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In a two-dimensional space where a point particle interacts with a diatomic fragment, the action
integral �p�d� �where � is the angle between the fragment and the line of centers and p� its
conjugate momentum� is an adiabatic invariant. This invariance is thought to be a persistent
dynamical constraint. Indeed, its classical Poisson bracket with the Hamiltonian is found to vanish
in particular regions of the potential energy surface: asymptotically, at equilibrium geometries,
saddle points, and inner turning points, i.e., at remarkable situations where the topography of the
potential energy surface is locally simple. Studied in this way, the adiabatic decoupling of the
reaction coordinate is limited to disjoint regions. However, an alternative view is possible. The
invariance properties of entropy �as defined in information theory� can be invoked to infer that
dynamical constraints that are found to operate locally subsist everywhere, throughout the entire
reactive process, although with a modified expression. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3026617�

I. INTRODUCTION

Theories of chemical dissociation assume a statistical
distribution of energy over all internal degrees of freedom
resulting from strong coupling among participating modes.1

However, studies of energy disposal in the products2 indicate
deviations from the behavior predicted by purely statistical
models. The presence of a certain degree of selectivity in the
measured product energy distributions proves the existence
of dynamical constraints. The purpose of the present paper is
to investigate the nature and properties of these constraints.

In 1939, Hirschfelder and Wigner3 drew an analogy with
the Born–Oppenheimer separation and suggested that the
motion along the reaction path should be expected to be
adiabatically decoupled from a fast vibrational motion. This
proposal has found many interesting applications.

�i� Several statistical theories, which explicitly exploit
the concept of adiabaticity, have been proposed, in
particular, the statistical adiabatic channel model4–6

and the adiabatic capture centrifugal sudden
approximation.7 These theories have been shown to
be equivalent.8

�ii� The propensity rule detected in the vibrational predis-
sociation of van der Waals complexes is accounted for
by the principle of adiabatic invariance of the action.9

�iii� As shown by Miller et al.,10 the dynamics is also con-
strained by adiabaticity when the potential energy sur-
face assumes the shape of a harmonic valley about a
slightly curved reaction path. The development of a
reaction path Hamiltonian is based on this
property.10,11 The breakdown of vibrational adiabatic-
ity resulting from curvature plays an important role in
studies of tunneling12 and of population inversion.13,14

�iv� The adiabatic approximation was also extensively
used by Marcus in his effort to go beyond the simple
assumptions of the statistical theory of unimolecular
reactions and in his study of product energy
distributions.15–17

�v� A detailed study of the exchange of a light particle
between two heavy atoms �HLH reactions� has been
carried out by Skodje and co-workers,18–20 resulting
in a picture of piecewise adiabatic invariance.

�vi� The present paper is especially concerned with an as-
sertion due to Bates21 that the dynamics of ion-
permanent dipole and ion-quadrupole interactions is
dominated by the invariance of the action integral

�p�� = ��2�r� − �1�r��−1�
�1�r�

�2�r�

p�d� = 	 p�d� , �1.1�

where � is the angle between the dipole or quadrupole and
the line of centers, p� its conjugate momentum, and �1�r� and
�2�r� are the turning points of the hindered rotation of the
neutral fragment at a fixed value of the reaction coordinate r.
When the rotation is free, the boundaries �1 and �2 should be
replaced by 0 and 2�.

Kern and Schlier22 used this simplification to reduce
the dynamics of an ion-molecule reaction �constrained
to take place in a plane� to a one-dimensional �1D� motion in
an effective potential. Djebri et al. developed a three-
dimensional �3D� adiabatic separation of the rotational and
radial motions at the semiclassical level for ion-molecule
reactive collisions at very low energies.23

The aim of the present work is to demonstrate the pres-
ence of dynamical constraints deriving from the properties of
Eq. �1.1� for a variety of interaction potentials. We use clas-
sical dynamics24–26 to detect them locally, as a function of
the reaction coordinate. The action integral �p�� is invariant
if its Poisson bracket �PB� with the Hamiltonian �denoted asa�Electronic mail: jc.lorquet@ulg.ac.be. Fax: ��32-4-3663413.
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��p�� ,H�� is equal to zero. It is of interest to determine the
locus in phase space where the latter quantity vanishes, i.e.,
where the adiabatic approximation applies.

We could recently demonstrate the adiabatic invariance
of the action integral for long-range electrostatic potentials.27

The PB is found not to vanish. However, for the ion-
permanent dipole and ion-quadrupole interactions, it is found
to decrease with the interfragment distance more rapidly than
the electrostatic potential. The smaller the translational mo-
mentum, the moment of inertia of the neutral fragment, and
the dipole or quadrupole moments, the more reliable is the
adiabatic approximation, as expected from the usual
argumentation.25,26,28 This study indicates that, for an ion-
molecule reaction, the reaction path coordinate is asymptoti-
cally adiabatically separable from the perpendicular degrees
of freedom.

The derivation of the previous results was greatly facili-
tated by the mathematical simplicity of electrostatic poten-
tials. However, there is no reason why adiabatic invariance
should be limited to ion-molecule reactions or to the
asymptotic range of the reaction coordinate. In the present
contribution, we wish to extend the previous results and to
examine the adiabatic separation of the reaction coordinate at
shorter values of the reaction coordinate.

The classical Hamiltonian used in this study is presented
in Sec. II with an overview of the method. The results in Sec.
III and IV show that the reaction coordinate is adiabatically
decoupled in its asymptotic range for any dissociation �or
association� reaction even those involving neutral species.
Those derived in Sec. V and VI apply to minima, saddle
points, and turning points. Section VII is devoted to a brief
analysis of phase space partitioning. Two opposite concepts
are confronted: piecewise invariance19,20 and entropy �as de-
fined in information theory� conservation.29,30

II. CLASSICAL HAMILTONIAN

For the sake of simplicity, our treatment is restricted to a
two-dimensional �2D� space, under conditions where the to-
tal angular momentum is equal to zero. Using the Jacobi
system of coordinates, the interaction between a point par-
ticle and a diatomic fragment is represented by the following
classical Hamiltonian:22,27,31

H�r,pr,�,p�� =
1

2mred

pr

2 +
p�

2

r2 � +
p�

2

2I�r�
+ V�r,�� , �2.1�

where r denotes the separation between the centers of mass
of the two moieties, while � specifies the orientation of the
diatom with respect to the line joining these centers of mass.
I�r� denotes the moment of inertia of the fragment, seen as a
parametric function of r, and mred is the reduced mass of the
point-diatom system. The rotation of the fragment is free if r
is large enough and is restricted otherwise.

In the following sections, a number of model potentials
will be considered. For each one, the value of p� is extracted
from the equation H=E,

p��r,pr� = r
 2mredI�r�
mredr

2 + I�r��1/2
E −
pr

2

2mred
− V�r,���1/2

�2.2�

and is then integrated over the whole range where the inte-
grand is real to derive an expression of the action integral
�Eq. �1.1��. The PB of the latter is then calculated as

��p��,H� =
�H

�pr

��p��
�r

−
�H

�r

��p��
�pr

. �2.3�

The locus where this expression vanishes determines the
regions of adiabaticity.

III. ASYMPTOTIC RANGE OF ION-MOLECULE
REACTIONS

Consider a potential having the form

Vn�r,�� = − Cr−n���� , �3.1�

where n is a positive integer and C is a constant. The aniso-
tropy function ���� is assumed to be expandable as a Fourier
series

���� = a0 + �
j=1

aj cos�j�� + �
k=1

bk sin�k�� . �3.2�

Note the relationship between the coefficient a0 and the
average value of the potential,

�Vn� = �2��−1�
0

2�

Vn�r,��d� = − a0Cr−n. �3.3�

The action integral �evaluated for a free rotation of the
fragment� is expanded about r→�. The result is

�p�� = 2I�r → ��E

�
1 −
I�r → ��
2mredr

2 ¯ −
pr

2

4mredE
¯ −

�Vn�
2E

¯ �
�3.4�

and the PB is found to be equal to

��p��,H� = n
pr

mredr
I�r → ��

2E
��Vn� − Vn�r,��� . �3.5�

The PB is seen to decrease with r faster than the potential
Vn�r ,��, whatever the value of n and no matter how compli-
cated the angular dependence is.

The same is true for a nonseparable potential

V�r,�� = − Cr−2���� − C�r−3����� , �3.6�

which generates a PB expressed by Eq. �3.5� with n=2.
The adiabatic approximation is thus an excellent ap-

proximation for all ion-molecule reactions studied in their
asymptotic range even if the anisotropy function is compli-
cated and even if the variables r and � are not separated in
the potential.

024307-2 J. C. Lorquet J. Chem. Phys. 130, 024307 �2009�
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IV. LONG-RANGE MORSE POTENTIAL

The asymptotic part of the potential energy function de-
scribing the dissociation of a neutral molecule is often ad-
equately described by Eq. �3.1� with n=6. Nevertheless,
for the sake of completeness, we now consider a separable
potential where the radial part is the asymptotic expansion of
a Morse function. The angular part is reduced to a cosine
function,

V�r,�� = − 2D exp�− ��r − req��cos � . �4.1�

The action integral �evaluated for a free rotation of the
fragment� is expressed in terms of elliptic integrals, which
are expanded about r→�. The resulting expression is very
similar to the previous equation �3.4� since the average po-
tential �V� now vanishes,

��p��,H� = 2I�r → ��E

�
1 −
I�r → ��
2mredr

2 ¯ −
pr

2

4mredE
+ ¯ � . �4.2�

The PB is found to vanish as the inverse fifth power of the
interfragment separation

��p��,H� =
3
2

pr

r5

I�r → ��5/2E

mred
3 . �4.3�

This result provides an additional justification for the use
of the adiabatic separation in the asymptotic range.

V. EQUILIBRIUM GEOMETRIES AND SADDLE POINTS

We now calculate the PB around a stationary point, i.e.,
around a minimum of the potential energy surface or around
a first-order saddle point. Locally, the potential surface can
be represented by a quadratic function,

V�r,�� = arr�r − re�2 + b���� − �e�2 + cr��r − re��� − �e� .

�5.1�

The force constant b�� is always positive �as a conse-
quence, the rotation of the fragment is hindered�, whereas arr

is positive if we study a stable structure and is negative for a
saddle point. In the first case, the function V�r ,�� generates a
paraboloid that is symmetrical if the coupling constant cr�

vanishes and slanted if cr��0. If arr�0, the function V�r ,��
describes a transition state. The reaction coordinate coincides
with r if cr�=0 and has nonzero components both on r and �
if cr��0. The graph representing the potential V is slanted in
a direction or another, depending on the sign of cr�.

The action integral �p�� is now calculated according to
Eqs. �1.1� and �2.2�. The diatomic fragment undergoes hin-
dered rotation and the turning points �1 and �2 determine the
range where p� is real. Close to a stationary point, the frag-
ment approaches a stable structure and it is a good approxi-
mation to neglect ��I /�r�r=re in the calculation of �p�� and of
the PB.

The PB is found to vanish exactly at the stationary point.
Its expansion about the point �re ,�e� for small values of cr� is
reported in an abbreviated form,

��p��,H� = K1pr�2cr�re�� − �e� − K2�r − re�2 + 6K3cr�

��r − re��� − �e� + 4K3b���� − �e�2 + ¯ � ,

�5.2�

where K1 and K2 are two positive constants that depend on
the values of I�re ,�e�, E, pr, mred, re, and arr, while K3 stands
for I�re ,�e� / �I�re ,�e�+mredre

2�. From the theory of conic sec-
tions, the locus where the PB vanishes is deduced to be a
hyperbola if cr��0, which reduces to two straight lines
crossing at point �re ,�e� when cr� vanishes. Adiabatic behav-
ior is therefore to be expected in the neighborhood of sta-
tionary points.

VI. TURNING POINTS

In the previous derivations, the PB is found to be pro-
portional to pr, in conformity with the usual derivations of
the principle of adiabatic invariance.25,26,28 Denote the coor-
dinates of the inner turning point of the radial motion as rt

and �t. Therefore, when the system evolves along the reac-
tion coordinate, the PB should vanish at r=rt.

This conclusion is confirmed by a direct calculation. The
potential function V�r ,�� is assumed to be linear with a nega-
tive slope in the neighborhood of rt.

V�r,�� = − C�r − rt����� . �6.1�

Nothing is assumed about the angular function ���� ex-
cept that its first derivative vanishes at r=rt. The rotation is
now hindered. The expression of the action integral is fairly
awkward but the PB can be written as

��p��,H� = pr�Kr�r − rt�2 + K��� − �t�2� , �6.2�

where Kr and K� are functions of C, mred, E, I�rt�, ���t�, and
����t�.

The PB is a third-order quantity because pr, �r−rt�, and
��−�t� tend to zero as the system approaches the turning
point. Therefore, adiabaticity is expected to be a good ap-
proximation in the neighborhood of a turning point even if
the anisotropy function is complicated.

VII. DISCUSSION

In this paper, we have considered a particular constraint
derived from a unique Hamiltonian �more exactly, a unique
kinetic energy part but with different interaction potentials�.
The PB of the action integral �Eq. �1.1�� can be expressed as

��p��,H� = pr	�r,�� . �7.1�

The function 	 is found to vanish in numerous but dis-
joint regions of the potential energy surface: asymptotically,
at inner turning points, in the neighborhood of equilibrium
geometries and saddle points, i.e., at remarkable situations,
whenever the topography of the potential energy surface is
locally simple.

A central question emerges. What happens between these
disjoint regions? Are they islands of adiabaticity in a sea of
chaos? The question can also be formulated in a slightly
different way: Is the mathematical simplicity of the potential
responsible for adiabatic invariance or does it simply make
possible an explicit calculation of the necessary PBs? Unfor-

024307-3 Adiabatic invariance along the reaction coordinate J. Chem. Phys. 130, 024307 �2009�
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tunately, no clear answer can be given at the present time.
The discursive nature of the following discussion clearly in-
dicates the need for future, more detailed, studies focusing
on the connectedness of phase space.

A. The separatrix problem

A separatrix is a dividing surface in phase space that
separates two distinctly different types of motion. For ex-
ample, in the pendulum problem, it separates oscillation and
rotation. Similarly, in the long-range part of the reaction co-
ordinate, it separates libration and perturbed rotation of the
fragments.

In an extensive series of papers, Skodje and
co-workers18–20,32 showed that the adiabatic approximation is
not valid for trajectories in the vicinity of a separatrix. The
reason is that adiabatic theory is based on a large difference
between time scales. However, at the separatrix, the fre-
quency of the coordinate that has previously been assumed to
depict the fast motion suddenly goes to zero. The resulting
theory has been applied to an analysis of HLH reactions.

The picture presented by Skodje and co-workers is that
of “a uniform analysis of piecewise adiabatic invariant dy-
namics defined in disjoint adiabatic regions of phase space
which are bounded by separatrices.” Adiabaticity is assumed
to hold only during the time interval where the trajectory
stays on one side of the separatrix but breaks down there-
after. The action integral is approximately constant as long
as the separatrix is not crossed. Similar results were obtained
by Kern and Schlier in their 2D study of ion-molecule
collisions.22

B. Adiabatic channel potential curves

The calculation of adiabatic channel potential curves is
particularly simple for ion-molecule reactions. The adiabats
are given by the eigenvalues of a Schrödinger equation at a
fixed interfragment separation r.6,7 The equation to be solved
is identical to that describing the Stark effect on a linear
dipole molecule, which admits two different power series
expansions: one about r→0 and one about r→�.6 Thus, this
piecewise construction is characterized by a discontinuity
that is reminiscent of the separatrix problem. Moreover, at
some point, a transition must be introduced between two
regimes.7 In the long-range region, the adiabatic approxima-
tion is quite reasonable. By contrast, at small values of r, the
channels are strongly coupled. Here, the transition between
the two regimes is not sharp: it is measured by the value of a
Massey parameter.33,34

C. Entropy

However, in spite of this forceful argumentation in favor
of a partitioning of phase space, attention should be drawn to
an unexpected conclusion derived from the invariance prop-
erties of the entropy.

Consider a time-dependent system described either by a
classical distribution in phase space or by a density operator,
both being denoted as 
�t�. In the maximum entropy method
�MEM�,2,29,30,35 i.e., in the method where energy randomiza-

tion is as extensive as possible subject to the dynamical con-
straints on the system, this state is expressed as an expansion


�t� = exp
− �
r=0

�r�t�Ar� , �7.2�

where the Ar ’s are a set of operators associated with the
constraints and the �r ’s are Lagrange multipliers. The en-
tropy corresponding to this state is

S�
�t�� = − Tr�
�t�ln 
�t�� = �
r=0

�r�t��Ar��t� . �7.3�

In a time-dependent problem, S remains constant during the
entire evolution.

These views are supported by explicit quantum dynami-
cal calculations of reactive scattering. Clary and Nesbet cal-
culated the population of internal states as a function of the
reaction coordinate.36–38 The entropy of the calculated distri-
butions is found to maintain its maximum value subject only
to dynamical constraints throughout the entire reaction pro-
cess and not just in regions where the topography of the
potential energy surface is particularly simple.

D. The variable nature of the constraints

As shown by Levine and co-workers,2,29,30,35 information
theory can be used to define measures of the lack of energy
randomization in an activated molecule. A nonzero value of
them indicates that energy exchange among degrees of free-
dom is restricted by dynamical constraints. These measures,
termed surprisal and entropy deficiency, are constants of the
motion and are experimentally measurable. The surprisal is
simply defined as −ln p. The entropy is thus the average
value of the surprisal.

This means that the influence of a constraint detected in
a particular region �e.g., asymptotically� subsists in other re-
gions. However, as emphasized by Levine and co-workers,
the nature of the constraint is expected to vary considerably
during the lifetime of the molecule �i.e., along the reaction
path�: it might be simple asymptotically but dispersed on
many degrees of freedom at short values of the reaction co-
ordinate, in the strong coupling region.

The skill, in a MEM analysis, lies in the choice of the set
of operators to be used in expansions �7.2� and �7.3�. They
should be associated with the observables measured or play-
ing a role in the reaction. It may happen that some of the
Lagrange multipliers are equal to zero at particular times.
For example, it is often observed in studies of translational
distributions that at very long times �i.e., at asymptotically
large values of the reaction coordinate�, the set reduces to a
single operator, namely, the translational momentum pr or,
equivalently, the square root of the translational kinetic en-
ergy �1/2.39,40 This has been taken as an evidence of adiabatic
decoupling of the reaction coordinate.27 The reason is that if
the dynamics reduces to a 1D motion in an effective potential
V�s�, then Jacobi’s form of the least-action principle is par-
ticularly simple. It requires the minimization of the integral
�s1

s2�1/2ds. Because of its analogy with Fermat’s principle of
geometrical optics, the translational momentum �1/2 is seen
to play a fundamental role in the dynamics that takes place

024307-4 J. C. Lorquet J. Chem. Phys. 130, 024307 �2009�
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asymptotically. However, at shorter values of the reaction
coordinate, the translational momentum loses its relevance.
Expansions �7.2� and �7.3� then no longer reduce to a single
term, i.e., many dynamical constraints operate. It might hap-
pen that in another range, the topography of the potential
energy surface again becomes simple. Then, the dynamical
constraints might again be described by a simple model that
makes them few in number and readily identifiable if ex-
panded in another set of appropriate operators. Nevertheless,
as shown by Levine and co-workers,29,30 the surprisal and
entropy deficiency are constants of the motion, i.e., the lack
of energy randomization persists during the entire lifetime of
the reacting molecule. Thus, in contradistinction to summary
sketches of statistical theories, the system never forgets its
previous history.

E. Conclusion

A final element of the problem must be pointed out. A
great difference between the results of 2D and 3D studies has
been observed by Skodje in his study of HLH reactions.19,20

In the collinear problem, the nuclear trajectories are found
not to sample phase space in a uniform way, thereby indicat-
ing the presence of dynamical constraints. By contrast, in the
3D study, trajectories that cross the separatrix are found to
quickly separate from one another, i.e., to exhibit chaotic
features and thus to behave statistically, which implies the
absence of constraints.

Therefore, to sum up, a fully satisfactory discussion of
the presence of adiabatic constraints requires a joint discus-
sion of 3D dynamics and of the invariance properties of en-
tropy. It is hoped to address this point in a future research.
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