*(eds. Stackebrandt, E. & Goodfellow, M.) 205–248 (John Wiley & Sons, Inc.,
 1991).
- 297 40. Schloss, P. D. *et al.* Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl Environ Microbiol* **75**, 7537–7541 (2009).
- 41. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME
 improves sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194–2200 (2011).
- 303 42. Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. *BMC Bioinformatics* 12, 385 (2011).
- 305 43. Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput
 306 multiple sequence alignment of ribosomal RNA genes. *Bioinformatics* 28, 1823–
 307 1829 (2012).
- 308 44. Ludwig, W. *et al.* ARB: a software environment for sequence data. *Nucleic Acids*309 *Res.* 32, 1363–1371 (2004).
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J Mol Biol* 215, 403–410 (1990).
- Hegler, F., Posth, N. R., Jiang, J. & Kappler, A. Physiology of phototrophic
 iron(II)-oxidizing bacteria: implications for modern and ancient environments.
 66, 250–260 (2008).
- 315
- 316

317 Captions to Supplementary Figures

Supplementary Figure S1. Sample location map. Map showing the location of
Kabuno Bay, Sake river and hydrothermal spring sampling sites (red dots). Maps were
generated by hand-drawing using Adobe Illustrator[®] software.

321 Supplementary Figure S2. Kabuno Bay vertical profiles. Data in the upper panels are 322 from the rainy season (RS; February 2012) and lower panels from the dry season (DS; October 2012). **a** and **c**: CH₄ (light blue square), H₂ (grey dots), NO_x (*i.e.*, NO₂⁻ + NO₃⁻) 323 324 (yellow dots) and CH_3COO^- (white squares) concentrations; **b** and **f**: relative abundance 325 of bacterial OTUs grouped by putative activity (i.e., oxygenic phototrophs (Ox PhS, 326 brown dots), anoxygenic phototrophs (Anox PhS (GSB), light green dots), Fe or Mn 327 related bacterial OTUs (red triangles)); c and g: relative abundance of archaeal OTUs 328 grouped by putative activity (i.e., ammonia oxidizing Archaea (AOA, yellow triangles), 329 acetoclastic methanogens (light blue diamonds) and hydrogenotrophic methanogens

330 (light blue dots)); d: ³H-Thymidine uptake (nM ³H-Thymidine h^{-1} , white triangles).

331 Supplementary Figure S3. Chlorobi and related groups diversity. Collapsed 16S

332 rRNA gene phylogenetic tree of the *Chlorobi* and related groups members detected in

333 KB (grey shadow). The number of sequences assigned to each phylogenetic clade and

the relative abundance (pie charts) of the retrieved sequences in each clade is indicated.

The tree includes sequences retrieved by pyrosequencing from all depths and seasons

336 (RS and DS), and also full 16S rRNA gene sequences from our KB pure culture. Pie

337 charts depict the OTUs retrieved from each water compartment (E stands for

epilimnion, C for chemocline and M for monimolimnion) and size is proportional to the

number of sequences (log transformed) from the OTUs ascribed to each cluster. The

340 scale bar indicates 0.10 fixed point mutation per nucleotide position.

341 Supplementary Figure S4. Kabuno Bay GSB sequence similarities. Box plots

342 summarizing sequence identities of representative KB OTUs with respect to both *Chl*.

343 *ferrooxidans* str. KoFox and to KB isolate.

344 Supplementary Figure S5. Pigment analyses. Example of a HPLC chromatogram

from a natural KB water sample (10.6 m depth, DS) showing the main BChl *e*

homologues (farnesyl esterified), the secondary homologues (non-farnesyl esterified)

347 and carotenoids (mainly isorenieratene and β-isorenieratene).

348 Supplementary Figure S6. Fe oxidation rates from Kabuno Bay isolate. Fe(II)

- 349 oxidation rates for KB isolate incubated under high (black diamonds, 14.5 $\mu E m^{-2} s^{-1}$)
- and low (grey diamonds, 0.64 $\mu E m^{-2} s^{-1}$) light intensities.

Supplementary table 1. **Physico-chemical characteristics of Kabuno Bay and surrounding water inputs.** Comparison of main physico-chemical parameters measured in the Sake river and hydrothermal spring near Sake Bay in comparison to KB.

	K	Sake River	Hydrothermal spring				
GPS coordinates	1°37.2	52' S, 29°2	2.976' E	1°34.078' S, 29°3.236' E	1°33.744' S, 29°2.836' E		
Denth (m)	Chemocline		Deep waters	Surface	Surface		
Deptii (III)	10.5 - 11.5	65.0	100.0	0.1	0.1		
Altitude (m.a.s.l.)	1,463	1,463	1,463	1,515	1,485		
Temperature (°C)	22.96	24.07	24.78	18.55	29.45		
pH	6.25	6.1	6.1	6.05	6.32		
Dissolved oxygen (mg l ⁻¹)	2.5	0.0	0.0	1.9	0		
Conductivity (mS cm ⁻¹)	3.27	6.58	7.48	1.29	5.20		
Cl ⁻ (mM)	Na ^a	2.1	Na	Na	15.3		
$SO_4^{2-}(\mu M)$	485,61	0.7	Na	Na	1,574		
Fe (II) (µM)	289,79	689	422	0	410		

^aNa, not analysed.

Sup Table 2 - Taxonomic afiliations Kabuno Bay

				February 2012					October 2012																
Domain F	Phylum	Class	Order	total seqs	1	4	10	10.5 1	0.75	11 1	1.25 1	11.5	12	15	30	total seqs	1	6	9 9	9.5	10 1	0.3	10.6	11.1	15 30
k_Bacteria p	pActinobacteria			775	215	356	92	12	3	8	9	16	17	45	2	2401	450	331	354	532	424	8	103	112	85 2
k_Bacteria p	pArmatimonadetes			112	0	5	2	3	6	5	14	12	33	22	10	68	1	1	4	5	2	0	1	54	0 0
k_Bacteria p	pBacteroidetes			861	54	81	52	48	61	51	85	115	103	137	74	1149	170	86	71	131	173	1	73	418	23 3
k_Bacteria p	pBacteroidetes	c_Bacteroidia		15	0	0	5	3	0	0	2	1	0	3	1	27	0	0	0	0	0	0	16	11	0 0
k_Bacteria p	p_Bacteroidetes	cFlavobacteria		35	9	10	7	0	0	0	3	1	1	3	1	145	26	5	19	29	59	0	5	2	0 0
k_Bacteria p	p_Bacteroidetes	cSphingobacteria		152	25	41	11	4	4	5	10	18	10	19	5	400	97	50	32	69	49	1	27	59	14 2
k_Bacteria p	p_Bacteroidetes	unclassified		659	20	30	29	41	57	46	70	95	92	112	67	577	47	31	20	33	65	0	25	346	91
k_Bacteria p	pChlorobi			1916	8	8	108	265	326	320	229	208	109	183	152	811	23	15	29	42	52	0	122	528	0 0
k_Bacteria p	pChlorobi	c_Chlorobia		1462	0	1	81	225	274	263	170	143	60	125	120	575	1	0	14	17	26	0	107	410	0 0
k_Bacteria p	pChlorobi	c_lgnavibacteria		356	0	0	23	35	41	47	44	56	40	43	27	123	0	0	2	4	2	0	15	100	0 0
k_Bacteria p	p_Chlorobi	c_OPB56		39	8	7	4	0	0	2	5	4	5	3	1	102	22	15	13	21	24	0	0	7	0 0
k_Bacteria p	pChlorobi	unclassified		59	0	0	0	5	11	8	10	5	4	12	4	11	0	0	0	0	0	0	0	11	0 0
k_Bacteria p	pChloroflexi			824	9	13	26	64	33	60	83	88	132	251	65	444	49	29	22	30	83	0	7	224	0 0
k_Bacteria p	p_Cyanobacteria			910	243	337	59	19	25	20	18	24	60	48	57	1052	223	168	126	205	164	0	67	97	2 0
k_Bacteria p	p_Firmicutes			46	2	2	1	0	3	0	0	3	2	2	31	341	4	5	7	11	0	126	76	20	49 43
k_Bacteria p	p_Nitrospirae			102	0	0	3	5	5	6	17	29	10	11	16	29	0	0	0	1	3	0	0	25	0 0
k_Bacteria p	p_Planctomycetes			136	33	32	10	3	3	1	7	9	23	2	13	360	134	32	35	54	50	0	14	41	0 0
k_Bacteria p	p_Proteobacteria			2945	176	272	601	214	200	128	205	241	231	384	293	5259	646	424	438	759	941	87	671	1115	97 81
k_Bacteria p	p_Proteobacteria	c_Alphaproteobacteria		501	92	136	48	28	38	21	27	23	22	42	24	1623	346	221	190	349	269	7	117	114	10 0
k_Bacteria p	p_Proteobacteria	cAlphaproteobacteria	o_Caulobacterales	15	2	1	3	1	0	0	0	1	5	1	1	123	11	10	15	28	5	0	20	34	0 0
k_Bacteria p	p_Proteobacteria	cAlphaproteobacteria	oRhizobiales	16	3	3	2	1	0	2	3	1	0	1	0	54	6	0	4	14	2	1	8	19	0 0
k_Bacteria p	p_Proteobacteria	cAlphaproteobacteria	oRhodobacterales	143	5	3	6	22	32	16	15	14	4	11	15	76	6	1	0	14	16	6	18	5	10 0
k_Bacteria p	p_Proteobacteria	cAlphaproteobacteria	oRhodospirillales	62	6	12	8	3	3	2	4	1	3	16	4	113	14	11	12	18	29	0	13	16	0 0
k_Bacteria p	p_Proteobacteria	c_Alphaproteobacteria	o_Rickettsiales	220	73	109	16	0	1	0	3	2	5	10	1	1034	276	186	140	211	181	0	35	5	0 0
k_Bacteria p	p_Proteobacteria	cAlphaproteobacteria	oSphingomonadales	18	0	0	7	1	0	0	1	2	4	0	3	100	5	4	2	33	3	0	22	31	0 0
k_Bacteria p	p_Proteobacteria	cAlphaproteobacteria	unclassified	27	3	8	6	0	2	1	1	2	1	3	0	123	28	9	17	31	33	0	1	4	0 0
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria		1294	57	86	268	139	136	85	84	75	47	103	214	1550	137	85	117	194	337	65	286	268	40 21
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria	oBurkholderiales	706	22	42	142	93	61	43	39	39	28	45	152	865	65	47	48	100	153	62	179	150	40 21
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria	oGallionellales	50	0	0	26	8	0	0	0	0	2	14	0	135	0	1	6	11	50	0	31	36	0 0
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria	o_Hydrogenophilales	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0 0
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria	o_Methylophilales	71	6	8	44	2	2	0	1	0	1	7	0	177	17	6	21	26	69	0	28	10	0 0
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria	oNeisseriales	1	0	0	0	0	0	0	0	1	0	0	0	C	0	0	0	0	0	0	0	0	0 0
k_Bacteria p	p_Proteobacteria	c_Betaproteobacteria	o_Rhodocyclales	109	0	0	23	12	8	10	13	8	7	17	11	87	0	0	5	6	25	1	17	33	0 0
k_Bacteria p	p_Proteobacteria	cBetaproteobacteria	unclassified	357	29	36	33	24	65	32	31	27	9	20	51	285	55	31	37	51	40	1	31	39	0 0
k_Bacteria p	p_Proteobacteria	c_Deltaproteobacteria		471	7	5	12	13	15	14	29	70	92	180	34	541	14	12	19	29	47	0	16	404	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	oBdellovibrionales	1	0	0	0	0	0	0	0	1	0	0	0	8	3	2	0	3	0	0	0	0	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	oDesulfobacterales	5	0	0	0	0	0	0	1	0	4	0	0	12	0	0	0	0	0	0	1	11	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	oDesulfuromonadales	12	0	1	5	0	0	0	0	1	1	4	0	22	0	0	0	4	7	0	6	5	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	oMIZ46	13	5	4	3	0	1	0	0	0	0	0	0	44	9	7	16	11	1	0	0	0	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	oMyxococcales	6	2	0	3	0	1	0	0	0	0	0	0	53	2	1	2	7	29	0	0	12	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	oSyntrophobacterales	371	0	0	0	9	12	14	26	58	78	150	24	314	0	0	1	2	7	0	5	299	0 0
k_Bacteria p	p_Proteobacteria	cDeltaproteobacteria	unclassified	63	0	0	1	4	1	0	2	10	9	26	10	88	0	2	0	2	3	0	4	77	0 0
k_Bacteria p	p_Proteobacteria	c_Epsilonproteobacteria		17	0	0	1	0	0	0	0	2	2	12	0	98	0	0	0	3	2	0	52	41	0 0
k_Bacteria p	p_Proteobacteria	c_Epsilonproteobacteria	o_Campylobacterales	17	0	0	1	0	0	0	0	2	2	12	0	98	0	0	0	3	2	0	52	41	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria		545	15	26	229	29	7	6	61	65	58	31	18	1238	118	86	90	148	229	15	188	257	47 60
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	oAeromonadales	2	0	2	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	oAlteromonadales	12	3	1	0	0	0	0	3	3	2	0	0	42	11	5	2	1	2	0	18	3	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	o_Chromatiales	33	5	12	4	1	2	0	1	0	5	1	2	72	14	19	14	18	4	0	0	3	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	o_Legionellales	14	0	1	2	0	2	1	1	0	1	1	5	56	11	3	6	17	10	0	0	9	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	oMethylococcales	42	0	0	19	5	1	0	0	4	1	12	0	67	0	0	5	3	35	0	9	15	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	o_Oceanospirillales	1	1	0	0	0	0	0	0	0	0	0	0	4	0	0	3	0	0	1	0	0	0 0
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	o_Pasteurellales	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	2	0	07
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	o_Pseudomonadales	191	1	3	24	7	0	3	52	53	41	1	6	636	63	53	53	82	56	0	83	158	40 48
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	o_Xanthomonadales	11	0	0	3	1	0	2	0	1	0	0	4	81	0	0	0	7	1	5	41	15	75
k_Bacteria p	p_Proteobacteria	cGammaproteobacteria	unclassified	239	5	7	177	15	2	0	4	4	8	16	1	270	18	6	7	20	121	9	35	54	0 0
k_Bacteria p	p_Proteobacteria	unclassified	unclassified	117	5	19	43	5	4	2	4	6	10	16	3	209	31	20	22	36	57	0	12	31	0 0
k_Bacteria p	pSpirochaetes			45	0	1	0	0	1	0	4	7	14	17	1	75	0	0	0	0	1	0	2	71	0 1
k_Bacteria p	p_Verrucomicrobia			80	14	20	11	2	3	0	3	5	5	13	4	239	41	10	30	60	31	0	24	43	0 0
k_Bacteria d	other Cult phyla			55	2	6	3	4	1	1	4	7	5	10	12	73	5	2	5	7	3	0	3	30	0 18
k_Bacteria (Cand. Uncult phyla			301	0	0	9	15	22	26	50	59	62	38	20	327	10	4	13	25	42	0	41	192	0 0
k_Bacteria u	unclassified			2967	63	126	95	164	177	214	295	468	467 (661	237	2924	273	93	111	247	309	1	105	1785	0 0

 Supplementary table 3. Microbial richness and diversity in Kabuno Bay.
 Archaeal and bacterial richness and diversity estimates based on pyrosequencing analyses from rainy (RS) and dry (DS) seasons in KB.

				Richness	Diversity
Water c	ompartment	# OTUs	Coverage	Chao1	Shannon
February – R	S				
Archaea					
	Epilimnion	12	0.99	17	0.3
	Chemocline	45	0.99	88	0.7
	Monimolimnion	48	0.99	57	1.4
Bacteria					
	Epilimnion	776	0.85	1,825	5.4
	Chemocline	1,095	0.86	2,837	5.3
	Monimolimnion	1,225	0.82	2,859	6.2
October – DS	3				
Archaea					
	Epilimnion	2	_	3	0.7
	Chemocline	33	0.98	57	1.5
	Monimolimnion	8	0.99	10	0.6
Bacteria					
	Epilimnion	109	0.90	2,674	5.2
	Chemocline	1,917	0.87	4,784	6.4
	Monimolimnion	56	0.94	106	3.3

